File size: 28,929 Bytes
dd370c5 d0883e0 dd370c5 d0883e0 dd370c5 d0883e0 dd370c5 d0883e0 dd370c5 d0883e0 dd370c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import gradio as gr
from datetime import datetime
import sys
import threading
from agents.orchestrator import ClimateRiskOrchestrator
from tools.mapping_utils import (
COUNTRIES_AND_CITIES,
US_STATES,
get_coordinates_from_dropdown,
create_risk_map,
get_city_suggestions,
)
# === LogCatcher ===
class LogCatcher:
def __init__(self):
self.buffer = ""
self.lock = threading.Lock()
self._stdout = sys.stdout
self._stderr = sys.stderr
def write(self, msg):
with self.lock:
self.buffer += msg
self._stdout.write(msg)
def flush(self):
pass
def get_logs(self):
with self.lock:
return self.buffer
def clear(self):
with self.lock:
self.buffer = ""
def redirect(self):
sys.stdout = self
sys.stderr = self
def restore(self):
sys.stdout = self._stdout
sys.stderr = self._stderr
def isatty(self):
return False
def fileno(self):
return self._stdout.fileno()
logcatcher = LogCatcher()
logcatcher.redirect()
class ClimateRiskUI:
"""User interface for the climate risk system with dropdown and map functionality."""
def __init__(self, model):
self.orchestrator = ClimateRiskOrchestrator(model)
self.theme = gr.themes.Soft(
primary_hue="blue", secondary_hue="gray", neutral_hue="slate"
)
def update_business_visibility(self, profile_type):
show_business = profile_type == "Business Owner"
return gr.Dropdown(visible=show_business)
def analyze_with_dropdown(
self,
country,
city,
state,
profile_type,
business_type,
vulnerable_groups,
):
logcatcher.clear()
if not country or not city:
return (
"Please select both country and city.",
"",
"",
)
coords_result, validation_message = get_coordinates_from_dropdown(country, city, state)
if coords_result is None:
return validation_message, "", ""
lat, lon = coords_result
state_info = f", {state}" if state else ""
location_full = f"{city}{state_info}, {country}"
base_query = f"Perform a comprehensive climate risk assessment for {location_full}."
profile_context = ""
if profile_type.lower() == "business owner":
business_detail = f" as a {business_type}" if business_type else ""
profile_context = (
f" Focus on business continuity risks{business_detail}, including supply chain vulnerabilities, operational disruptions, infrastructure threats, customer safety, inventory protection, and revenue continuity. Consider industry-specific vulnerabilities and regulatory compliance requirements."
)
elif profile_type.lower() == "farmer/agriculture":
profile_context = " Emphasize agricultural risks including crop threats, soil conditions, water availability, extreme weather impacts on farming operations, and seasonal climate patterns."
elif profile_type.lower() == "emergency manager":
profile_context = " Prioritize emergency management perspectives including evacuation planning, critical infrastructure vulnerabilities, community preparedness needs, and multi-hazard scenarios."
else:
profile_context = " Focus on residential safety, household preparedness, health impacts, and community-level risks."
vulnerable_context = ""
if vulnerable_groups:
groups_text = ", ".join(vulnerable_groups)
vulnerable_context = f" Pay special attention to impacts on vulnerable populations: {groups_text}."
analysis_requirements = (
" Analyze earthquake, wildfire, flood, and extreme weather risks. Provide specific risk levels (0-100 scale), contributing factors, time horizons, and confidence levels. Include recent data and current conditions."
)
user_query = base_query + profile_context + vulnerable_context + analysis_requirements
user_profile = {
"type": profile_type.lower(),
"business_type": business_type if profile_type.lower() == "business owner" else None,
"vulnerable_groups": vulnerable_groups or [],
}
print(f"[{datetime.now()}] Analyse : {user_query}")
result = self.orchestrator.analyze_and_recommend(user_query, user_profile)
if "error" in result:
print(f"[ERROR] {result['error']}")
return f"Error: {result['error']}", "", ""
risk_summary = self._format_risk_analysis(result["risk_analysis"])
recommendations_text = self._format_recommendations(result["recommendations"], profile_type)
enhanced_map = create_risk_map(lat, lon, city, country, result["risk_analysis"])
return risk_summary, recommendations_text, enhanced_map
def update_map_from_location(self, country, city, state=None):
if not country or not city:
return "Please select both country and city.", ""
coords_result, validation_message = get_coordinates_from_dropdown(country, city, state)
if coords_result is None:
return validation_message, ""
lat, lon = coords_result
risk_map = create_risk_map(lat, lon, city, country)
return validation_message, risk_map
def update_cities(self, country):
suggestions = get_city_suggestions(country)
show_state = country == "United States"
country_centers = {
"France": (48.8566, 2.3522),
"United States": (39.8283, -98.5795),
"United Kingdom": (51.5074, -0.1278),
"Germany": (52.5200, 13.4050),
"Japan": (35.6762, 139.6503),
"Canada": (45.4215, -75.7040),
"Australia": (-35.2809, 149.1300),
"Italy": (41.9028, 12.4964),
"Spain": (40.4168, -3.7038),
"China": (39.9042, 116.4074),
"India": (28.6139, 77.2090),
"Brazil": (-15.7975, -47.8919),
}
lat, lon = country_centers.get(country, (48.8566, 2.3522))
basic_map = create_risk_map(lat, lon, f"Select a city in {country}", country)
return suggestions, gr.Dropdown(visible=show_state), basic_map
def analyze_user_input(
self,
user_query: str,
profile_type: str,
business_type: str,
vulnerable_groups: list = None,
):
logcatcher.clear()
if not user_query.strip():
return (
"Please enter your climate risk question or location.",
"",
"<div style='text-align: center; padding: 50px; background-color: #f0f0f0; border-radius: 10px;'>Map will appear here after analysis.</div>",
)
user_profile = {
"type": profile_type.lower(),
"business_type": business_type if profile_type.lower() == "business owner" else None,
"vulnerable_groups": vulnerable_groups or [],
}
print(f"[{datetime.now()}] Analyse: {user_query}")
result = self.orchestrator.analyze_and_recommend(user_query, user_profile)
if "error" in result:
print(f"[ERROR] {result['error']}")
return f"Error: {result['error']}", "", ""
risk_summary = self._format_risk_analysis(result["risk_analysis"])
recommendations_text = self._format_recommendations(result["recommendations"], profile_type)
location = result["risk_analysis"].get("location", {})
lat = location.get("lat", 0)
lon = location.get("lon", 0)
city = location.get("city", "Unknown")
country = location.get("country", "Unknown")
enhanced_map = create_risk_map(lat, lon, city, country, result["risk_analysis"])
return risk_summary, recommendations_text, enhanced_map
def _format_risk_analysis(self, risk_analysis: dict) -> str:
if not risk_analysis or "error" in risk_analysis:
return "Risk analysis not available or failed."
formatted = f"# π Climate Risk Analysis\n\n"
location = risk_analysis.get("location", {})
if location:
formatted += f"**Location:** {location.get('city', 'Unknown')}, {location.get('country', '')}\n"
formatted += f"**Coordinates:** {location.get('lat', 0):.4f}Β°N, {location.get('lon', 0):.4f}Β°E\n\n"
formatted += f"**Analysis Date:** {datetime.now().strftime('%Y-%m-%d %H:%M')}\n\n"
overall = risk_analysis.get("overall_assessment", "No overall assessment available.")
formatted += f"## π Overall Assessment\n{overall}\n\n"
risks = risk_analysis.get("risk_analysis", {})
if risks:
formatted += "## π― Individual Risk Assessment\n\n"
for risk_name, risk_data in risks.items():
if isinstance(risk_data, dict):
risk_level = risk_data.get("risk_level", 0)
if risk_level > 80:
emoji = "π΄"
level_text = "VERY HIGH"
elif risk_level > 60:
emoji = "π "
level_text = "HIGH"
elif risk_level > 40:
emoji = "π‘"
level_text = "MODERATE"
elif risk_level > 20:
emoji = "π’"
level_text = "LOW"
else:
emoji = "βͺ"
level_text = "MINIMAL"
formatted += f"### {emoji} {risk_name.title()} Risk\n"
formatted += f"**Risk Level:** {level_text} ({risk_level}/100)\n"
formatted += f"**Time Horizon:** {risk_data.get('time_horizon', 'Unknown')}\n"
formatted += f"**Confidence:** {risk_data.get('confidence', 'Unknown')}\n\n"
if risk_data.get("key_insights"):
formatted += f"**Analysis:** {risk_data['key_insights']}\n\n"
factors = risk_data.get("contributing_factors", [])
if factors:
formatted += f"**Key Factors:** {', '.join(factors)}\n\n"
return formatted
def _format_recommendations(self, recommendations: dict, profile_type: str) -> str:
if not recommendations:
return "No recommendations available."
formatted = f"# π― Personalized Recommendations for {profile_type} **[survivalist mode]**\n\n"
if "emergency" in recommendations:
formatted += "## π¨ Emergency Preparedness\n"
for rec in recommendations["emergency"]:
formatted += f"- {rec}\n"
formatted += "\n"
if "household" in recommendations:
formatted += "## π Household Adaptations\n"
for rec in recommendations["household"]:
formatted += f"- {rec}\n"
formatted += "\n"
if "business" in recommendations:
formatted += "## π’ Business Continuity\n"
for rec in recommendations["business"]:
formatted += f"- {rec}\n"
formatted += "\n"
if "financial" in recommendations:
formatted += "## π° Financial Planning\n"
for rec in recommendations["financial"]:
formatted += f"- {rec}\n"
formatted += "\n"
formatted += "---\n"
formatted += "*Recommendations generated by AI agents based on current risk analysis and your profile.*"
return formatted
def create_interface(self):
def get_logs():
return logcatcher.get_logs()
with gr.Blocks(
theme=self.theme, title="π°οΈ SentinelO β Climate Risk Evaluation MultiAgents"
) as app:
gr.Markdown(
"""
# π°οΈ SentinelO β Climate Risk Evaluation MultiAgents
<div style='background: linear-gradient(90deg, #f6f8fa 0%, #e2eafc 100%); border-radius: 10px; padding: 16px 18px; font-size: 16px; margin-bottom: 10px;'>
<b>π€ What does SentinelO do?</b>
<br><br>
SentinelO's AI agents instantly analyze climate risks <b>(
πͺοΈ Weather,
π Flood,
π Earthquake,
π₯ Wildfire,
π«οΈ Air quality,
π Climate trends,
βοΈ Solar radiation,
π Marine forecast
)</b> for any location, providing you with clear, actionable recommendations.
<br><br>
<i>Analysis is fully automated, always up to date, and based on leading data sources: OpenStreetMap πΊοΈ, Open-Meteo π¦οΈ, USGS π, NASA FIRMS π₯.</i>
<br><br>
<b>How to use SentinelO?</b><br>
Use the <b>quick location selection</b> (dropdowns and map) π, or ask complex, personalized questions in <b>natural language</b> π¬.
</div>
"""
)
with gr.Tabs():
with gr.TabItem("π Quick Location Selection"):
with gr.Row():
with gr.Column():
country_dropdown = gr.Dropdown(
choices=list(COUNTRIES_AND_CITIES.keys()),
label="Select Country",
value="France",
interactive=True,
)
city_input = gr.Textbox(
label="Enter City Name",
placeholder="e.g., Bordeaux, Lyon, Marseille, ...",
value="Lorient",
interactive=True,
info="Enter any city name in the selected country",
)
state_dropdown = gr.Dropdown(
choices=US_STATES,
label="Select State (US only)",
value="California",
visible=False,
interactive=True,
info="Select state for US locations",
)
city_suggestions = gr.Markdown(
get_city_suggestions("France"), visible=True
)
with gr.Column():
profile_dropdown = gr.Dropdown(
choices=[
"General Public",
"Business Owner",
"Farmer/Agriculture",
"Emergency Manager",
],
label="Your Profile",
value="General Public",
)
vulnerable_groups = gr.CheckboxGroup(
choices=[
"Elderly",
"Children",
"Chronic Health Conditions",
"Pregnant",
],
label="Vulnerable Groups in Household",
)
business_type_dropdown = gr.Dropdown(
choices=[
"Restaurant/Food Service",
"Retail Store",
"Manufacturing",
"Construction",
"Healthcare Facility",
"Educational Institution",
"Technology/Software",
"Transportation/Logistics",
"Tourism/Hospitality",
"Financial Services",
"Real Estate",
"Agriculture/Farming",
"Energy/Utilities",
"Entertainment/Events",
"Professional Services",
"Small Office",
"Warehouse/Distribution",
"Other",
],
label="Business Type",
value="Retail Store",
visible=False,
interactive=True,
info="Select your business type for specialized recommendations",
)
with gr.Row():
analyze_location_btn = gr.Button(
"π Analyze This Location", variant="primary", size="lg"
)
with gr.Row():
gr.HTML("""
<div style="display: flex; align-items: center; gap: 10px;">
<h3 style="margin: 0;">π°οΈ Agentic Logs</h3>
</div>
""")
with gr.Row():
logs_box = gr.Textbox(
value=logcatcher.get_logs(),
label="Logs",
lines=17,
max_lines=25,
interactive=False,
elem_id="terminal_logs",
show_copy_button=True,
container=False,
)
logs_timer = gr.Timer(0.5)
logs_timer.tick(get_logs, None, logs_box)
with gr.Row():
location_map = gr.HTML(
create_risk_map(47.7486, -3.3667, "Lorient", "France"),
label="Interactive Risk Map",
)
with gr.Row():
location_status = gr.Markdown("", visible=True)
# RΓ©sumΓ© d'analyse dans un cadre custom (CSS)
with gr.Row():
dropdown_risk_summary = gr.Markdown(
"Select a location above to begin analysis.",
label="Risk Assessment Summary",
elem_id="risk_summary_box",
)
# Recommandations dans un cadre custom (CSS)
with gr.Row():
dropdown_recommendations = gr.Markdown(
"Recommendations will appear here after analysis.",
label="AI-Generated Recommendations",
elem_id="recommendations_box",
)
with gr.TabItem("π¬ Natural Language Query"):
with gr.Row():
with gr.Column(scale=2):
user_query = gr.Textbox(
label="Your Climate Risk Question",
placeholder="Will New York get flooded tomorrow if we don't win the Hackaton ?",
lines=3,
info="Be as specific as possible about location, timeframe, and what you're concerned about.",
)
gr.Markdown(
"""
**Examples:**
- "What are the wildfire risks in Los Angeles this week?"
- "I live in Lorient (Bretagne), can I run outside this evening ?"
- "I'm planning to move to Miami, what climate risks should I be aware of?"
- "How should my farm in Iowa prepare for climate change?"
- "What emergency preparations should my business in Tokyo make for earthquakes?"
"""
)
with gr.Column(scale=1):
nl_profile_type = gr.Dropdown(
choices=[
"General Public",
"Business Owner",
"Farmer/Agriculture",
"Emergency Manager",
],
label="Your Profile",
value="General Public",
)
nl_business_type_dropdown = gr.Dropdown(
choices=[
"Restaurant/Food Service",
"Retail Store",
"Manufacturing",
"Construction",
"Healthcare Facility",
"Educational Institution",
"Technology/Software",
"Transportation/Logistics",
"Tourism/Hospitality",
"Financial Services",
"Real Estate",
"Agriculture/Farming",
"Energy/Utilities",
"Entertainment/Events",
"Professional Services",
"Small Office",
"Warehouse/Distribution",
"Other",
],
label="Business Type",
value="Retail Store",
visible=False,
interactive=True,
info="Select your business type for specialized recommendations",
)
nl_vulnerable_groups = gr.CheckboxGroup(
choices=[
"Elderly",
"Children",
"Chronic Health Conditions",
"Pregnant",
],
label="Vulnerable Groups in Household",
)
analyze_btn = gr.Button(
"π Analyze Query & Get Recommendations",
variant="primary",
size="lg",
)
with gr.Row():
gr.HTML("""
<div style="display: flex; align-items: center; gap: 10px;">
<h3 style="margin: 0;">π°οΈ Agentic Logs</h3>
</div>
""")
with gr.Row():
nl_logs_box = gr.Textbox(
value=logcatcher.get_logs(),
label="Logs",
lines=17,
max_lines=25,
interactive=False,
elem_id="nl_terminal_logs",
show_copy_button=True,
container=False,
)
nl_logs_timer = gr.Timer(0.5)
nl_logs_timer.tick(get_logs, None, nl_logs_box)
with gr.Row():
nl_location_map = gr.HTML(
"<div style='text-align: center; padding: 50px; background-color: #f0f0f0; border-radius: 10px;'>Map will appear here after analysis.</div>",
label="Interactive Risk Map",
)
# RΓ©sultats d'analyse en langage naturel dans un cadre custom (CSS)
with gr.Row():
risk_analysis_output = gr.Markdown(
"Enter your question above to get started.",
label="Risk Analysis",
elem_id="nl_risk_box",
)
# Recommandations NL dans un cadre custom (CSS)
with gr.Row():
recommendations_output = gr.Markdown(
"Personalized recommendations will appear here.",
label="AI-Generated Recommendations",
elem_id="nl_rec_box",
)
# CSS pour les cadres custom
gr.HTML("""
<style>
#risk_summary_box, #recommendations_box, #nl_risk_box, #nl_rec_box {
border: 2px solid #007aff;
border-radius: 13px;
background: #fafdff;
box-shadow: 0 2px 12px rgba(80,140,255,0.08);
padding: 20px 15px;
margin-top: 10px;
margin-bottom: 18px;
}
#terminal_logs textarea, #nl_terminal_logs textarea {
background-color: #181a1b !important;
color: #00ff66 !important;
font-family: 'Fira Mono', 'Consolas', monospace !important;
font-size: 15px;
border-radius: 9px !important;
border: 2px solid #31343a !important;
box-shadow: 0 2px 6px rgba(0,0,0,0.19);
padding: 12px 10px !important;
min-height: 320px !important;
max-height: 420px !important;
letter-spacing: 0.5px;
line-height: 1.5;
overflow-y: auto !important;
resize: vertical !important;
scrollbar-width: thin;
scrollbar-color: #6cf97c #282c34;
}
#terminal_logs, #nl_terminal_logs {
width: 100% !important;
}
</style>
""")
profile_dropdown.change(
fn=self.update_business_visibility,
inputs=[profile_dropdown],
outputs=[business_type_dropdown],
)
nl_profile_type.change(
fn=self.update_business_visibility,
inputs=[nl_profile_type],
outputs=[nl_business_type_dropdown],
)
country_dropdown.change(
fn=self.update_cities,
inputs=[country_dropdown],
outputs=[city_suggestions, state_dropdown, location_map],
)
city_input.change(
fn=self.update_map_from_location,
inputs=[country_dropdown, city_input, state_dropdown],
outputs=[location_status, location_map],
)
analyze_location_btn.click(
fn=self.analyze_with_dropdown,
inputs=[
country_dropdown,
city_input,
state_dropdown,
profile_dropdown,
business_type_dropdown,
vulnerable_groups,
],
outputs=[dropdown_risk_summary, dropdown_recommendations, location_map],
show_progress="full",
)
analyze_btn.click(
fn=self.analyze_user_input,
inputs=[
user_query,
nl_profile_type,
nl_business_type_dropdown,
nl_vulnerable_groups,
],
outputs=[
risk_analysis_output,
recommendations_output,
nl_location_map,
],
show_progress="full",
)
return app |