File size: 4,819 Bytes
d17a22d f68f944 932bfc3 d17a22d 932bfc3 d17a22d c3bd4b4 d17a22d 701d26a d17a22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import base64
import os
import gradio as gr
from mcp import ClientSession, StdioServerParameters, types
from mcp.client.stdio import stdio_client
from smolagents import ToolCollection, CodeAgent, load_tool, tool, ToolCallingAgent, InferenceClientModel #, GradioUI
from smolagents.mcp_client import MCPClient
from smolagents import TransformersModel
from dotenv import load_dotenv
import yaml
import requests
import json
from PIL import Image
from datetime import datetime
from outage_odyssey_ui import GradioUI
import base64
from io import BytesIO
from smolagents import InferenceClientModel
# Load environment variables from .env file
load_dotenv()
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
CODEASTREAL_API_KEY = os.getenv("CODEASTREAL_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
USE_CLOUD_MODEL = os.getenv("USE_CLOUD_MODEL", "true")
# Conditional import based on availability of Gemini API key
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if USE_CLOUD_MODEL == 'true':
from smolagents import LiteLLMModel
#model = LiteLLMModel(model_id="gemini/gemini-2.0-flash", api_key=GEMINI_API_KEY)
#model = LiteLLMModel(model_id="mistral/mistral-large-latest", api_key=MISTRAL_API_KEY)
#model = LiteLLMModel(model_id="codestral/codestral-latest", api_key=CODEASTREAL_API_KEY)
#model = LiteLLMModel(model_id="openai/gpt-4o", api_key=OPENAI_API_KEY)
#model = LiteLLMModel(model_id="anthropic/claude-3-7-sonnet-latest", api_key=ANTHROPIC_API_KEY)
model = InferenceClientModel(
model_id="deepseek-ai/DeepSeek-V3-0324",
provider="hyperbolic",
api_key=HF_TOKEN,
)
model_description = "This agent uses MCP tools and LLM Models using LiteLLMModel via API."
print(model_description)
else:
from transformers import pipeline
print("Loading local Qwen model...")
model = TransformersModel(
model_id="Qwen3-4B",
device_map='auto',
max_new_tokens=8192,
trust_remote_code=True
)
print("Local model loaded successfully.")
model_description = "This agent uses MCP tools and a locally-run Qwen3-4B model."
@tool
def pil_to_base64(pil_image: Image.Image) -> str:
"""
Converts a PIL Image object to a base64-encoded PNG data URL.
This tool takes a PIL Image object and encodes it into a base64 string
formatted as a data URL, which can be used in HTML or other contexts that
support embedded images.
Args:
pil_image (PIL.Image.Image): A PIL Image object to be converted.
Returns:
str: A string representing the image in base64 format, prefixed with the MIME type.
The format is: 'data:image/png;base64,<base64_string>'
Example:
>>> pil_to_base64(Image.open('example.png'))
'....
"""
buffer = BytesIO()
pil_image.save(buffer, format="PNG")
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
try:
mcp_client = MCPClient({"url": "http://localhost:8000/sse"})
tools = mcp_client.get_tools()
#print(tools.to_json())
tools_array = [{
"name": tool.name,
"description": tool.description,
"inputs": tool.inputs,
"output_type": tool.output_type,
"is_initialized": tool.is_initialized
} for tool in tools]
tool_names = [tool["name"] for tool in tools_array]
print(f"Connected to MCP server. Available tools: {', '.join(tool_names)}")
with open("prompts.yml", 'r', encoding='utf-8') as stream:
prompt_templates = yaml.safe_load(stream)
# Import tool from Hub
#image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
agent = CodeAgent(tools=[ pil_to_base64,*tools], model=model, prompt_templates=prompt_templates, max_steps=10, planning_interval=5,
additional_authorized_imports=['time', 'math', 'queue',
're', 'stat', 'collections', 'datetime', 'statistics', 'itertools',
'unicodedata', 'random', 'matplotlib.pyplot', 'open',
'pandas', 'numpy', 'json', 'yaml', 'plotly', 'pillow','PIL','base64' , 'io']) #prompt_templates=prompt_templates,
agent.name = "Outage Odyssey Agent"
GradioUI(agent=agent, file_upload_folder="uploaded_data").launch(server_name="0.0.0.0", server_port=7860,share=False,mcp_server=True) ##, file_upload_folder="uploaded_data", mcp_server=True,debug=True
except Exception as e:
print(f"Error starting Gradio: {str(e)}")
finally:
mcp_client.disconnect()
print("MCP client disconnected")
|