File size: 5,631 Bytes
c73b6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1aacb9
 
 
 
 
 
 
 
 
 
 
febb28d
d1aacb9
 
febb28d
d1aacb9
 
c73b6d7
 
 
 
 
 
d1aacb9
 
 
 
 
 
c73b6d7
 
 
 
 
 
 
 
d1aacb9
c73b6d7
 
d1aacb9
 
c73b6d7
 
 
 
d1aacb9
c73b6d7
 
 
 
d1aacb9
c73b6d7
 
d1aacb9
 
 
 
 
 
 
 
 
 
c73b6d7
 
 
 
 
d1aacb9
c73b6d7
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import graphviz
import json
from tempfile import NamedTemporaryFile
import os

def generate_process_flow_diagram(json_input: str, output_format: str) -> str:
    """
    Generates a Process Flow Diagram (Flowchart) from JSON input.

    Args:
        json_input (str): A JSON string describing the process flow structure.
                          It must follow the Expected JSON Format Example below.

    Expected JSON Format Example:
    {
      "start_node": "Start Inference Request",
      "nodes": [
        {
          "id": "user_input",
          "label": "Receive User Input (Data)",
          "type": "io"
        },
        {
          "id": "preprocess_data",
          "label": "Preprocess Data",
          "type": "process"
        },
        {
          "id": "validate_data",
          "label": "Validate Data Format/Type",
          "type": "decision"
        },
        {
          "id": "data_valid_yes",
          "label": "Data Valid?",
          "type": "decision"
        },
        {
          "id": "load_model",
          "label": "Load AI Model (if not cached)",
          "type": "process"
        },
        {
          "id": "run_inference",
          "label": "Run AI Model Inference",
          "type": "process"
        },
        {
          "id": "postprocess_output",
          "label": "Postprocess Model Output",
          "type": "process"
        },
        {
          "id": "send_response",
          "label": "Send Response to User",
          "type": "io"
        },
        {
          "id": "log_error",
          "label": "Log Error & Notify User",
          "type": "process"
        },
        {
          "id": "end_inference_process",
          "label": "End Inference Process",
          "type": "end"
        }
      ],
      "connections": [
        {"from": "start_node", "to": "user_input", "label": "Request"},
        {"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
        {"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
        {"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
        {"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
        {"from": "data_valid_yes", "to": "log_error", "label": "No"},
        {"from": "load_model", "to": "run_inference", "label": "Model Ready"},
        {"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
        {"from": "postprocess_output", "to": "send_response", "label": "Ready"},
        {"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
        {"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
      ]
    }

    Returns:
        str: The filepath to the generated PNG image file.
    """
    try:
        if not json_input.strip():
            return "Error: Empty input"
            
        data = json.loads(json_input)
        
        if 'start_node' not in data or 'nodes' not in data or 'connections' not in data:
            raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'")

        node_shapes = {
            "process": "box",
            "decision": "diamond",
            "start": "oval",
            "end": "oval",
            "io": "parallelogram",
            "document": "note",
            "default": "box"
        }

        node_colors = {
            "process": "#BEBEBE",
            "decision": "#FFF9C4",
            "start": "#A8E6CF",
            "end": "#FFB3BA",
            "io": "#B8D4F1",
            "document": "#F0F8FF",
            "default": "#BEBEBE"
        }

        dot = graphviz.Digraph(
            name='ProcessFlowDiagram',
            format='png',
            graph_attr={
                'rankdir': 'TB',
                'splines': 'ortho',
                'bgcolor': 'white',
                'pad': '0.5',
                'nodesep': '0.6',
                'ranksep': '0.8'
            }
        )
        
        all_defined_nodes = {node['id']: node for node in data['nodes']}
        
        start_node_id = data['start_node']
        dot.node(
            start_node_id,
            start_node_id,
            shape=node_shapes['start'],
            style='filled,rounded',
            fillcolor=node_colors['start'],
            fontcolor='black',
            fontsize='14'
        )

        for node_id, node_info in all_defined_nodes.items():
            if node_id == start_node_id:
                continue

            node_type = node_info.get("type", "default")
            shape = node_shapes.get(node_type, "box")
            color = node_colors.get(node_type, node_colors["default"])
            node_label = node_info['label']

            dot.node(
                node_id,
                node_label,
                shape=shape,
                style='filled,rounded',
                fillcolor=color,
                fontcolor='black',
                fontsize='14'
            )

        for connection in data['connections']:
            dot.edge(
                connection['from'],
                connection['to'],
                label=connection.get('label', ''),
                color='#4a4a4a',
                fontcolor='#4a4a4a',
                fontsize='10'
            )
        
        with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
            dot.render(tmp.name, format=output_format, cleanup=True)
            return f"{tmp.name}.{output_format}"

    except json.JSONDecodeError:
        return "Error: Invalid JSON format"
    except Exception as e:
        return f"Error: {str(e)}"