File size: 31,700 Bytes
7bd8010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import os
import re
import time
import logging
import threading
import subprocess
import gradio as gr
from pathlib import Path
from typing import Optional, Literal

from services.llm_factory import _PROVIDER_MAP
from components.state import SessionState
from components.ui_components import (
    create_llm_config_inputs, create_unit_dropdown, create_file_upload,
    create_text_input, create_status_markdown, create_primary_button,
    create_secondary_button, create_quiz_components,
    create_session_management_components, create_export_components,
    create_difficulty_radio, create_question_number_slider,
    create_question_types_checkboxgroup,
    create_stats_card, create_overall_progress_html
)
from agents.models import ExplanationResponse

from utils.common.utils import run_code_snippet
from utils.app_wrappers import (
    process_content_wrapper,
    navigate_to_learn,
    load_unit_wrapper,
    generate_explanation_wrapper,
    generate_all_explanations_wrapper,
    prepare_and_navigate_to_quiz,
    generate_quiz_wrapper,
    generate_all_quizzes_wrapper,
    submit_mcq_wrapper, next_mcq_question,
    submit_open_wrapper, next_open_question,
    submit_true_false_wrapper, next_true_false_question,
    submit_fill_in_the_blank_wrapper, next_fill_in_the_blank_question,
    handle_tab_change,
    save_session_wrapper, load_session_wrapper,
    export_markdown_wrapper, export_html_wrapper, export_pdf_wrapper
)


# Configure essential logging
logging.basicConfig(
    level=logging.WARNING,
    format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s'
)

PROVIDERS = list(_PROVIDER_MAP.keys())
TAB_IDS_IN_ORDER = ["plan", "learn", "quiz", "progress"]


def create_app():
    with gr.Blocks(theme=gr.themes.Base(), title="LearnFlow AI", css_paths=["static/style.css"]) as app:
        gr.HTML("""
        <div style="text-align: center; padding: 20px;
                    background: linear-gradient(135deg, #1e293b, #334155);
                    border-radius: 16px; margin-bottom: 20px;">
            <h1 style="color: white; font-size: 2.5em; margin: 0; font-weight: 700;">
                πŸŽ“ AI Learning Platform
            </h1>
            <p style="color: #94a3b8; font-size: 1.2em; margin: 10px 0 0 0;">
                Personalized learning powered by artificial intelligence
            </p>
        </div>
        """)

        # Global states
        global_session = gr.State(SessionState())
        explanation_data_state = gr.State(None)
        current_code_examples = gr.State([])
        quiz_data_state = gr.State(None)
        current_question_idx = gr.State(0)
        current_open_question_idx = gr.State(0)
        current_tf_question_idx = gr.State(0)
        current_fitb_question_idx = gr.State(0)
        api_keys_store = gr.State({}) 

        # Function to update the API key store and propagate changes to all API key textboxes
        def propagate_api_keys(api_keys_store_val, plan_provider_val, learn_provider_val, quiz_provider_val):
            return (
                api_keys_store_val,
                gr.update(value=api_keys_store_val.get(plan_provider_val, "")),
                gr.update(value=api_keys_store_val.get(learn_provider_val, "")),
                gr.update(value=api_keys_store_val.get(quiz_provider_val, ""))
            )

        # Function to handle API key input changes
        def handle_api_key_input(current_provider, new_api_key, api_keys_store_val):
            api_keys_store_val[current_provider] = new_api_key
            return api_keys_store_val

        # Function to handle provider dropdown changes
        def handle_provider_change(new_provider, api_keys_store_val):
            # When provider changes, retrieve the stored key for the new provider
            new_api_key_for_current_tab = api_keys_store_val.get(new_provider, "")
            return new_api_key_for_current_tab, api_keys_store_val


        with gr.Tabs() as tabs:
            # Plan Tab
            with gr.Tab("πŸ“‹ Plan", id="plan", elem_classes="panel"):
                gr.Markdown("## Plan Your Learning Journey")
                gr.Markdown("Upload your content and let AI create structured learning units")
                
                gr.Markdown("### AI Provider Configuration")
                plan_llm_config = create_llm_config_inputs(PROVIDERS, "mistral", initial_api_key=api_keys_store.value.get("mistral", ""))
                ai_provider_plan = plan_llm_config["provider"]
                model_name_plan = plan_llm_config["model"]
                api_key_plan = plan_llm_config["api_key"]
                
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### πŸ“„ Upload Document")
                        file_in = create_file_upload()
                        gr.Markdown("*PDF, DOC, TXT, PPTX, MD supported*")
                    with gr.Column(scale=1):
                        gr.Markdown("### ✍️ Paste Content")
                        text_in = create_text_input(lines=8)
                with gr.Row():
                    input_type = gr.Radio(choices=["File", "Text"], value="Text", label="Content Type")
                plan_btn = create_primary_button("πŸš€ Process with AI")
                plan_status = create_status_markdown(
                    "Upload content and click 'Process with AI' to generate learning units."
                )
                with gr.Row():
                    unit_dropdown = create_unit_dropdown("Generated Learning Units")
                    navigate_btn = create_secondary_button("Continue Learning β†’")
                units_display = gr.Markdown("No units generated yet.")

            # Learn Tab
            with gr.Tab("πŸ“š Learn", id="learn", elem_classes="panel"):
                gr.Markdown("## Interactive Learning")
                gr.Markdown("AI-powered explanations tailored to your learning style")
                
                gr.Markdown("### AI Provider Configuration")
                learn_llm_config = create_llm_config_inputs(PROVIDERS, "mistral", initial_api_key=api_keys_store.value.get("mistral", ""))
                learn_provider_dd = learn_llm_config["provider"]
                model_name_learn = learn_llm_config["model"]
                api_key_learn = learn_llm_config["api_key"]
                
                with gr.Row():
                    with gr.Column():
                        learn_unit_dropdown = create_unit_dropdown("Learning Unit")
                    with gr.Column():
                        load_unit_btn = create_secondary_button("πŸ“– Load Unit")
                current_unit_info = gr.Markdown("No unit selected.")
                gr.Markdown("### Learning Style")
                with gr.Row():
                    explanation_style_radio = gr.Radio(
                        choices=["Concise", "Detailed"], value="Concise", label=""
                    )
                with gr.Row():
                    explain_btn = create_primary_button("✨ Generate Explanation")
                    generate_all_explanations_btn = create_secondary_button(
                        "Generate All Chapters", elem_classes="secondary-btn"
                    )
                explanation_status = create_status_markdown("")
                explanation_container = gr.Column(visible=False)
                with explanation_container:
                    pass
                quiz_nav_btn = create_secondary_button("πŸ“ Take Unit Quiz", elem_classes="danger-btn")

            # Quiz Tab
            with gr.Tab("❓ Quiz", id="quiz", elem_classes="panel"):
                gr.Markdown("## Knowledge Assessment")
                gr.Markdown("Test your understanding with AI-generated quizzes")
                quiz_unit_dropdown = create_unit_dropdown("Select Unit to Test")
                gr.Markdown("### Question Types")
                with gr.Row():
                    with gr.Column():
                        question_types_checkboxgroup = create_question_types_checkboxgroup()
                    with gr.Column():
                        pass
                gr.Markdown("### Difficulty Level")
                difficulty_radio = create_difficulty_radio()
                gr.Markdown("### Questions Count")
                question_number_slider = create_question_number_slider()
                
                gr.Markdown("### AI Provider Configuration")
                quiz_llm_config = create_llm_config_inputs(PROVIDERS, "mistral", initial_api_key=api_keys_store.value.get("mistral", ""))
                ai_provider_quiz = quiz_llm_config["provider"]
                model_name_quiz = quiz_llm_config["model"]
                api_key_quiz = quiz_llm_config["api_key"]
                
                generate_quiz_btn = create_primary_button("🎯 Generate Quiz")
                generate_all_quizzes_btn = create_secondary_button(
                    "Generate ALL Quizzes", elem_classes="secondary-btn"
                )
                quiz_status = create_status_markdown(
                    "Select a unit and configure your preferences to start the assessment."
                )
                quiz_container = gr.Column(visible=False)
                with quiz_container:
                    quiz_components = create_quiz_components()
                    (mcq_section, mcq_question, mcq_choices, mcq_submit,
                     mcq_feedback, mcq_next) = (
                        quiz_components["mcq_section"],
                        quiz_components["mcq_question"],
                        quiz_components["mcq_choices"],
                        quiz_components["mcq_submit"],
                        quiz_components["mcq_feedback"],
                        quiz_components["mcq_next"]
                     )
                    (open_ended_section, open_question, open_answer,
                     open_submit, open_feedback, open_next) = (
                        quiz_components["open_ended_section"],
                        quiz_components["open_question"],
                        quiz_components["open_answer"],
                        quiz_components["open_submit"],
                        quiz_components["open_feedback"],
                        quiz_components["open_next"]
                     )
                    (tf_section, tf_question, tf_choices, tf_submit,
                     tf_feedback, tf_next) = (
                        quiz_components["tf_section"],
                        quiz_components["tf_question"],
                        quiz_components["tf_choices"],
                        quiz_components["tf_submit"],
                        quiz_components["tf_feedback"],
                        quiz_components["tf_next"]
                     )
                    (fitb_section, fitb_question, fitb_answer, fitb_submit,
                     fitb_feedback, fitb_next) = (
                        quiz_components["fitb_section"],
                        quiz_components["fitb_question"],
                        quiz_components["fitb_answer"],
                        quiz_components["fitb_submit"],
                        quiz_components["fitb_feedback"],
                        quiz_components["fitb_next"]
                     )

            # Progress Tab
            with gr.Tab("πŸ“Š Progress", id="progress", elem_classes="panel"):
                gr.Markdown("## Learning Analytics")
                with gr.Row():
                    overall_stats = create_stats_card("Completed", "0", "Units mastered", "βœ…", "#10b981")
                    in_progress_stats = create_stats_card("In Progress", "0", "Units learning", "πŸ“ˆ", "#3b82f6")
                    average_score_stats = create_stats_card("Average Score", "0%", "Quiz performance", "🎯", "#f59e0b")
                progress_chart = gr.Plot(label="Learning Progress", visible=False)
                gr.Markdown("### πŸ“‹ Detailed Progress")
                progress_df = gr.Dataframe(
                    headers=["Learning Unit", "Status", "Quiz Score", "Progress"],
                    datatype=["str", "str", "str", "number"],
                    interactive=False
                )
                gr.Markdown("### 🎯 Overall Learning Progress")
                overall_progress = create_overall_progress_html(progress_percentage=0)
                gr.Markdown("### πŸ’Ύ Session Management")
                session_components = create_session_management_components()
                with gr.Row():
                    session_name_input = session_components["session_name_input"]
                with gr.Row():
                    save_session_btn = session_components["save_session_btn"]
                    load_session_btn = session_components["load_session_btn"]
                saved_sessions_dropdown = session_components["saved_sessions_dropdown"]
                session_status = session_components["session_status"]
                gr.Markdown("### πŸ“€ Export & Share")
                export_components = create_export_components()
                with gr.Row():
                    export_markdown_btn = export_components["export_markdown_btn"]
                    export_html_btn = export_components["export_html_btn"]
                    export_pdf_btn = export_components["export_pdf_btn"]
                export_file = export_components["export_file"]
                export_status = export_components["export_status"]

        # --- Dynamic Explanation Renderer ---
        @gr.render(inputs=[explanation_data_state])
        def render_dynamic_explanation(explanation_data: Optional[ExplanationResponse]):
            if not explanation_data:
                gr.Markdown("<!-- Explanation will appear here once generated. -->")
                return
            processed_markdown = explanation_data.markdown
            parts = re.split(r'\[CODE_INSERTION_POINT_(\d+)\]', processed_markdown)
            for i, part_content in enumerate(parts):
                if i % 2 == 0 and part_content.strip():
                    gr.Markdown(
                        part_content,
                        latex_delimiters=[{"left": "$$", "right": "$$", "display": True},
                                          {"left": "$", "right": "$", "display": False}]
                    )
                elif i % 2 == 1:
                    try:
                        idx = int(part_content)
                        if 0 <= idx < len(explanation_data.code_examples or []):
                            code_example = explanation_data.code_examples[idx]
                            with gr.Column():
                                gr.Markdown(f"### πŸ’» {code_example.description or f'Code Example {idx+1}'}")
                                # Ensure language is one of the literal types expected by gr.Code
                                allowed_languages = ["python", "javascript", "html", "css", "json", "markdown", "latex"]
                                lang: Literal["python", "javascript", "html", "css", "json", "markdown", "latex"] = \
                                    code_example.language if code_example.language in allowed_languages else "python" # type: ignore
                                code_block = gr.Code(language=lang, value=code_example.code)
                                run_btn = gr.Button("β–Ά Run Code", size="sm")
                                run_btn.click(run_code_snippet, inputs=[code_block], outputs=[gr.Textbox(label="Output", lines=3, interactive=False)])
                    except ValueError:
                        gr.Markdown(f"*(Error: Invalid code placeholder '{part_content}')*")

        # --- Event Handlers ---
        # Explicitly type Gradio components to help Pylint
        plan_btn_typed: gr.Button = plan_btn
        navigate_btn_typed: gr.Button = navigate_btn
        load_unit_btn_typed: gr.Button = load_unit_btn
        explain_btn_typed: gr.Button = explain_btn
        generate_all_explanations_btn_typed: gr.Button = generate_all_explanations_btn
        quiz_nav_btn_typed: gr.Button = quiz_nav_btn
        generate_quiz_btn_typed: gr.Button = generate_quiz_btn
        generate_all_quizzes_btn_typed: gr.Button = generate_all_quizzes_btn
        mcq_submit_typed: gr.Button = mcq_submit
        mcq_next_typed: gr.Button = mcq_next
        open_submit_typed: gr.Button = open_submit
        open_next_typed: gr.Button = open_next
        tf_submit_typed: gr.Button = tf_submit
        tf_next_typed: gr.Button = tf_next
        fitb_submit_typed: gr.Button = fitb_submit
        fitb_next_typed: gr.Button = fitb_next
        save_session_btn_typed: gr.Button = save_session_btn
        load_session_btn_typed: gr.Button = load_session_btn
        export_markdown_btn_typed: gr.Button = export_markdown_btn
        export_html_btn_typed: gr.Button = export_html_btn
        export_pdf_btn_typed: gr.Button = export_pdf_btn
        tabs_typed: gr.Tabs = tabs

        # API Key sharing logic
        # When provider dropdown changes, update current tab's API key textbox and then propagate
        plan_llm_config["provider_dropdown_component"].change(
            fn=handle_provider_change,
            inputs=[plan_llm_config["provider_dropdown_component"], api_keys_store],
            outputs=[plan_llm_config["api_key_textbox_component"], api_keys_store]
        ).then(
            fn=propagate_api_keys,
            inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
            outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
        )
        # When API key textbox changes, update the store and then propagate
        plan_llm_config["api_key_textbox_component"].change(
            fn=handle_api_key_input,
            inputs=[plan_llm_config["provider_dropdown_component"], plan_llm_config["api_key_textbox_component"], api_keys_store],
            outputs=[api_keys_store]
        ).then(
            fn=propagate_api_keys,
            inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
            outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
        )

        learn_llm_config["provider_dropdown_component"].change(
            fn=handle_provider_change,
            inputs=[learn_llm_config["provider_dropdown_component"], api_keys_store],
            outputs=[learn_llm_config["api_key_textbox_component"], api_keys_store]
        ).then(
            fn=propagate_api_keys,
            inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
            outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
        )
        learn_llm_config["api_key_textbox_component"].change(
            fn=handle_api_key_input,
            inputs=[learn_llm_config["provider_dropdown_component"], learn_llm_config["api_key_textbox_component"], api_keys_store],
            outputs=[api_keys_store]
        ).then(
            fn=propagate_api_keys,
            inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
            outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
        )

        quiz_llm_config["provider_dropdown_component"].change(
            fn=handle_provider_change,
            inputs=[quiz_llm_config["provider_dropdown_component"], api_keys_store],
            outputs=[quiz_llm_config["api_key_textbox_component"], api_keys_store]
        ).then(
            fn=propagate_api_keys,
            inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
            outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
        )
        quiz_llm_config["api_key_textbox_component"].change(
            fn=handle_api_key_input,
            inputs=[quiz_llm_config["provider_dropdown_component"], quiz_llm_config["api_key_textbox_component"], api_keys_store],
            outputs=[api_keys_store]
        ).then(
            fn=propagate_api_keys,
            inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
            outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
        )


        plan_btn_typed.click(
            process_content_wrapper,
            inputs=[global_session, ai_provider_plan, model_name_plan, api_key_plan, file_in, text_in, input_type],
            outputs=[global_session, plan_status, units_display, unit_dropdown,
                     learn_unit_dropdown, quiz_unit_dropdown]
        )
        navigate_btn_typed.click(
            navigate_to_learn,
            inputs=[global_session, unit_dropdown],
            outputs=[plan_status, tabs, global_session]
        )
        load_unit_btn_typed.click(
            load_unit_wrapper,
            inputs=[global_session, learn_unit_dropdown],
            outputs=[global_session, current_unit_info, explanation_container,
                     explanation_data_state, current_code_examples, current_unit_info, learn_unit_dropdown]
        )
        explain_btn_typed.click(
            generate_explanation_wrapper,
            inputs=[global_session, learn_provider_dd, model_name_learn, api_key_learn, explanation_style_radio, learn_unit_dropdown],
            outputs=[global_session, explanation_status, explanation_container,
                     explanation_data_state, current_code_examples, current_unit_info, learn_unit_dropdown]
        )
        generate_all_explanations_btn_typed.click(
            generate_all_explanations_wrapper,
            inputs=[global_session, learn_provider_dd, model_name_learn, api_key_learn, explanation_style_radio],
            outputs=[global_session, explanation_status, explanation_container,
                     explanation_data_state, current_code_examples, current_unit_info, learn_unit_dropdown]
        )
        quiz_nav_btn_typed.click(
            prepare_and_navigate_to_quiz,
            inputs=[global_session, learn_provider_dd, model_name_learn, api_key_learn, gr.State(TAB_IDS_IN_ORDER)],
            outputs=[global_session, explanation_status, tabs, explanation_container,
                     explanation_data_state, current_code_examples, current_unit_info,
                     quiz_status, quiz_container, mcq_question, mcq_choices, open_question, quiz_data_state, current_question_idx,
                     tf_question, fitb_question, mcq_section, open_ended_section,
                     tf_section, fitb_section, current_open_question_idx, open_next]
        )
        generate_quiz_btn_typed.click(
            generate_quiz_wrapper,
            inputs=[global_session, quiz_unit_dropdown, ai_provider_quiz, model_name_quiz, api_key_quiz,
                    difficulty_radio, question_number_slider, question_types_checkboxgroup],
            outputs=[global_session, quiz_data_state, current_question_idx, quiz_status,
                     quiz_container, mcq_question, mcq_choices, open_question,
                     tf_question, fitb_question, mcq_feedback, mcq_section,
                     open_ended_section, tf_section, fitb_section, current_open_question_idx, open_next]
        )
        generate_all_quizzes_btn_typed.click(
            generate_all_quizzes_wrapper,
            inputs=[global_session, ai_provider_quiz, model_name_quiz, api_key_quiz],
            outputs=[global_session, quiz_data_state, current_question_idx, quiz_status,
                     quiz_container, mcq_question, mcq_choices, open_question,
                     tf_question, fitb_question, mcq_feedback, mcq_section,
                     open_ended_section, tf_section, fitb_section, current_open_question_idx, open_next]
        )
        mcq_submit_typed.click(
            submit_mcq_wrapper,
            inputs=[global_session, quiz_data_state, current_question_idx,
                    mcq_choices, ai_provider_quiz, model_name_quiz, api_key_quiz],
            outputs=[mcq_feedback, mcq_next]
        )
        mcq_next_typed.click(
            next_mcq_question,
            inputs=[quiz_data_state, current_question_idx],
            outputs=[current_question_idx, mcq_question, mcq_choices,
                     mcq_feedback, mcq_next]
        )
        open_submit_typed.click(
            submit_open_wrapper,
            inputs=[global_session, quiz_data_state, current_open_question_idx, open_answer, ai_provider_quiz, model_name_quiz, api_key_quiz],
            outputs=[open_feedback, open_next]
        )
        open_next_typed.click(
            next_open_question,
            inputs=[quiz_data_state, current_open_question_idx],
            outputs=[current_open_question_idx, open_question, open_answer,
                     open_feedback, open_next]
        )
        tf_submit_typed.click(
            submit_true_false_wrapper,
            inputs=[global_session, quiz_data_state, current_tf_question_idx,
                    tf_choices, ai_provider_quiz, model_name_quiz, api_key_quiz],
            outputs=[tf_feedback, tf_next]
        )
        tf_next_typed.click(
            next_true_false_question,
            inputs=[quiz_data_state, current_tf_question_idx],
            outputs=[current_tf_question_idx, tf_question, tf_choices,
                     tf_feedback, tf_next]
        )
        fitb_submit_typed.click(
            submit_fill_in_the_blank_wrapper,
            inputs=[global_session, quiz_data_state, current_fitb_question_idx,
                    fitb_answer, ai_provider_quiz, model_name_quiz, api_key_quiz],
            outputs=[fitb_feedback, fitb_next]
        )
        fitb_next_typed.click(
            next_fill_in_the_blank_question,
            inputs=[quiz_data_state, current_fitb_question_idx],
            outputs=[current_fitb_question_idx, fitb_question, fitb_answer,
                     fitb_feedback, fitb_next]
        )
        save_session_btn_typed.click(
            save_session_wrapper,
            inputs=[global_session, session_name_input],
            outputs=[global_session, session_status, saved_sessions_dropdown]
        )
        load_session_btn_typed.click(
            load_session_wrapper,
            inputs=[saved_sessions_dropdown],
            outputs=[global_session, session_status,
                     unit_dropdown, learn_unit_dropdown, quiz_unit_dropdown,
                     units_display, overall_stats, in_progress_stats, average_score_stats, overall_progress, progress_df]
        )
        export_markdown_btn_typed.click(
            export_markdown_wrapper,
            inputs=[global_session],
            outputs=[export_file, export_status, export_file]
        )
        export_html_btn_typed.click(
            export_html_wrapper,
            inputs=[global_session],
            outputs=[export_file, export_status, export_file]
        )
        export_pdf_btn_typed.click(
            export_pdf_wrapper,
            inputs=[global_session],
            outputs=[export_file, export_status, export_file]
        )
        tabs_typed.select(
            handle_tab_change,
            inputs=[global_session, quiz_data_state],
            outputs=[
                global_session, overall_stats, in_progress_stats, average_score_stats, overall_progress, progress_df,
                explanation_container, explanation_data_state, current_code_examples,
                quiz_container, current_unit_info, learn_unit_dropdown,
                saved_sessions_dropdown, mcq_section, open_ended_section,
                tf_section, fitb_section
            ]
        )

    return app



if __name__ == "__main__":
    # The build is meant as a roundabout way for huggingface gradio template
    APP_ROOT = Path(__file__).resolve().parent
    MCP_DIR = APP_ROOT / 'mcp_server' / 'learnflow-mcp-server'
    BUILD_DIR = MCP_DIR / 'build'
    MCP_SERVER_PATH = BUILD_DIR / 'index.js'
    LEARNFLOW_AI_ROOT = str(APP_ROOT)

    # === MCP Build ===
    def build_mcp_server():
        if BUILD_DIR.exists():
            logging.info(f"MCP build already exists at {BUILD_DIR}")
            return True

        logging.info(f"MCP build not found at {BUILD_DIR}, starting build process...")

        try:
            subprocess.run(["npm", "install"], cwd=str(MCP_DIR), check=True)
            subprocess.run(["npm", "run", "build"], cwd=str(MCP_DIR), check=True)
            logging.info("MCP server built successfully.")
            return True
        except subprocess.CalledProcessError as e:
            logging.error(f"MCP build failed: {e}")
            return False
        except FileNotFoundError:
            logging.error("npm not found. Ensure Node.js is installed in your environment.")
            return False

    # === MCP Launch ===
    def launch_mcp_server():
        logging.info(f"Attempting to launch MCP server from: {MCP_SERVER_PATH}")
        logging.info(f"Setting LEARNFLOW_AI_ROOT to: {LEARNFLOW_AI_ROOT}")

        if not BUILD_DIR.exists():
            logging.error(f"MCP server build directory not found: {BUILD_DIR}")
            return

        env = os.environ.copy()
        env['LEARNFLOW_AI_ROOT'] = LEARNFLOW_AI_ROOT

        try:
            process = subprocess.Popen(
                ['node', str(MCP_SERVER_PATH)],
                env=env,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                text=True,
                bufsize=1,
                creationflags=subprocess.CREATE_NO_WINDOW if os.name == 'nt' else 0
            )
            logging.info(f"MCP server process started with PID: {process.pid}")

            def log_stdout():
                for line in process.stdout:
                    logging.info(f"MCP STDOUT: {line.strip()}")

            def log_stderr():
                for line in process.stderr:
                    logging.error(f"MCP STDERR: {line.strip()}")

            threading.Thread(target=log_stdout, daemon=True).start()
            threading.Thread(target=log_stderr, daemon=True).start()

            global mcp_server_process
            mcp_server_process = process

        except FileNotFoundError:
            logging.error("Node.js executable not found. Please ensure Node.js is installed and in your PATH.")
        except Exception as e:
            logging.error(f"Failed to launch MCP server: {e}")
    if not build_mcp_server():
        logging.error("Build failed. Aborting.")
        sys.exit(1)

    # Launch the MCP server in a separate thread 
    mcp_thread = threading.Thread(target=launch_mcp_server, daemon=True)
    mcp_thread.start()
    time.sleep(5) 

    app = create_app()
    app.launch()