File size: 5,245 Bytes
7dae5d7
328500b
be96b46
a9baea4
b484368
7ff2459
d546522
7ff2459
d546522
 
 
 
 
e35f671
d546522
 
 
 
 
7dae5d7
 
7dcc866
 
 
 
453dcab
 
b484368
e35f671
 
 
3ad86cf
7914072
3ad86cf
6aa678c
591c402
b484368
1326d25
f3ed293
 
7dcc866
453dcab
628c91c
3ad86cf
e47d1c9
f3ed293
 
 
7dcc866
453dcab
628c91c
f3ed293
03bd826
b484368
50954b4
f7e408f
db46e96
949beac
f7e408f
666d299
 
f7e408f
666d299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0995edb
666d299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e408f
db46e96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os, threading
import gradio as gr
from crew import run_crew
from utils import get_questions

def ask(question, openai_api_key, gemini_api_key, anthropic_api_key, file_name = ""):
    """
    Ask General AI Assistant a question to answer.

    Args:
        question (str): The question to answer
        openai_api_key (str): OpenAI API key
        gemini_api_key (str): Gemini API key
        anthropic_api_key (str): Anthropic API key
        file_name (str): Optional file name

    Returns:
        str: The answer to the question
    """
    if not question:
        raise gr.Error("Question is required.")

    if not openai_api_key:
        raise gr.Error("OpenAI API Key is required.")
    
    if not gemini_api_key:
        raise gr.Error("Gemini API Key is required.")

    if not anthropic_api_key:
        raise gr.Error("Anthropic API Key is required.")
        
    if file_name:
        file_name = f"data/{file_name}"
    
    lock = threading.Lock()

    with lock:
        answer = ""

        try:
            os.environ["OPENAI_API_KEY"] = openai_api_key
            os.environ["GEMINI_API_KEY"] = gemini_api_key
            os.environ["MODEL_API_KEY"] = anthropic_api_key
            
            answer = run_crew(question, file_name)
        except Exception as e:
            raise gr.Error(e)
        finally:
            del os.environ["OPENAI_API_KEY"]
            del os.environ["GEMINI_API_KEY"]
            del os.environ["MODEL_API_KEY"]
        
        return answer

gr.close_all()

with gr.Blocks() as grady:
    gr.Markdown("## Grady - General AI Assistant")

    with gr.Tab("Solution"):
        gr.Markdown(os.environ.get("DESCRIPTION"))

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row():
                    question = gr.Textbox(
                        label="Question *",
                        placeholder="In the 2025 Gradio Agents & MCP Hackathon, what percentage of participants submitted a solution during the last 24 hours?",
                        interactive=True
                    )
                with gr.Row():
                    level = gr.Radio(
                        choices=[1, 2, 3],
                        label="GAIA Benchmark Level",
                        interactive=True,
                        scale=1
                    )
                    ground_truth = gr.Textbox(
                        label="Ground Truth",
                        interactive=True,
                        scale=1
                    )
                    file_name = gr.Textbox(
                        label="File Name",
                        interactive=True,
                        scale=2
                    )
                with gr.Row():
                    openai_api_key = gr.Textbox(
                        label="OpenAI API Key *",
                        type="password",
                        placeholder="sk‑...",
                        interactive=True
                    )
                    gemini_api_key = gr.Textbox(
                        label="Gemini API Key *",
                        type="password",
                        interactive=True
                    )
                    anthropic_api_key = gr.Textbox(
                        label="Anthropic API Key *",
                        type="password",
                        placeholder="sk-ant-...",
                        interactive=True
                    )
                with gr.Row():
                    clear_btn = gr.ClearButton(
                        components=[question, level, ground_truth, file_name]
                    )
                    submit_btn = gr.Button("Submit", variant="primary")
            with gr.Column(scale=1):
                answer = gr.Textbox(
                    label="Answer",
                    lines=1,
                    interactive=False
                )
    
        submit_btn.click(
            fn=ask,
            inputs=[question, openai_api_key, gemini_api_key, anthropic_api_key, file_name],
            outputs=answer
        )
    
        QUESTION_FILE_PATH = "data/gaia_validation.jsonl"
        
        gr.Examples(
            label="GAIA Benchmark Level 1 Problems",
            examples=get_questions(QUESTION_FILE_PATH, 1),
            inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
            outputs=answer,
            cache_examples=False
        )
    
        gr.Examples(
            label="GAIA Benchmark Level 2 Problems",
            examples=get_questions(QUESTION_FILE_PATH, 2),
            inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
            outputs=answer,
            cache_examples=False
        )
    
        gr.Examples(
            label="GAIA Benchmark Level 3 Problems",
            examples=get_questions(QUESTION_FILE_PATH, 3),
            inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
            outputs=answer,
            cache_examples=False
        )
    with gr.Tab("Documentation"):
        gr.Markdown(os.environ.get("DOCUMENTATION"))

grady.launch(mcp_server=True)