Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,834 Bytes
6453bed ac1b901 6453bed ac1b901 496dbd8 ac1b901 6453bed ca70941 6b2baab 8a3405a 1bac392 895bfae f53d9ab 6453bed d2b44ad 895bfae 6b2baab ba8ad6f ca70941 ba8ad6f ca70941 6b2baab ca70941 1247d39 8a3405a 6b2baab 71590d8 ba8ad6f feb6b51 71590d8 ba8ad6f 71590d8 6b2baab 1bac392 cc4a3ff 895bfae a5afc6b 6453bed a5afc6b 6453bed cc4a3ff 6453bed a5afc6b 6453bed a5afc6b 6453bed d2b44ad 6453bed abba001 6453bed d1db1da 8a3405a d1db1da 6453bed 1686e90 a5afc6b 6453bed a5afc6b 6453bed a5afc6b 6453bed eb66913 6453bed 8a3405a cc4a3ff a5afc6b 8a3405a cc4a3ff 8a3405a cc4a3ff 6453bed 495f72e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import spaces
import gradio as gr
import re
from PIL import Image
import os
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
def sanitize_prompt(prompt):
# Allow only alphanumeric characters, spaces, and basic punctuation
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
width, height =original_width_and_height
if width <= maximum_size and height <= maximum_size:
return width,height
if width > height:
scaling_factor = maximum_size / width
else:
scaling_factor = maximum_size / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return new_width, new_height
def adjust_to_multiple_of_32(width: int, height: int):
width = width - (width % 32)
height = height - (height % 32)
return width, height
@spaces.GPU(duration=120)
def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)):
#print("start process_images")
progress(0, desc="Starting")
def process_img2img(image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4):
#print("start process_img2img")
if image == None:
print("empty input image returned")
return None
generators = []
generator = torch.Generator(device).manual_seed(seed)
generators.append(generator)
fit_width,fit_height = convert_to_fit_size(image.size)
#print(f"fit {width}x{height}")
width,height = adjust_to_multiple_of_32(fit_width,fit_height)
#print(f"multiple {width}x{height}")
image = image.resize((width, height), Image.LANCZOS)
#mask_image = mask_image.resize((width, height), Image.NEAREST)
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
#print(prompt)
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength,width=width,height=height
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
pil_image = output.images[0]#Image.fromarray()
new_width,new_height = pil_image.size
# resize back multiple of 32
if (new_width!=fit_width) or (new_height!=fit_height):
resized_image= pil_image.resize((fit_width,fit_height),Image.LANCZOS)
return resized_image
return pil_image
output = process_img2img(image,prompt,strength,seed,inference_step)
#print("end process_images")
return output
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
seed = gr.Number(value=100, minimum=0, step=1, label="seed")
inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
id_input=gr.Text(label="Name", visible=False)
with gr.Column():
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
gr.Examples(
examples=[
["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"],
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"],
["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"],
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"]
]
,
inputs=[image,image_out,prompt],
)
gr.HTML(
gr.HTML(read_file("demo_footer.html"))
)
gr.on(
triggers=[btn.click, prompt.submit],
fn = process_images,
inputs = [image,prompt,strength,seed,inference_step],
outputs = [image_out]
)
if __name__ == "__main__":
demo.launch()
|