File size: 28,784 Bytes
b5df735 e98f763 b5df735 60b9fce e98f763 b5df735 b38e615 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 e98f763 b5df735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
"""
Gradio interface module
Contains all UI components and interface logic
"""
import gradio as gr
import asyncio
import os
from ..tools import mcp_tools
from ..tools.download_tools import get_file_info_tool, get_mp3_files_tool, read_text_file_segments_tool
from ..tools.transcription_tools import transcribe_audio_file_tool
def write_text_file_content(file_path: str, content: str, mode: str = "w", position: int = None):
"""Simple text file writing function"""
try:
if mode == "r+" and position is not None:
with open(file_path, mode, encoding='utf-8') as f:
f.seek(position)
characters_written = f.write(content)
else:
with open(file_path, mode, encoding='utf-8') as f:
characters_written = f.write(content)
return {
"status": "success",
"characters_written": characters_written,
"operation_type": mode,
"size_change": len(content)
}
except Exception as e:
return {
"status": "failed",
"error_message": str(e)
}
def temporarily_set_hf_token(hf_token: str):
"""Temporarily set HF_TOKEN in environment"""
original_token = os.environ.get("HF_TOKEN")
if hf_token and hf_token.strip():
os.environ["HF_TOKEN"] = hf_token.strip()
print(f"π Using user-provided HF_TOKEN: {hf_token[:10]}...")
return original_token
def restore_hf_token(original_token: str):
"""Restore original HF_TOKEN in environment"""
if original_token is not None:
os.environ["HF_TOKEN"] = original_token
elif "HF_TOKEN" in os.environ:
del os.environ["HF_TOKEN"]
def get_default_directories():
"""Get default directories based on current environment"""
import pathlib
# Detect environment
is_modal = os.environ.get("MODAL_ENVIRONMENT") == "1" or os.path.exists("/modal")
is_docker = os.path.exists("/.dockerenv")
current_dir = pathlib.Path.cwd()
# Base directories
base_dirs = []
if is_modal:
# Modal environment - use cache directories
base_dirs.extend([
"/root/cache/apple_podcasts",
"/root/cache/xyz_podcasts",
"/tmp/downloads"
])
elif is_docker:
# Docker environment
base_dirs.extend([
"/app/downloads",
"/data/downloads",
"/tmp/downloads"
])
else:
# Local environment - use current directory and common locations
base_dirs.extend([
str(current_dir / "downloads"),
str(current_dir / "cache" / "apple_podcasts"),
str(current_dir / "cache" / "xyz_podcasts"),
"~/Downloads",
"~/Music"
])
# Add common directories
base_dirs.extend(["/tmp", "."])
# Filter out duplicates while preserving order
seen = set()
unique_dirs = []
for d in base_dirs:
if d not in seen:
seen.add(d)
unique_dirs.append(d)
# Determine default directory
default_dir = unique_dirs[0] if unique_dirs else str(current_dir / "downloads")
return unique_dirs, default_dir
def create_gradio_interface():
"""Create Gradio interface
Returns:
gr.Blocks: Configured Gradio interface
"""
with gr.Blocks(title="ModalTranscriberMCP") as demo:
gr.Markdown("# ποΈ ModalTranscriberMCP")
gr.Markdown("**Advanced Audio Transcription with Modal Cloud Computing & MCP Integration**")
# Performance Highlight
gr.Markdown("""
### β‘ **Supercharged by Modal Serverless GPU**
π **10-20x Faster Processing**: 1-hour audio transcribed in just 3-6 minutes
π― **Parallel GPU Processing**: Up to 10 concurrent GPU containers
βοΈ **Zero Infrastructure Management**: Fully serverless, pay-per-use
""", elem_classes=["performance-highlight"])
# MCP Usage Instructions
gr.Markdown("""
### π How to Use This MCP Server
This application provides both a **Web UI** and **MCP (Model Context Protocol) Tools** for AI assistants
A youtube video demo is below:
[](https://youtu.be/Ut5jw7Epb0o)
#### π Web Interface
- Use the tabs above to download podcasts and transcribe audio files
- Support for multi-platform downloads (Apple Podcasts, XiaoYuZhou)
- Advanced features: speaker diarization (requires Hugging Face Token), multiple output formats
- **High-speed processing**: Powered by Modal's distributed GPU infrastructure
#### π€ MCP Integration
**For AI Assistants (Claude, etc.):**
```
MCP Server URL: /api/mcp
Available Tools:
β’ transcribe_audio_file_tool - High-quality audio transcription
β’ download_apple_podcast_tool - Apple Podcasts audio download
β’ download_xyz_podcast_tool - XiaoYuZhou podcast download
β’ get_mp3_files_tool - Scan directories for audio files
β’ get_file_info_tool - Get file information
β’ read_text_file_segments_tool - Read large text files in chunks
```
**Connect via MCP Client:**
we deploy mcp server on modal, and we can use the url to connect to the gradio ui
the url is: http://richardsucran--gradio-mcp-ui-app-entry.modal.run
and json config is:
```json
{
"mcpServers": {
"podcast-mcp": {
"url": "http://richardsucran--gradio-mcp-ui-app-entry.modal.run/api/mcp"
}
}
}
```
""", elem_classes=["mcp-instructions"])
# ==================== Podcast Download Tab ====================
with gr.Tab("Podcast Download"):
gr.Markdown("### ποΈ Download Podcast Audio")
url_input = gr.Textbox(
label="Podcast Link",
placeholder="Enter podcast page URL",
lines=1
)
platform_choice = gr.Radio(
choices=["Apple Podcast", "XiaoYuZhou"],
label="Select Podcast Platform",
value="Apple Podcast"
)
# Transcription options
with gr.Row():
auto_transcribe = gr.Checkbox(
label="Auto-transcribe after download",
value=True,
info="Start transcription immediately after download"
)
enable_speaker_diarization = gr.Checkbox(
label="Enable speaker diarization",
value=False,
info="Identify different speakers (requires Hugging Face Token)"
)
# HF Token input for speaker diarization
hf_token_input_download = gr.Textbox(
label="Hugging Face Token (Optional)",
placeholder="Enter your HF token here to override environment variable",
type="password",
info="Required for speaker diarization. If provided, will override HF_TOKEN environment variable."
)
download_btn = gr.Button("π₯ Start Download", variant="primary")
result_output = gr.JSON(label="Download Results")
async def download_podcast_and_transcribe(url, platform, auto_transcribe, enable_speaker, hf_token):
"""Call corresponding download tool based on selected platform"""
# Temporarily set HF_TOKEN if provided
original_token = temporarily_set_hf_token(hf_token)
try:
if platform == "Apple Podcast":
download_result = await mcp_tools.download_apple_podcast(url)
else:
download_result = await mcp_tools.download_xyz_podcast(url)
# 2. Check if download was successful
if download_result["status"] != "success":
return {
"download_status": "failed",
"error_message": download_result.get("error_message", "Download failed"),
"transcription_status": "not_started"
}
# 3. If not auto-transcribing, return only download results
if not auto_transcribe:
return {
"download_status": "success",
"audio_file": download_result["audio_file_path"],
"transcription_status": "skipped (user chose not to auto-transcribe)"
}
# 4. Start transcription
try:
audio_path = download_result["audio_file_path"]
print(f"Transcribing audio file: {audio_path}")
transcribe_result = await mcp_tools.transcribe_audio_file(
audio_path,
model_size="turbo",
language=None,
output_format="srt",
enable_speaker_diarization=enable_speaker
)
# 5. Merge results
result = {
"download_status": "success",
"audio_file": audio_path,
"transcription_status": "success",
"txt_file_path": transcribe_result.get("txt_file_path"),
"srt_file_path": transcribe_result.get("srt_file_path"),
"transcription_details": {
"model_used": transcribe_result.get("model_used"),
"segment_count": transcribe_result.get("segment_count"),
"audio_duration": transcribe_result.get("audio_duration"),
"saved_files": transcribe_result.get("saved_files", []),
"speaker_diarization_enabled": transcribe_result.get("speaker_diarization_enabled", False)
}
}
# 6. Add speaker diarization info if enabled
if enable_speaker and transcribe_result.get("speaker_diarization_enabled", False):
result["speaker_diarization"] = {
"global_speaker_count": transcribe_result.get("global_speaker_count", 0),
"speaker_summary": transcribe_result.get("speaker_summary", {})
}
return result
except Exception as e:
return {
"download_status": "success",
"audio_file": download_result["audio_file_path"],
"transcription_status": "failed",
"error_message": str(e)
}
finally:
# Restore original HF_TOKEN
restore_hf_token(original_token)
# Bind callback function
download_btn.click(
download_podcast_and_transcribe,
inputs=[url_input, platform_choice, auto_transcribe, enable_speaker_diarization, hf_token_input_download],
outputs=result_output
)
# ==================== Audio Transcription Tab ====================
with gr.Tab("Audio Transcription"):
gr.Markdown("### π€ Audio Transcription and Speaker Diarization")
gr.Markdown("Upload audio files for high-quality transcription with speaker diarization support")
with gr.Row():
with gr.Column(scale=2):
# Audio file input
audio_file_input = gr.Textbox(
label="Audio File Path",
placeholder="Enter complete path to audio file (supports mp3, wav, m4a, etc.)",
lines=1
)
# Transcription parameter settings
with gr.Row():
model_size_choice = gr.Dropdown(
choices=["tiny", "base", "small", "medium", "large", "turbo"],
value="turbo",
label="Model Size",
info="Affects transcription accuracy and speed"
)
language_choice = gr.Dropdown(
choices=["auto", "zh", "en", "ja", "ko", "fr", "de", "es"],
value="auto",
label="Language",
info="auto=auto-detect"
)
with gr.Row():
with gr.Column():
output_format_choice = gr.Radio(
choices=["srt", "txt", "json"],
value="srt",
label="Output Format"
)
with gr.Column():
enable_speaker_separation = gr.Checkbox(
label="Enable speaker diarization",
value=False,
info="Requires Hugging Face Token"
)
# HF Token input for speaker diarization
hf_token_input_transcribe = gr.Textbox(
label="Hugging Face Token (Optional)",
placeholder="Enter your HF token here to override environment variable",
type="password",
info="Required for speaker diarization. If provided, will override HF_TOKEN environment variable."
)
transcribe_btn = gr.Button("π€ Start Transcription", variant="primary", size="lg")
with gr.Column(scale=1):
# Audio file information
audio_info_output = gr.JSON(label="Audio File Information", visible=False)
# Transcription progress and status
transcribe_status = gr.Textbox(
label="Transcription Status",
value="Waiting to start transcription...",
interactive=False,
lines=3
)
# Transcription results display
transcribe_result_output = gr.JSON(
label="Transcription Results",
visible=True
)
# Speaker diarization results (if enabled)
speaker_info_output = gr.JSON(
label="Speaker Diarization Information",
visible=False
)
def perform_transcription(audio_path, model_size, language, output_format, enable_speaker, hf_token):
"""Execute audio transcription"""
if not audio_path.strip():
return {
"error": "Please enter audio file path"
}, "Transcription failed: No audio file selected", gr.update(visible=False)
# Temporarily set HF_TOKEN if provided
original_token = temporarily_set_hf_token(hf_token)
try:
# Check if file exists
import asyncio
file_info = asyncio.run(get_file_info_tool(audio_path))
if file_info["status"] != "success":
return {
"error": f"File does not exist or cannot be accessed: {file_info.get('error_message', 'Unknown error')}"
}, "Transcription failed: File inaccessible", gr.update(visible=False)
try:
# Process language parameter
lang = None if language == "auto" else language
# Call transcription tool
result = asyncio.run(transcribe_audio_file_tool(
audio_file_path=audio_path,
model_size=model_size,
language=lang,
output_format=output_format,
enable_speaker_diarization=enable_speaker
))
# Prepare status information
if result.get("processing_status") == "success":
status_text = f"""β
Transcription completed!
π Generated files: {len(result.get('saved_files', []))} files
π΅ Audio duration: {result.get('audio_duration', 0):.2f} seconds
π Transcription segments: {result.get('segment_count', 0)} segments
π― Model used: {result.get('model_used', 'N/A')}
π Speaker diarization: {'Enabled' if result.get('speaker_diarization_enabled', False) else 'Disabled'}"""
# Show speaker information
speaker_visible = result.get('speaker_diarization_enabled', False) and result.get('global_speaker_count', 0) > 0
speaker_info = result.get('speaker_summary', {}) if speaker_visible else {}
return result, status_text, gr.update(visible=speaker_visible, value=speaker_info)
else:
error_msg = result.get('error_message', 'Unknown error')
return result, f"β Transcription failed: {error_msg}", gr.update(visible=False)
except Exception as e:
return {
"error": f"Exception occurred during transcription: {str(e)}"
}, f"β Transcription exception: {str(e)}", gr.update(visible=False)
finally:
# Restore original HF_TOKEN
restore_hf_token(original_token)
# Bind transcription button
transcribe_btn.click(
perform_transcription,
inputs=[
audio_file_input,
model_size_choice,
language_choice,
output_format_choice,
enable_speaker_separation,
hf_token_input_transcribe
],
outputs=[
transcribe_result_output,
transcribe_status,
speaker_info_output
]
)
# ==================== MP3 File Management Tab ====================
with gr.Tab("MP3 File Management"):
gr.Markdown("### π΅ MP3 File Management")
# Get environment-specific directories
available_dirs, default_dir = get_default_directories()
# Display environment info
import pathlib
is_modal = os.environ.get("MODAL_ENVIRONMENT") == "1" or os.path.exists("/modal")
is_docker = os.path.exists("/.dockerenv")
current_dir = pathlib.Path.cwd()
if is_modal:
env_info = "π **Modal Environment Detected** - Using Modal cache directories"
elif is_docker:
env_info = "π³ **Docker Environment Detected** - Using container directories"
else:
env_info = f"π» **Local Environment Detected** - Using current directory: `{current_dir}`"
gr.Markdown(env_info)
with gr.Row():
with gr.Column(scale=3):
# Flexible directory path input
custom_dir_input = gr.Textbox(
label="Custom Directory Path",
placeholder="Enter custom directory path (e.g., /path/to/your/audio/files)",
lines=1,
value=default_dir
)
with gr.Column(scale=2):
# Quick select for environment-specific directories
quick_select = gr.Dropdown(
label="Quick Select",
choices=available_dirs,
value=default_dir,
info="Select directories based on current environment"
)
with gr.Column(scale=1):
scan_btn = gr.Button("π Scan Directory", variant="primary")
file_list = gr.Textbox(
label="MP3 File List",
interactive=False,
lines=10,
max_lines=20,
show_copy_button=True,
autoscroll=True
)
def list_mp3_files(directory):
"""List MP3 files in directory"""
if not directory or not directory.strip():
return "Please enter a directory path"
try:
result = asyncio.run(get_mp3_files_tool(directory.strip()))
# Check if there's an error
if "error_message" in result:
return f"β Error scanning directory: {result['error_message']}"
# Get file list
total_files = result.get('total_files', 0)
file_list = result.get('file_list', [])
scanned_directory = result.get('scanned_directory', directory)
if total_files == 0:
return f"π No MP3 files found in: {scanned_directory}"
# Format file list for display
display_lines = [
f"π Found {total_files} MP3 file{'s' if total_files != 1 else ''} in: {scanned_directory}",
"=" * 60
]
for i, file_info in enumerate(file_list, 1):
filename = file_info.get('filename', 'Unknown')
size_mb = file_info.get('file_size_mb', 0)
created_time = file_info.get('created_time', 'Unknown')
full_path = file_info.get('full_path', 'Unknown')
display_lines.append(
f"{i:2d}. π {filename}\n"
f" πΎ Size: {size_mb:.2f} MB\n"
f" π
Created: {created_time}\n"
f" π Path: {full_path}"
)
return "\n".join(display_lines)
except Exception as e:
return f"β Exception occurred while scanning directory: {str(e)}"
def use_quick_select(selected_path):
"""Use quick select path and auto-scan"""
if selected_path:
return selected_path, list_mp3_files(selected_path)
return "", ""
def scan_directory(custom_path, quick_path):
"""Scan the directory based on custom input or quick select"""
directory = custom_path.strip() if custom_path.strip() else quick_path
return list_mp3_files(directory)
# Bind callback functions
quick_select.change(
use_quick_select,
inputs=[quick_select],
outputs=[custom_dir_input, file_list]
)
scan_btn.click(
scan_directory,
inputs=[custom_dir_input, quick_select],
outputs=[file_list]
)
# Auto-scan when custom directory is entered
custom_dir_input.change(
lambda x: list_mp3_files(x) if x.strip() else "",
inputs=[custom_dir_input],
outputs=[file_list]
)
# ==================== Transcription Text Management Tab ====================
with gr.Tab("Transcription Text Management"):
gr.Markdown("### π Transcription Text File Management")
gr.Markdown("View TXT and SRT files generated from audio transcription")
# File path input
file_path_input = gr.Textbox(
label="File Path",
placeholder="Enter path to TXT or SRT file to read",
lines=1
)
# Load button
load_file_btn = gr.Button("π Load File", variant="primary")
# Text content viewer
content_editor = gr.Textbox(
label="File Content",
placeholder="File content will be displayed here after loading...",
lines=25,
max_lines=40,
show_copy_button=True,
interactive=False
)
# Status information
status_output = gr.Textbox(
label="Status",
interactive=False,
lines=2
)
def load_and_display_file(file_path):
"""Load and display complete file content"""
if not file_path.strip():
return "Please enter a file path", "β No file path provided"
try:
# Get file info first
info = asyncio.run(get_file_info_tool(file_path))
if info["status"] != "success":
return "", f"β Error: {info.get('error_message', 'Unknown error')}"
# Check file size (warn for very large files)
file_size_mb = info.get('file_size_mb', 0)
if file_size_mb > 10: # Warn for files larger than 10MB
return "", f"β οΈ File is too large ({file_size_mb:.2f} MB). Please use a smaller file for viewing."
# Read entire file content
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Status message
status = f"β
File loaded successfully: {info.get('filename', 'Unknown')}\nπ Size: {file_size_mb:.2f} MB"
return content, status
except UnicodeDecodeError:
return "", "β Error: File contains non-text content or encoding is not UTF-8"
except FileNotFoundError:
return "", "β Error: File not found"
except PermissionError:
return "", "β Error: Permission denied to read file"
except Exception as e:
return "", f"β Error: {str(e)}"
# Bind event handler
load_file_btn.click(
load_and_display_file,
inputs=[file_path_input],
outputs=[content_editor, status_output]
)
return demo |