File size: 4,239 Bytes
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53709ed
 
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06e98d
bdafe83
 
 
 
 
 
 
a06e98d
 
 
bdafe83
 
 
 
 
 
 
 
 
 
 
a06e98d
 
 
 
bdafe83
 
a06e98d
 
 
 
 
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06e98d
 
 
bdafe83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import logging
import logging
import os
from pathlib import Path
from typing import List, Union

from llama_index.readers.file.docs import PDFReader

from agentreview.agent import Player
from .backends import IntelligenceBackend
from .config import BackendConfig
from .message import Message


class AreaChair(Player):

    def __init__(
            self,
            name: str,
            role_desc: str,
            env_type: str,
            backend: Union[BackendConfig, IntelligenceBackend],
            global_prompt: str = None,
            **kwargs,
    ):
        super().__init__(name, role_desc, backend, global_prompt, **kwargs)
        self.env_type = env_type
        self.role_desc = role_desc

    def act(self, observation: List[Message]) -> str:

        # The author just finished their rebuttals (so last speaker is Author 1).
        # The AC asks each reviewer to update their reviews.

        if self.env_type == "paper_review":
            if len(observation) > 0 and observation[-1].agent_name.startswith("Author"):
                return "Dear reviewers, please update your reviews based on the author's rebuttals."

            else:
                return super().act(observation)

        elif self.env_type == "paper_decision":
            return super().act(observation)

        else:
            raise ValueError(f"Unknown env_type: {self.env_type}")


class Reviewer(Player):

    def __init__(
            self,
            name: str,
            role_desc: str,
            backend: Union[BackendConfig, IntelligenceBackend],
            global_prompt: str = None,
            **kwargs,
    ):
        print("kwargs")
        print(kwargs)
        super().__init__(name, role_desc, backend, global_prompt, **kwargs)

    def act(self, observation: List[Message]) -> str:
        return super().act(observation)


class PaperExtractorPlayer(Player):
    """A player for solely extracting contents from a paper.

    No API calls are made by this player.
    """

    def __init__(
            self,
            name: str,
            role_desc: str,
            paper_id: int,
            paper_decision: str,
            conference: str,
            backend: Union[BackendConfig, IntelligenceBackend],
            paper_pdf_path: str = None,
            global_prompt: str = None,
            **kwargs,
    ):
        super().__init__(name, role_desc, backend, global_prompt, **kwargs)
        self.paper_id = paper_id
        self.paper_decision = paper_decision
        self.conference: str = conference
        
        if paper_pdf_path is not None:
            self.paper_pdf_path = paper_pdf_path

    def act(self, observation: List[Message]) -> str:
        """
        Take an action based on the observation (Generate a response), which can later be parsed to actual actions that affect the game dynamics.

        Parameters:
            observation (List[Message]): The messages that the player has observed from the environment.

        Returns:
            str: The action (response) of the player.
        """
        if self.paper_pdf_path is not None:
            logging.info(f"Loading paper from {self.paper_pdf_path} ...")
        else:
            logging.info(f"Loading {self.conference} paper {self.paper_id} ({self.paper_decision}) ...")

        loader = PDFReader()
        if self.paper_pdf_path is not None:
            document_path = Path(self.paper_pdf_path)
        else:
            document_path = Path(os.path.join(self.args.data_dir, self.conference, "paper", self.paper_decision,
                                            f"{self.paper_id}.pdf"))  #
        documents = loader.load_data(file=document_path)

        num_words = 0
        main_contents = "Contents of this paper:\n\n"
        FLAG = False

        for doc in documents:
            text = doc.text.split(' ')
            if len(text) + num_words > self.args.max_num_words:
                text = text[:self.args.max_num_words - num_words]
                FLAG = True
            num_words += len(text)
            text = " ".join(text)
            main_contents += text + ' '
            if FLAG:
                break
        
        print(main_contents)
        
        return main_contents