File size: 8,872 Bytes
bce4c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Brown Agent Tools for LlamaIndex Integration
Wraps existing AgentBrown methods as LlamaIndex FunctionTools for hackathon demo
"""

import json
from typing import Dict, Any, List
from llama_index.core.tools import FunctionTool
from agents.brown import AgentBrown, StoryboardRequest


class BrownTools:
    """Tool wrapper class for Agent Brown's methods"""

    def __init__(self, max_iterations: int = 3):
        # Use your original AgentBrown class directly
        self.brown = AgentBrown(max_iterations)
        self._current_request = None

    def validate_input_tool(
        self,
        prompt: str,
        style_preference: str = None,
        panels: int = 4,
        language: str = "english",
        extras: str = "[]",
    ) -> str:
        """Validate user input for comic generation. Returns validation status and feedback."""
        try:
            extras_list = json.loads(extras) if extras else []
        except:
            extras_list = []

        request = StoryboardRequest(
            prompt=prompt,
            style_preference=style_preference,
            panels=panels,
            language=language,
            extras=extras_list,
        )

        # Store for later use
        self._current_request = request

        result = self.brown.validate_input(request)

        return json.dumps(
            {
                "status": result.status.value,
                "is_valid": result.is_valid(),
                "issues": result.issues,
                "suggestions": result.suggestions,
                "confidence_score": result.confidence_score,
            }
        )

    def process_request_tool(
        self,
        prompt: str,
        style_preference: str = None,
        panels: int = 4,
        language: str = "english",
        extras: str = "[]",
    ) -> str:
        """Process validated request and create structured message for Agent Bayko."""
        try:
            extras_list = json.loads(extras) if extras else []
        except:
            extras_list = []

        request = StoryboardRequest(
            prompt=prompt,
            style_preference=style_preference,
            panels=panels,
            language=language,
            extras=extras_list,
        )

        # Store for later use
        self._current_request = request

        message = self.brown.process_request(request)

        return json.dumps(
            {
                "message_id": message.message_id,
                "session_id": self.brown.session_id,
                "enhanced_prompt": message.payload.get("prompt", ""),
                "style_tags": message.payload.get("style_tags", []),
                "panels": message.payload.get("panels", 4),
                "status": "ready_for_bayko",
            }
        )

    def simulate_bayko_generation(self, message_data: str) -> str:
        """Simulate Agent Bayko's content generation for demo purposes."""
        try:
            data = json.loads(message_data)
        except:
            data = {"panels": 4}

        panels_count = data.get("panels", 4)
        style_tags = data.get("style_tags", ["studio_ghibli", "soft_lighting"])
        enhanced_prompt = data.get("enhanced_prompt", "")
        original_prompt = data.get("original_prompt", "")

        # Simulate Bayko's response with realistic image URLs for multimodal analysis
        bayko_response = {
            "session_id": self.brown.session_id,
            "panels": [
                {
                    "id": i + 1,
                    "description": f"Panel {i+1}: {original_prompt} - {', '.join(style_tags)} style",
                    "image_path": f"storyboard/{self.brown.session_id}/content/panel_{i+1}.png",
                    "image_url": f"https://example.com/generated/panel_{i+1}.png",  # For multimodal analysis
                    "audio_path": (
                        f"panel_{i+1}.mp3"
                        if "narration" in str(data)
                        else None
                    ),
                    "subtitles_path": (
                        f"panel_{i+1}.vtt"
                        if "subtitles" in str(data)
                        else None
                    ),
                }
                for i in range(panels_count)
            ],
            "style_tags": style_tags,
            "metadata": {
                "generation_time": "45s",
                "total_panels": panels_count,
                "status": "completed",
                "enhanced_prompt": enhanced_prompt,
                "original_prompt": original_prompt,
            },
        }

        return json.dumps(bayko_response)

    def review_bayko_output_tool(
        self, bayko_response_json: str, original_prompt: str
    ) -> str:
        """Review Agent Bayko's output and determine if refinement is needed."""
        try:
            bayko_response = json.loads(bayko_response_json)
        except:
            # Fallback response for demo
            bayko_response = {
                "panels": [{"id": 1, "description": "Generated content"}],
                "style_tags": ["studio_ghibli"],
                "metadata": {"generation_time": "45s"},
            }

        # Use stored request or create new one
        request = self._current_request or StoryboardRequest(
            prompt=original_prompt
        )

        result = self.brown.review_output(bayko_response, request)

        if result:
            # Extract decision from the result
            payload = result.payload
            if "approved_content" in payload:
                decision = "APPROVED"
                reason = "Content meets quality standards"
            elif "feedback" in payload:
                decision = (
                    payload["feedback"].get("decision", "REFINE").upper()
                )
                reason = payload["feedback"].get(
                    "reason", "Quality assessment needed"
                )
            else:
                decision = "REFINE"
                reason = "Content needs improvement"
        else:
            decision = "APPROVED"
            reason = "Content meets quality standards"

        return json.dumps(
            {
                "decision": decision,
                "reason": reason,
                "iteration": self.brown.iteration_count,
                "max_iterations": self.brown.max_iterations,
                "final": decision in ["APPROVED", "REJECTED"],
            }
        )

    def get_session_info_tool(self) -> str:
        """Get current session information and processing state."""
        info = self.brown.get_session_info()
        return json.dumps(
            {
                "session_id": info.get("session_id"),
                "iteration_count": info.get("iteration_count", 0),
                "max_iterations": info.get("max_iterations", 3),
                "memory_size": info.get("memory_size", 0),
                "status": "active" if info.get("session_id") else "inactive",
            }
        )

    def create_llamaindex_tools(self) -> List[FunctionTool]:
        """Create LlamaIndex FunctionTools from Brown's methods"""
        return [
            FunctionTool.from_defaults(
                fn=self.validate_input_tool,
                name="validate_input",
                description="Validate user input for comic generation. MUST be called first for any user prompt. Returns validation status, issues, and suggestions.",
            ),
            FunctionTool.from_defaults(
                fn=self.process_request_tool,
                name="process_request",
                description="Process validated request and create structured message for Agent Bayko. Call after validation passes. Returns enhanced prompt and generation parameters.",
            ),
            FunctionTool.from_defaults(
                fn=self.simulate_bayko_generation,
                name="simulate_bayko_generation",
                description="Simulate Agent Bayko's content generation process. Takes processed request data and returns generated comic content.",
            ),
            FunctionTool.from_defaults(
                fn=self.review_bayko_output_tool,
                name="review_bayko_output",
                description="Review Agent Bayko's generated content and decide if refinement is needed. Returns approval, refinement request, or rejection decision.",
            ),
            FunctionTool.from_defaults(
                fn=self.get_session_info_tool,
                name="get_session_info",
                description="Get current session information and processing state. Use to track progress and iterations.",
            ),
        ]


def create_brown_tools(max_iterations: int = 3) -> BrownTools:
    """Factory function to create BrownTools instance"""
    return BrownTools(max_iterations=max_iterations)