Spaces:
Running
on
Zero
Running
on
Zero
change simple
Browse files
app.py
CHANGED
@@ -2,11 +2,20 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import shutil
|
9 |
#shutil.rmtree("/home/user/app/.gradio/cached_examples/23")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def sanitize_prompt(prompt):
|
12 |
# Allow only alphanumeric characters, spaces, and basic punctuation
|
@@ -14,7 +23,26 @@ def sanitize_prompt(prompt):
|
|
14 |
sanitized_prompt = allowed_chars.sub("", prompt)
|
15 |
return sanitized_prompt
|
16 |
|
17 |
-
#@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0):
|
19 |
print("start process_images")
|
20 |
try:
|
@@ -37,11 +65,11 @@ def process_images(image, image2=None,prompt="a girl",inpaint_model="black-fores
|
|
37 |
mask = image['layers'][0]
|
38 |
|
39 |
|
40 |
-
output =
|
41 |
except Exception as e:
|
42 |
print(f"An error occurred: {e}")
|
43 |
gr.Error(e)
|
44 |
-
|
45 |
return output
|
46 |
|
47 |
|
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
+
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import shutil
|
9 |
#shutil.rmtree("/home/user/app/.gradio/cached_examples/23")
|
10 |
+
import torch
|
11 |
+
from diffusers import FluxImg2ImgPipeline
|
12 |
+
|
13 |
+
dtype = torch.bfloat16
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
pipe = FluxImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
|
17 |
+
|
18 |
+
|
19 |
|
20 |
def sanitize_prompt(prompt):
|
21 |
# Allow only alphanumeric characters, spaces, and basic punctuation
|
|
|
23 |
sanitized_prompt = allowed_chars.sub("", prompt)
|
24 |
return sanitized_prompt
|
25 |
|
26 |
+
#@spaces.GPU
|
27 |
+
def process_img2img(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
|
28 |
+
print("start process image process_image")
|
29 |
+
if image == None:
|
30 |
+
print("empty input image returned")
|
31 |
+
return None
|
32 |
+
|
33 |
+
generators = []
|
34 |
+
generator = torch.Generator(device).manual_seed(seed)
|
35 |
+
generators.append(generator)
|
36 |
+
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
|
37 |
+
print(prompt)
|
38 |
+
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength
|
39 |
+
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
|
40 |
+
|
41 |
+
# TODO support mask
|
42 |
+
return output.images[0]
|
43 |
+
|
44 |
+
|
45 |
+
@spaces.GPU(duration=180)
|
46 |
def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0):
|
47 |
print("start process_images")
|
48 |
try:
|
|
|
65 |
mask = image['layers'][0]
|
66 |
|
67 |
|
68 |
+
output = process_img2img(image["background"],mask,prompt,inpaint_model,strength,seed)
|
69 |
except Exception as e:
|
70 |
print(f"An error occurred: {e}")
|
71 |
gr.Error(e)
|
72 |
+
print("end process_images")
|
73 |
return output
|
74 |
|
75 |
|