File size: 5,834 Bytes
6453bed
 
 
 
ac1b901
6453bed
 
ac1b901
 
 
 
 
 
496dbd8
ac1b901
 
6453bed
 
 
 
 
 
 
ca70941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b2baab
 
 
 
8a3405a
1bac392
895bfae
f53d9ab
6453bed
 
d2b44ad
895bfae
6b2baab
 
 
 
 
 
 
ba8ad6f
ca70941
ba8ad6f
ca70941
 
 
 
6b2baab
ca70941
1247d39
8a3405a
6b2baab
71590d8
ba8ad6f
 
 
 
feb6b51
71590d8
ba8ad6f
71590d8
6b2baab
1bac392
cc4a3ff
895bfae
a5afc6b
6453bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5afc6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6453bed
cc4a3ff
 
6453bed
 
a5afc6b
6453bed
 
a5afc6b
6453bed
 
d2b44ad
6453bed
abba001
6453bed
 
 
d1db1da
8a3405a
d1db1da
6453bed
 
 
1686e90
a5afc6b
6453bed
 
 
 
 
 
a5afc6b
 
 
 
6453bed
 
a5afc6b
6453bed
 
eb66913
6453bed
8a3405a
cc4a3ff
 
a5afc6b
 
8a3405a
cc4a3ff
8a3405a
cc4a3ff
6453bed
495f72e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import spaces
import gradio as gr
import re
from PIL import Image

import os
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)



def sanitize_prompt(prompt):
  # Allow only alphanumeric characters, spaces, and basic punctuation
  allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
  sanitized_prompt = allowed_chars.sub("", prompt)
  return sanitized_prompt

def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
    width, height =original_width_and_height
    if width <= maximum_size and height <= maximum_size:
        return width,height
    
    if width > height:
        scaling_factor = maximum_size / width
    else:
        scaling_factor = maximum_size / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)
    return new_width, new_height

def adjust_to_multiple_of_32(width: int, height: int):
    width = width - (width % 32)
    height = height - (height % 32)
    return width, height




@spaces.GPU(duration=120)
def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)):
    #print("start process_images")
    progress(0, desc="Starting")


    def process_img2img(image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4):
        #print("start  process_img2img")
        if image == None:
            print("empty input image returned")
            return None

        generators = []
        generator = torch.Generator(device).manual_seed(seed)
        generators.append(generator)
        fit_width,fit_height = convert_to_fit_size(image.size)
        #print(f"fit {width}x{height}")
        width,height = adjust_to_multiple_of_32(fit_width,fit_height)
        #print(f"multiple {width}x{height}")
        image = image.resize((width, height), Image.LANCZOS)
        #mask_image = mask_image.resize((width, height), Image.NEAREST)

        # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
        #print(prompt)
        output = pipe(prompt=prompt, image=image,generator=generator,strength=strength,width=width,height=height
                    ,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)

        pil_image = output.images[0]#Image.fromarray()
        new_width,new_height = pil_image.size

        # resize back multiple of 32
        if (new_width!=fit_width) or (new_height!=fit_height):
            resized_image= pil_image.resize((fit_width,fit_height),Image.LANCZOS)
            return resized_image
        
        return pil_image

    output = process_img2img(image,prompt,strength,seed,inference_step)
   
    #print("end process_images")
    return output
    

def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}

"""

with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
                            
                    btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
                            seed = gr.Number(value=100, minimum=0, step=1, label="seed")
                            inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
                        id_input=gr.Text(label="Name", visible=False)
                            
                with gr.Column():
                    image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
                   

                    
            

    gr.Examples(
               examples=[
                    ["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"],
                    ["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"],
                    ["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"],
                    ["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"]
                         ]
,
                inputs=[image,image_out,prompt],
    )
    gr.HTML(
       gr.HTML(read_file("demo_footer.html"))
    )
    gr.on(
        triggers=[btn.click, prompt.submit],
        fn = process_images,
        inputs = [image,prompt,strength,seed,inference_step],
        outputs = [image_out]
    )

if __name__ == "__main__":
    demo.launch()