File size: 7,715 Bytes
53e0bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import json
import os
from typing import Any, Dict
from anthropic import Anthropic
from mistralai import Mistral
from openai import OpenAI
from pydantic import BaseModel, ValidationError
# ------------------------------------------------------------------ #
# Configuration
# ------------------------------------------------------------------ #
DEFAULT_SCORES: Dict[str, Any] = {
"vulnerability_score": 0,
"style_score": 0,
"quality_score": 0,
}
ANALYSIS_PROMPT_TEMPLATE = (
"Analyze the following code for vulnerabilities, style, and quality "
"and return **only** a JSON object with keys "
"'vulnerability_score', 'style_score', and 'quality_score' "
"(each 0β100):\n```python\n{code}\n```"
)
SYSTEM_MESSAGES = {
"anthropic": "You are a secure-coding assistant. Assess code quality, style and vulnerabilities.",
"mistral": "You are a secure-coding assistant. Assess code quality, style and vulnerabilities.",
"openai": "You are a secure-coding assistant. Assess code quality, style and vulnerabilities.",
}
MODELS = {
"anthropic": "claude-sonnet-4-20250514",
"mistral": "mistral-medium-2505",
"openai": "gpt-4.1-2025-04-14",
}
REQUIRED_KEYS = ("vulnerability_score", "style_score", "quality_score")
# ------------------------------------------------------------------ #
# Helpers
# ------------------------------------------------------------------ #
class CodeAnalysisResult(BaseModel):
vulnerability_score: int
style_score: int
quality_score: int
def _safe_json_loads(raw: str) -> Dict[str, Any]:
"""
Best-effort JSON parsing β fall back to DEFAULT_SCORES on failure.
"""
try:
return json.loads(raw)
except json.JSONDecodeError:
return DEFAULT_SCORES.copy()
def _ensure_all_keys(d: dict, default: int = 0) -> dict:
"""
Return a dict that has every REQUIRED_KEYS entry.
Missing keys are added with `default`.
Non-required keys are discarded.
"""
return {key: int(d.get(key, default)) for key in REQUIRED_KEYS}
# ------------------------------------------------------------------ #
# Provider wrappers
# ------------------------------------------------------------------ #
def analyze_code_anthropic(code: str) -> dict:
if not code:
return _ensure_all_keys({})
try:
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
prompt = ANALYSIS_PROMPT_TEMPLATE.format(code=code)
tools = [
{
"name": "code_scores",
"description": "Return ONLY the three integer scores (0-100).",
"input_schema": {
"type": "object",
"properties": {
"vulnerability_score": {
"type": "integer",
"minimum": 0,
"maximum": 100,
},
"style_score": {
"type": "integer",
"minimum": 0,
"maximum": 100,
},
"quality_score": {
"type": "integer",
"minimum": 0,
"maximum": 100,
},
},
"required": list(REQUIRED_KEYS),
"additionalProperties": False,
},
}
]
resp = client.messages.create(
model=MODELS["anthropic"],
messages=[{"role": "user", "content": prompt}],
system=SYSTEM_MESSAGES["anthropic"],
tools=tools,
tool_choice={"type": "tool", "name": "code_scores"},
max_tokens=130,
temperature=0,
)
tool_call = next(c for c in resp.content if c.type == "tool_use")
return _ensure_all_keys(tool_call.input)
except Exception as exc:
out = _ensure_all_keys({})
out["error"] = f"Anthropic API error: {exc}"
return out
def analyze_code_mistral(code: str) -> Dict[str, Any]:
if not code:
return DEFAULT_SCORES.copy()
try:
client = Mistral(api_key=os.environ["MISTRAL_API_KEY"])
prompt = ANALYSIS_PROMPT_TEMPLATE.format(code=code)
resp = client.chat.complete(
model=MODELS["mistral"],
messages=[
{"role": "system", "content": SYSTEM_MESSAGES["mistral"]},
{"role": "user", "content": prompt},
],
response_format={"type": "json_object"},
)
return _safe_json_loads(resp.choices[0].message.content)
except Exception as exc:
result = DEFAULT_SCORES.copy()
result["error"] = f"Mistral API error: {exc}"
return result
def analyze_code_openai(code: str) -> Dict[str, Any]:
if not code:
return DEFAULT_SCORES.copy()
try:
client = OpenAI() # uses OPENAI_API_KEY from env
prompt = ANALYSIS_PROMPT_TEMPLATE.format(code=code)
resp = client.chat.completions.create(
model=MODELS["openai"],
messages=[
{"role": "system", "content": SYSTEM_MESSAGES["openai"]},
{"role": "user", "content": prompt},
],
response_format={"type": "json_object"},
)
# Validate via Pydantic (optional but nice)
parsed = _safe_json_loads(resp.choices[0].message.content)
try:
validated = CodeAnalysisResult(**parsed)
return validated.model_dump()
except ValidationError:
# If model returns extra fields or wrong types, fall back to raw
return parsed
except Exception as exc:
result = DEFAULT_SCORES.copy()
result["error"] = f"OpenAI API error: {exc}"
return result
# ------------------------------------------------------------------ #
# Aggregator
# ------------------------------------------------------------------ #
def code_analysis_score(code: str) -> Dict[str, Any]:
"""
Analyzes the provided code string using multiple AI providers and returns an
averaged score across vulnerability, style, and quality.
Args:
code: The code string to analyze.
Returns:
A dictionary containing the averaged vulnerability, style, and quality scores,
or an error message if all providers fail.
"""
if not code:
return DEFAULT_SCORES.copy()
scores_list = [
analyze_code_anthropic(code),
analyze_code_mistral(code),
analyze_code_openai(code),
]
valid = [s for s in scores_list if "error" not in s]
if not valid:
result = DEFAULT_SCORES.copy()
result["error"] = "All API providers failed"
return result
# Average
averaged = {
"vulnerability_score": sum(s["vulnerability_score"] for s in valid)
// len(valid),
"style_score": sum(s["style_score"] for s in valid) // len(valid),
"quality_score": sum(s["quality_score"] for s in valid) // len(valid),
}
return averaged
# ------------------------------------------------------------------ #
# Demo / quick test
# ------------------------------------------------------------------ #
if __name__ == "__main__":
sample = """
def example_function(x):
if x is None:
return "Error"
return x * 2
"""
print("Anthropic β", analyze_code_anthropic(sample))
print("Mistral β", analyze_code_mistral(sample))
print("OpenAI β", analyze_code_openai(sample))
print("AVERAGED β", code_analysis_score(sample))
|