Spaces:
Configuration error
Configuration error
File size: 10,881 Bytes
887133f 859d9d2 887133f fc14fba bc311dd 887133f 776bdaf 887133f 776bdaf 887133f bc311dd 887133f bc311dd 5c65737 bc311dd 5c65737 887133f 5c65737 887133f bc311dd 887133f 65ada30 887133f 859d9d2 887133f 859d9d2 887133f 65ada30 887133f 859d9d2 887133f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
from pathlib import Path
from urllib.request import urlopen
from uuid import uuid4
import modal
MINUTES = 60
app = modal.App("chat-with-pdf")
CACHE_DIR = "/hf-cache"
model_image = (
modal.Image.debian_slim(python_version="3.12")
.apt_install("git")
.pip_install(
[
"transformers>=4.45.0",
"torch==2.4.1",
"torchvision==0.19.1",
"git+https://github.com/illuin-tech/colpali.git@782edcd50108d1842d154730ad3ce72476a2d17d",
"hf_transfer==0.1.8",
"qwen-vl-utils==0.0.8",
]
)
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HUB_CACHE": CACHE_DIR})
)
with model_image.imports():
import torch
from colpali_engine.models import ColQwen2, ColQwen2Processor
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
MODEL_NAME = "Qwen/Qwen2-VL-2B-Instruct"
MODEL_REVISION = "aca78372505e6cb469c4fa6a35c60265b00ff5a4"
sessions = modal.Dict.from_name("colqwen-chat-sessions", create_if_missing=True)
class Session:
def __init__(self):
self.images = None
self.messages = []
self.pdf_embeddings = None
pdf_volume = modal.Volume.from_name("colqwen-chat-pdfs", create_if_missing=True)
PDF_ROOT = Path("/vol/pdfs/")
cache_volume = modal.Volume.from_name("hf-hub-cache", create_if_missing=True)
@app.function(
image=model_image, volumes={CACHE_DIR: cache_volume}, timeout=20 * MINUTES
)
def download_model():
from huggingface_hub import snapshot_download
result = snapshot_download(
MODEL_NAME,
revision=MODEL_REVISION,
ignore_patterns=["*.pt", "*.bin"],
)
print(f"Downloaded model weights to {result}")
@app.cls(
image=model_image,
gpu="B200",
scaledown_window=10 * MINUTES,
volumes={"/vol/pdfs/": pdf_volume, CACHE_DIR: cache_volume},
)
class Model:
@modal.enter()
def load_models(self):
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["TRANSFORMERS_OFFLINE"] = "0"
# Load ColQwen2 with explicit configuration
try:
self.colqwen2_model = ColQwen2.from_pretrained(
"vidore/colqwen2-v0.1",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
)
except Exception as e:
print(f"Error loading ColQwen2: {e}")
# Fallback to CPU loading then move to GPU
self.colqwen2_model = ColQwen2.from_pretrained(
"vidore/colqwen2-v0.1",
torch_dtype=torch.bfloat16,
device_map=None,
trust_remote_code=True,
)
self.colqwen2_model = self.colqwen2_model.to("cuda:0")
self.colqwen2_processor = ColQwen2Processor.from_pretrained(
"vidore/colqwen2-v0.1"
)
# Load Qwen2-VL with explicit configuration
try:
self.qwen2_vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_NAME,
revision=MODEL_REVISION,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
low_cpu_mem_usage=True,
)
except Exception as e:
print(f"Error loading Qwen2VL: {e}")
# Fallback approach
self.qwen2_vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_NAME,
revision=MODEL_REVISION,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map=None,
)
self.qwen2_vl_model = self.qwen2_vl_model.to("cuda:0")
self.qwen2_vl_processor = AutoProcessor.from_pretrained(
MODEL_NAME,
revision=MODEL_REVISION,
trust_remote_code=True
)
@modal.method()
def index_pdf(self, session_id, target: bytes | list):
session = sessions.get(session_id)
if session is None:
session = Session()
if isinstance(target, bytes):
images = convert_pdf_to_images.remote(target)
else:
images = target
session_dir = PDF_ROOT / f"{session_id}"
session_dir.mkdir(exist_ok=True, parents=True)
for ii, image in enumerate(images):
filename = session_dir / f"{str(ii).zfill(3)}.jpg"
image.save(filename)
BATCH_SZ = 4
pdf_embeddings = []
batches = [images[i : i + BATCH_SZ] for i in range(0, len(images), BATCH_SZ)]
for batch in batches:
batch_images = self.colqwen2_processor.process_images(batch).to(
self.colqwen2_model.device
)
pdf_embeddings += list(self.colqwen2_model(**batch_images).to("cpu"))
session.pdf_embeddings = pdf_embeddings
sessions[session_id] = session
@modal.method()
def respond_to_message(self, session_id, message):
session = sessions.get(session_id)
if session is None:
session = Session()
pdf_volume.reload()
images = (PDF_ROOT / str(session_id)).glob("*.jpg")
images = list(sorted(images, key=lambda p: int(p.stem)))
if not images:
return "Please upload a PDF first"
elif session.pdf_embeddings is None:
return "Indexing PDF..."
relevant_image = self.get_relevant_image(message, session, images)
output_text = self.generate_response(message, session, relevant_image)
append_to_messages(message, session, user_type="user")
append_to_messages(output_text, session, user_type="assistant")
sessions[session_id] = session
return output_text
def get_relevant_image(self, message, session, images):
import PIL
batch_queries = self.colqwen2_processor.process_queries([message]).to(
self.colqwen2_model.device
)
query_embeddings = self.colqwen2_model(**batch_queries)
scores = self.colqwen2_processor.score_multi_vector(
query_embeddings, session.pdf_embeddings
)[0]
max_index = max(range(len(scores)), key=lambda index: scores[index])
return PIL.Image.open(images[max_index])
def generate_response(self, message, session, image):
chatbot_message = get_chatbot_message_with_image(message, image)
query = self.qwen2_vl_processor.apply_chat_template(
[*session.messages, chatbot_message],
tokenize=False,
add_generation_prompt=True,
)
image_inputs, _ = process_vision_info([chatbot_message])
inputs = self.qwen2_vl_processor(
text=[query],
images=image_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda:0")
generated_ids = self.qwen2_vl_model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.qwen2_vl_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
return output_text
pdf_image = (
modal.Image.debian_slim(python_version="3.12")
.apt_install("poppler-utils")
.pip_install("pdf2image==1.17.0", "pillow==10.4.0")
)
@app.function(image=pdf_image)
def convert_pdf_to_images(pdf_bytes):
from pdf2image import convert_from_bytes
images = convert_from_bytes(pdf_bytes, fmt="jpeg")
return images
@app.local_entrypoint()
def main(question: str = None, pdf_path: str = None, session_id: str = None):
model = Model()
if session_id is None:
session_id = str(uuid4())
print("Starting a new session with id", session_id)
if pdf_path is None:
pdf_path = "https://arxiv.org/pdf/1706.03762"
if pdf_path.startswith("http"):
pdf_bytes = urlopen(pdf_path).read()
else:
pdf_path = Path(pdf_path)
pdf_bytes = pdf_path.read_bytes()
print("Indexing PDF from", pdf_path)
model.index_pdf.remote(session_id, pdf_bytes)
else:
if pdf_path is not None:
raise ValueError("Start a new session to chat with a new PDF")
print("Resuming session with id", session_id)
if question is None:
question = "What is this document about?"
print("QUESTION:", question)
print(model.respond_to_message.remote(session_id, question))
web_image = pdf_image.pip_install(
"fastapi[standard]==0.115.4",
"pydantic==2.9.2",
"starlette==0.41.2",
"gradio==4.44.1",
"pillow==10.4.0",
"gradio-pdf==0.0.15",
"pdf2image==1.17.0",
)
@app.function(
image=web_image,
max_containers=1,
)
@modal.concurrent(max_inputs=1000)
@modal.asgi_app()
def ui():
import uuid
import gradio as gr
from fastapi import FastAPI
from gradio.routes import mount_gradio_app
from gradio_pdf import PDF
from pdf2image import convert_from_path
web_app = FastAPI()
model = Model()
def upload_pdf(path, session_id):
if session_id == "" or session_id is None:
session_id = str(uuid.uuid4())
images = convert_from_path(path)
model.index_pdf.remote(session_id, images)
return session_id
def respond_to_message(message, _, session_id):
return model.respond_to_message.remote(session_id, message)
with gr.Blocks(theme="soft") as demo:
session_id = gr.State("")
gr.Markdown("# Chat with PDF")
with gr.Row():
with gr.Column(scale=1):
gr.ChatInterface(
fn=respond_to_message,
additional_inputs=[session_id],
retry_btn=None,
undo_btn=None,
clear_btn=None,
)
with gr.Column(scale=1):
pdf = PDF(
label="Upload a PDF",
)
pdf.upload(upload_pdf, [pdf, session_id], session_id)
return mount_gradio_app(app=web_app, blocks=demo, path="/")
def get_chatbot_message_with_image(message, image):
return {
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": message},
],
}
def append_to_messages(message, session, user_type="user"):
session.messages.append(
{
"role": user_type,
"content": {"type": "text", "text": message},
},
) |