Spaces:
Running
Running
File size: 5,631 Bytes
c73b6d7 d1aacb9 febb28d d1aacb9 febb28d d1aacb9 c73b6d7 d1aacb9 c73b6d7 d1aacb9 c73b6d7 d1aacb9 c73b6d7 d1aacb9 c73b6d7 d1aacb9 c73b6d7 d1aacb9 c73b6d7 d1aacb9 c73b6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import graphviz
import json
from tempfile import NamedTemporaryFile
import os
def generate_process_flow_diagram(json_input: str, output_format: str) -> str:
"""
Generates a Process Flow Diagram (Flowchart) from JSON input.
Args:
json_input (str): A JSON string describing the process flow structure.
It must follow the Expected JSON Format Example below.
Expected JSON Format Example:
{
"start_node": "Start Inference Request",
"nodes": [
{
"id": "user_input",
"label": "Receive User Input (Data)",
"type": "io"
},
{
"id": "preprocess_data",
"label": "Preprocess Data",
"type": "process"
},
{
"id": "validate_data",
"label": "Validate Data Format/Type",
"type": "decision"
},
{
"id": "data_valid_yes",
"label": "Data Valid?",
"type": "decision"
},
{
"id": "load_model",
"label": "Load AI Model (if not cached)",
"type": "process"
},
{
"id": "run_inference",
"label": "Run AI Model Inference",
"type": "process"
},
{
"id": "postprocess_output",
"label": "Postprocess Model Output",
"type": "process"
},
{
"id": "send_response",
"label": "Send Response to User",
"type": "io"
},
{
"id": "log_error",
"label": "Log Error & Notify User",
"type": "process"
},
{
"id": "end_inference_process",
"label": "End Inference Process",
"type": "end"
}
],
"connections": [
{"from": "start_node", "to": "user_input", "label": "Request"},
{"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
{"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
{"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
{"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
{"from": "data_valid_yes", "to": "log_error", "label": "No"},
{"from": "load_model", "to": "run_inference", "label": "Model Ready"},
{"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
{"from": "postprocess_output", "to": "send_response", "label": "Ready"},
{"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
{"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
]
}
Returns:
str: The filepath to the generated PNG image file.
"""
try:
if not json_input.strip():
return "Error: Empty input"
data = json.loads(json_input)
if 'start_node' not in data or 'nodes' not in data or 'connections' not in data:
raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'")
node_shapes = {
"process": "box",
"decision": "diamond",
"start": "oval",
"end": "oval",
"io": "parallelogram",
"document": "note",
"default": "box"
}
node_colors = {
"process": "#BEBEBE",
"decision": "#FFF9C4",
"start": "#A8E6CF",
"end": "#FFB3BA",
"io": "#B8D4F1",
"document": "#F0F8FF",
"default": "#BEBEBE"
}
dot = graphviz.Digraph(
name='ProcessFlowDiagram',
format='png',
graph_attr={
'rankdir': 'TB',
'splines': 'ortho',
'bgcolor': 'white',
'pad': '0.5',
'nodesep': '0.6',
'ranksep': '0.8'
}
)
all_defined_nodes = {node['id']: node for node in data['nodes']}
start_node_id = data['start_node']
dot.node(
start_node_id,
start_node_id,
shape=node_shapes['start'],
style='filled,rounded',
fillcolor=node_colors['start'],
fontcolor='black',
fontsize='14'
)
for node_id, node_info in all_defined_nodes.items():
if node_id == start_node_id:
continue
node_type = node_info.get("type", "default")
shape = node_shapes.get(node_type, "box")
color = node_colors.get(node_type, node_colors["default"])
node_label = node_info['label']
dot.node(
node_id,
node_label,
shape=shape,
style='filled,rounded',
fillcolor=color,
fontcolor='black',
fontsize='14'
)
for connection in data['connections']:
dot.edge(
connection['from'],
connection['to'],
label=connection.get('label', ''),
color='#4a4a4a',
fontcolor='#4a4a4a',
fontsize='10'
)
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
dot.render(tmp.name, format=output_format, cleanup=True)
return f"{tmp.name}.{output_format}"
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}"
|