Spaces:
Running
Running
File size: 18,204 Bytes
548a218 a0120bf 548a218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import seaborn as sns
import matplotlib.pyplot as plt
import io
import base64
from scipy import stats
import warnings
import google.generativeai as genai
import os
from dotenv import load_dotenv
import logging
from datetime import datetime
import tempfile
import json
warnings.filterwarnings('ignore')
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Load environment variables
#load_dotenv()
# Gemini API configuration
# Set your API key as environment variable: GEMINI_API_KEY
#genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
def analyze_dataset_overview(file_obj, api_key) -> tuple:
"""
Analyzes dataset using Gemini AI and provides storytelling overview.
Args:
file_obj: Gradio file object
api_key: Gemini API key from user input
Returns:
story_text (str): AI-generated data story
basic_info_text (str): Dataset basic information
data_quality_score (float): Data quality percentage
"""
if file_obj is None:
return "โ Please upload a CSV file first.", "", 0
if not api_key or api_key.strip() == "":
return "โ Please enter your Gemini API key first.", "", 0
try:
df = pd.read_csv(file_obj.name)
# Extract dataset metadata
metadata = extract_dataset_metadata(df)
# Create prompt for Gemini
gemini_prompt = create_insights_prompt(metadata)
# Generate story with Gemini
story = generate_insights_with_gemini(gemini_prompt, api_key)
# Create basic info summary
basic_info = create_basic_info_summary(metadata)
# Calculate data quality score
quality_score = metadata['data_quality']
return story, basic_info, quality_score
except Exception as e:
return f"โ Error loading data: {str(e)}", "", 0
def extract_dataset_metadata(df: pd.DataFrame) -> dict:
"""
Extracts metadata from dataset.
Args:
df (pd.DataFrame): DataFrame to analyze
Returns:
dict: Dataset metadata
"""
rows, cols = df.shape
columns = df.columns.tolist()
# Data types
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
datetime_cols = df.select_dtypes(include=['datetime64']).columns.tolist()
# Missing values
missing_data = df.isnull().sum()
missing_percentage = (missing_data / len(df) * 100).round(2)
# Basic statistics
numeric_stats = {}
if numeric_cols:
numeric_stats = df[numeric_cols].describe().to_dict()
# Categorical variable information
categorical_info = {}
for col in categorical_cols[:5]: # First 5 categorical columns
unique_count = df[col].nunique()
top_values = df[col].value_counts().head(3).to_dict()
categorical_info[col] = {
'unique_count': unique_count,
'top_values': top_values
}
# Potential relationships
correlations = {}
if len(numeric_cols) > 1:
corr_matrix = df[numeric_cols].corr()
# Find highest correlations
high_corr = []
for i in range(len(corr_matrix.columns)):
for j in range(i+1, len(corr_matrix.columns)):
corr_val = abs(corr_matrix.iloc[i, j])
if corr_val > 0.7:
high_corr.append({
'var1': corr_matrix.columns[i],
'var2': corr_matrix.columns[j],
'correlation': round(corr_val, 3)
})
correlations = high_corr[:5] # Top 5 correlations
return {
'shape': (rows, cols),
'columns': columns,
'numeric_cols': numeric_cols,
'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols,
'missing_data': missing_data.to_dict(),
'missing_percentage': missing_percentage.to_dict(),
'numeric_stats': numeric_stats,
'categorical_info': categorical_info,
'correlations': correlations,
'data_quality': round((df.notna().sum().sum() / (rows * cols)) * 100, 1)
}
def create_insights_prompt(metadata: dict) -> str:
"""
Creates data insights prompt for Gemini.
Args:
metadata (dict): Dataset metadata
Returns:
str: Gemini prompt
"""
prompt = f"""
You are an expert data analyst and storyteller. Using the following dataset information,
predict what this dataset is about and tell a story about it.
DATASET INFORMATION:
- Size: {metadata['shape'][0]:,} rows, {metadata['shape'][1]} columns
- Columns: {', '.join(metadata['columns'])}
- Numeric columns: {', '.join(metadata['numeric_cols'])}
- Categorical columns: {', '.join(metadata['categorical_cols'])}
- Data quality: {metadata['data_quality']}%
CATEGORICAL VARIABLE DETAILS:
{metadata['categorical_info']}
HIGH CORRELATIONS:
{metadata['correlations']}
Please create a story in the following format:
# Dataset Overview
## What is this dataset about?
[Your prediction about the dataset]
## Which sector/domain does it belong to?
[Your sector analysis]
## Potential Use Cases
- [Use case 1]
- [Use case 2]
- [Use case 3]
## Interesting Findings
- [Finding 1]
- [Finding 2]
- [Finding 3]
## What Can We Do With This Data?
- [Potential analysis 1]
- [Potential analysis 2]
- [Potential analysis 3]
Make your story visual and engaging using emojis!
Keep it in English and make it professional yet accessible.
Use proper markdown formatting for headers and lists.
"""
return prompt
def generate_insights_with_gemini(prompt: str, api_key: str) -> str:
"""
Generates data insights using Gemini AI.
Args:
prompt (str): Prepared prompt for Gemini
api_key (str): Gemini API key
Returns:
str: Story generated by Gemini
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
return response.text
except Exception as e:
# Fallback story if Gemini API fails
return f"""
๐ **DATA DISCOVERY STORY**
โ ๏ธ Gemini API Error: {str(e)}
๐ **Fallback Analysis**:
This dataset appears to be a fascinating collection of information!
๐ฏ **Prediction**: Based on the structure, this could be business, e-commerce, or customer behavior data.
๐ข **Sector**: Likely used in retail, digital marketing, or analytics domain.
โจ **Potential Stories**:
โข ๐ Customer journey analysis
โข ๐ Seasonal trends and patterns
โข ๐ฅ Customer segmentation
โข ๐ก Recommendation systems
โข ๐ฏ Marketing campaign optimization
๐ฎ **What We Can Do**:
โข Customer lifetime value prediction
โข Churn prediction modeling
โข Pricing strategy optimization
โข Market basket analysis
โข A/B testing insights
๐ The data quality looks promising for analysis!
"""
def create_basic_info_summary(metadata: dict) -> str:
"""Creates basic information summary text"""
summary = f"""
๐ **Dataset Overview**
๐ **Size**: {metadata['shape'][0]:,} rows ร {metadata['shape'][1]} columns
๐ข **Data Types**:
โข Numeric variables: {len(metadata['numeric_cols'])}
โข Categorical variables: {len(metadata['categorical_cols'])}
โข DateTime variables: {len(metadata['datetime_cols'])}
๐ฏ **Data Quality**: {metadata['data_quality']}%
๐ **Missing Data**: {sum(metadata['missing_data'].values())} total missing values
๐ **High Correlations Found**: {len(metadata['correlations'])} pairs
"""
return summary
def generate_data_profiling(file_obj) -> tuple:
"""
Generates detailed data profiling report.
Args:
file_obj: Gradio file object
Returns:
missing_data_df (DataFrame): Missing data analysis
numeric_stats_df (DataFrame): Numeric statistics
categorical_stats_df (DataFrame): Categorical statistics
"""
if file_obj is None:
return None, None, None
try:
df = pd.read_csv(file_obj.name)
# Missing data analysis
missing_data = df.isnull().sum()
missing_pct = (missing_data / len(df) * 100).round(2)
missing_df = pd.DataFrame({
'Column': missing_data.index,
'Missing Count': missing_data.values,
'Missing Percentage': missing_pct.values
}).sort_values('Missing Count', ascending=False)
# Numeric statistics
numeric_cols = df.select_dtypes(include=[np.number]).columns
numeric_stats_df = None
if len(numeric_cols) > 0:
numeric_stats_df = df[numeric_cols].describe().round(3).reset_index()
# Categorical statistics
cat_cols = df.select_dtypes(include=['object']).columns
categorical_stats = []
for col in cat_cols:
categorical_stats.append({
'Column': col,
'Unique Values': df[col].nunique(),
'Most Frequent': df[col].mode().iloc[0] if len(df[col].mode()) > 0 else 'N/A',
'Frequency': df[col].value_counts().iloc[0] if len(df[col].value_counts()) > 0 else 0
})
categorical_stats_df = pd.DataFrame(categorical_stats) if categorical_stats else None
return missing_df, numeric_stats_df, categorical_stats_df
except Exception as e:
error_df = pd.DataFrame({'Error': [f"Error in profiling: {str(e)}"]})
return error_df, None, None
def create_smart_visualizations(file_obj) -> tuple:
"""
Creates smart visualizations.
Args:
file_obj: Gradio file object
Returns:
dtype_fig (Plot): Data type distribution chart
missing_fig (Plot): Missing data bar chart
correlation_fig (Plot): Correlation heatmap
distribution_fig (Plot): Variable distributions
"""
if file_obj is None:
return None, None, None, None
try:
df = pd.read_csv(file_obj.name)
# 1. Data type distribution
dtype_counts = df.dtypes.value_counts()
dtype_fig = px.pie(
values=dtype_counts.values,
names=[str(dtype) for dtype in dtype_counts.index], # Convert dtype objects to strings
title="๐ Data Type Distribution"
)
dtype_fig.update_traces(textposition='inside', textinfo='percent+label')
# 2. Missing data heatmap
missing_data = df.isnull().sum()
missing_fig = px.bar(
x=missing_data.index,
y=missing_data.values,
title="๐ด Missing Data by Column",
labels={'x': 'Columns', 'y': 'Missing Count'}
)
missing_fig.update_xaxes(tickangle=45)
# 3. Correlation heatmap
numeric_cols = df.select_dtypes(include=[np.number]).columns
correlation_fig = None
if len(numeric_cols) > 1:
corr_matrix = df[numeric_cols].corr()
correlation_fig = px.imshow(
corr_matrix,
text_auto=True,
aspect="auto",
title="๐ Correlation Matrix",
color_continuous_scale='RdBu'
)
# 4. Distribution plots for numeric variables
distribution_fig = None
if len(numeric_cols) > 0:
# Select first 4 numeric columns for distribution
cols_to_plot = numeric_cols[:4]
if len(cols_to_plot) == 1:
distribution_fig = px.histogram(
df, x=cols_to_plot[0],
title=f"๐ Distribution of {cols_to_plot[0]}"
)
else:
# Create subplots for multiple columns
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[f"{col} Distribution" for col in cols_to_plot]
)
for i, col in enumerate(cols_to_plot):
row = (i // 2) + 1
col_pos = (i % 2) + 1
fig.add_trace(
go.Histogram(x=df[col].values, name=str(col), showlegend=False), # Convert to numpy array and string
row=row, col=col_pos
)
fig.update_layout(title="๐ Numeric Variable Distributions")
distribution_fig = fig
return dtype_fig, missing_fig, correlation_fig, distribution_fig
except Exception as e:
# Return error plot
error_fig = px.scatter(title=f"โ Visualization Error: {str(e)}")
return error_fig, None, None, None
# Create Gradio interface
def create_gradio_interface():
"""Creates main Gradio interface"""
with gr.Blocks(title="๐ AI Data Explorer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐ AutoEDA")
gr.Markdown("Upload your CSV file and get AI-powered analysis reports!")
with gr.Row():
file_input = gr.File(
label="๐ Upload CSV File",
file_types=[".csv"]
)
with gr.Tabs():
# Overview tab
with gr.Tab("๐ Overview"):
gr.Markdown("### AI-Powered Data Insights")
with gr.Row():
api_key_input = gr.Textbox(
label="๐ Gemini API Key",
placeholder="Enter your Gemini API key here...",
type="password"
)
with gr.Row():
overview_btn = gr.Button("๐ฏ Generate Story", variant="primary")
with gr.Row():
with gr.Column():
story_output = gr.Markdown(
label="๐ Data Insights",
value=""
)
with gr.Column():
basic_info_output = gr.Markdown(
label="๐ Basic Information",
value=""
)
with gr.Row():
quality_score = gr.Number(
label="๐ฏ Data Quality Score (%)",
precision=1
)
overview_btn.click(
fn=analyze_dataset_overview,
inputs=[file_input, api_key_input],
outputs=[story_output, basic_info_output, quality_score]
)
# Profiling tab
with gr.Tab("๐ Data Profiling"):
gr.Markdown("### Automated Data Profiling")
with gr.Row():
profiling_btn = gr.Button("๐ Generate Profiling", variant="secondary")
with gr.Row():
with gr.Column():
missing_data_table = gr.Dataframe(
label="๐ด Missing Data Analysis",
interactive=False
)
with gr.Column():
numeric_stats_table = gr.Dataframe(
label="๐ข Numeric Statistics",
interactive=False
)
with gr.Row():
categorical_stats_table = gr.Dataframe(
label="๐ Categorical Statistics",
interactive=False
)
profiling_btn.click(
fn=generate_data_profiling,
inputs=[file_input],
outputs=[missing_data_table, numeric_stats_table, categorical_stats_table]
)
# Visualization tab
with gr.Tab("๐ Smart Visualizations"):
gr.Markdown("### Automated Data Visualizations")
with gr.Row():
viz_btn = gr.Button("๐จ Create Visualizations", variant="secondary")
with gr.Row():
with gr.Column():
dtype_plot = gr.Plot(label="๐ Data Types")
missing_plot = gr.Plot(label="๐ด Missing Data")
with gr.Column():
correlation_plot = gr.Plot(label="๐ Correlations")
distribution_plot = gr.Plot(label="๐ Distributions")
viz_btn.click(
fn=create_smart_visualizations,
inputs=[file_input],
outputs=[dtype_plot, missing_plot, correlation_plot, distribution_plot]
)
# Footer
gr.Markdown("---")
gr.Markdown("๐ก **Tip**: Get your free Gemini API key from [Google AI Studio](https://aistudio.google.com/)")
return demo
# Main application
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
mcp_server=True
) |