File size: 9,147 Bytes
bce4c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
Tool wrapper class for Agent Bayko's LLM-enhanced workflow methods
"""

import json
import asyncio
from typing import Dict, Any, List
from llama_index.core.tools import FunctionTool

from agents.bayko import AgentBayko
from agents.bayko_tools import ModalImageGenerator, ModalCodeExecutor


class BaykoWorkflowTools:
    """Tool wrapper class for Agent Bayko's LLM-enhanced methods"""

    def __init__(self, bayko_agent: AgentBayko):
        self.bayko = bayko_agent

    def generate_enhanced_prompt_tool(
        self, description: str, style_tags: str = "[]", mood: str = "neutral"
    ) -> str:
        """Generate LLM-enhanced prompt for SDXL image generation from panel description."""
        try:
            style_tags_list = json.loads(style_tags) if style_tags else []
        except:
            style_tags_list = []

        result = self.bayko.generate_prompt_from_description(
            description, style_tags_list, mood
        )

        return json.dumps(
            {
                "enhanced_prompt": result,
                "original_description": description,
                "style_tags": style_tags_list,
                "mood": mood,
                "llm_used": self.bayko.llm is not None,
            }
        )

    def revise_panel_description_tool(
        self, description: str, feedback: str = "{}", focus_areas: str = "[]"
    ) -> str:
        """Revise panel description based on Agent Brown's feedback using LLM."""
        try:
            feedback_dict = json.loads(feedback) if feedback else {}
            focus_areas_list = json.loads(focus_areas) if focus_areas else []
        except:
            feedback_dict = {}
            focus_areas_list = []

        result = self.bayko.revise_panel_description(
            description, feedback_dict, focus_areas_list
        )

        return json.dumps(
            {
                "revised_description": result,
                "original_description": description,
                "feedback_applied": feedback_dict,
                "focus_areas": focus_areas_list,
                "llm_used": self.bayko.llm is not None,
            }
        )

    async def generate_panel_content_tool(self, panel_data: str) -> str:
        """Generate complete panel content including image, audio, subtitles, and code execution concurrently."""
        try:
            data = json.loads(panel_data)
        except:
            return json.dumps({"error": "Invalid panel data JSON"})

        # Extract panel information
        panel_id = data.get("panel_id", 1)
        description = data.get("description", "")
        enhanced_prompt = data.get("enhanced_prompt", "")
        style_tags = data.get("style_tags", [])
        # language = data.get("language", "english")
        # extras = data.get("extras", [])
        session_id = data.get("session_id", "default")
        # dialogues = data.get("dialogues", [])
        # code_snippets = data.get("code_snippets", [])

        # Initialize Modal tools

        image_gen = ModalImageGenerator()
        # tts_gen = TTSGenerator()
        # subtitle_gen = SubtitleGenerator()
        code_executor = ModalCodeExecutor()

        # Create concurrent tasks for parallel execution
        tasks = []

        # 1. Always generate image
        tasks.append(
            image_gen.generate_panel_image(
                enhanced_prompt, style_tags, panel_id, session_id
            )
        )

        # 4. Execute code if provided
        if code_snippets and panel_id <= len(code_snippets):
            code_data = (
                code_snippets[panel_id - 1]
                if isinstance(code_snippets, list)
                else code_snippets
            )
            if isinstance(code_data, dict):
                code = code_data.get("code", "")
                code_language = code_data.get("language", "python")
                context = code_data.get("context", description)
            else:
                code = str(code_data)
                code_language = "python"
                context = description

            if code.strip():
                tasks.append(code_executor.execute_code(prompt, session_id))
            else:
                tasks.append(
                    asyncio.create_task(asyncio.sleep(0))
                )  # No-op task
        else:
            tasks.append(asyncio.create_task(asyncio.sleep(0)))  # No-op task

        # Execute all tasks concurrently
        start_time = asyncio.get_event_loop().time()
        results = await asyncio.gather(*tasks, return_exceptions=True)
        total_time = asyncio.get_event_loop().time() - start_time

        # Process results safely
        def safe_get_path(result):
            if isinstance(result, Exception) or result is None:
                return None
            if isinstance(result, tuple) and len(result) >= 1:
                return result[0]
            return None

        def safe_check_exists(result):
            path = safe_get_path(result)
            return path is not None

        image_path = safe_get_path(results[0])
        audio_path = safe_get_path(results[1])
        subtitle_path = safe_get_path(results[2])
        code_path = safe_get_path(results[3])

        # Build result
        result = {
            "panel_id": panel_id,
            "description": description,
            "enhanced_prompt": enhanced_prompt,
            "image_path": image_path,
            "image_url": f"file://{image_path}" if image_path else None,
            "audio_path": audio_path,
            "subtitles_path": subtitle_path,
            "code_result_path": code_path,
            "style_applied": style_tags,
            "generation_time": total_time,
            "status": "completed",
            "concurrent_execution": True,
            "tasks_completed": {
                "image": image_path is not None,
                "audio": audio_path is not None,
                "subtitles": subtitle_path is not None,
                "code": code_path is not None,
            },
        }

        return json.dumps(result)

    def get_session_info_tool(self) -> str:
        """Get current Bayko session information and memory state."""
        info = self.bayko.get_session_info()
        return json.dumps(
            {
                "session_id": info.get("session_id"),
                "memory_size": info.get("memory_size", 0),
                "generation_stats": info.get("generation_stats", {}),
                "llm_available": self.bayko.llm is not None,
                "status": "active" if info.get("session_id") else "inactive",
            }
        )

    def save_llm_data_tool(self, data_type: str, data: str) -> str:
        """Save LLM generation or revision data to session storage."""
        try:
            data_dict = json.loads(data)
        except:
            return json.dumps({"error": "Invalid data JSON"})

        if data_type == "generation":
            self.bayko._save_llm_generation_data(data_dict)
        elif data_type == "revision":
            self.bayko._save_llm_revision_data(data_dict)
        else:
            return json.dumps({"error": "Invalid data type"})

        return json.dumps(
            {
                "status": "saved",
                "data_type": data_type,
                "session_id": self.bayko.current_session,
            }
        )

    def create_llamaindex_tools(self) -> List[FunctionTool]:
        """Create LlamaIndex FunctionTools from Bayko's LLM-enhanced methods"""
        return [
            FunctionTool.from_defaults(
                fn=self.generate_enhanced_prompt_tool,
                name="generate_enhanced_prompt",
                description="Generate LLM-enhanced prompt for SDXL image generation. Takes panel description, style tags, and mood. Returns enhanced prompt optimized for text-to-image models.",
            ),
            FunctionTool.from_defaults(
                fn=self.revise_panel_description_tool,
                name="revise_panel_description",
                description="Revise panel description based on Agent Brown's feedback using LLM. Takes original description, feedback, and focus areas. Returns improved description.",
            ),
            FunctionTool.from_defaults(
                async_fn=self.generate_panel_content_tool,
                name="generate_panel_content",
                description="Generate complete panel content including image, audio, subtitles, and code execution concurrently. Takes panel data JSON with description, style, and generation parameters.",
            ),
            FunctionTool.from_defaults(
                fn=self.get_session_info_tool,
                name="get_session_info",
                description="Get current Bayko session information including memory state and generation statistics.",
            ),
            FunctionTool.from_defaults(
                fn=self.save_llm_data_tool,
                name="save_llm_data",
                description="Save LLM generation or revision data to session storage. Takes data type ('generation' or 'revision') and data JSON.",
            ),
        ]