File size: 7,656 Bytes
0a0ea7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import librosa
import numpy as np
import soundfile as sf
from numpy import ndarray
def load_audio(file_path: str) -> tuple[ndarray, int]:
"""
Load audio file and return audio data and sample rate.
Args:
file_path (str): Path to the audio file.
Returns:
tuple: (audio_data, sample_rate)
"""
audio_data, sample_rate = sf.read(file_path)
return audio_data, sample_rate
def cut_audio(_audio: ndarray, sampling_rate: int | float, start_millis: int, end_millis: int) -> ndarray:
"""Cut audio array from start_millis to end_millis"""
start_sample = int(start_millis / 1000 * sampling_rate)
end_sample = int(end_millis / 1000 * sampling_rate)
return _audio[start_sample:end_sample]
def format_time(seconds):
"""Format seconds into MM:SS format"""
minutes = int(seconds // 60)
secs = int(seconds % 60)
return f"{minutes:02d}:{secs:02d}"
def load_audio_info(audio_file):
"""Load audio file and return audio data, sample rate, and duration info"""
if audio_file is None:
return None, None, None
try:
# Load audio data and sample rate
audio_data, sample_rate = sf.read(audio_file)
# Calculate duration
duration = len(audio_data) / sample_rate
return audio_data, sample_rate, duration
except Exception as e:
print(f"Error loading audio: {e}")
return None, None, None
def get_audio_duration(audio_file):
"""Get just the duration of an audio file"""
try:
info = sf.info(audio_file)
return info.frames / info.samplerate
except Exception:
return None
def merge_audio_arrays(audios: list[ndarray]) -> ndarray:
"""Merge multiple audio arrays by concatenation"""
return np.concatenate(audios)
def apply_fade_in(audio: ndarray, sample_rate: int, fade_duration_ms: int = 100) -> ndarray:
"""Apply fade in effect to audio"""
fade_samples = int(fade_duration_ms / 1000 * sample_rate)
fade_samples = min(fade_samples, len(audio))
fade_curve = np.linspace(0, 1, fade_samples)
audio_copy = audio.copy()
audio_copy[:fade_samples] *= fade_curve
return audio_copy
def apply_fade_out(audio: ndarray, sample_rate: int, fade_duration_ms: int = 100) -> ndarray:
"""Apply fade out effect to audio"""
fade_samples = int(fade_duration_ms / 1000 * sample_rate)
fade_samples = min(fade_samples, len(audio))
fade_curve = np.linspace(1, 0, fade_samples)
audio_copy = audio.copy()
audio_copy[-fade_samples:] *= fade_curve
return audio_copy
def normalize_audio(audio: ndarray, target_level: float = -3.0) -> ndarray:
"""
Normalize audio to target level in dB
target_level: Target peak level in dB (e.g., -3.0 for -3dB)
"""
# Calculate current peak level
peak = np.max(np.abs(audio))
if peak == 0:
return audio # Avoid division by zero for silent audio
# Convert target level from dB to linear scale
target_linear = 10 ** (target_level / 20)
# Calculate gain needed
gain = target_linear / peak
return audio * gain
def adjust_volume(audio: ndarray, gain_db: float) -> ndarray:
"""
Adjust audio volume by specified gain in dB
gain_db: Gain in decibels (positive = louder, negative = quieter)
"""
gain_linear = 10 ** (gain_db / 20)
return audio * gain_linear
def apply_silence(duration_ms: int, sample_rate: int) -> ndarray:
"""Generate silence for specified duration"""
samples = int(duration_ms / 1000 * sample_rate)
return np.zeros(samples)
def reverse_audio(audio: ndarray) -> ndarray:
"""Reverse audio playback"""
return np.flip(audio)
def apply_speed_change(audio: ndarray, speed_factor: float) -> ndarray:
"""
Change playback speed without changing pitch (simple time-stretching)
speed_factor: 1.0 = normal, 2.0 = double speed, 0.5 = half speed
"""
return librosa.effects.time_stretch(audio, rate=speed_factor)
def trim_silence(audio: ndarray, threshold_db: float = -40.0) -> ndarray:
"""
Trim silence from beginning and end of audio
threshold_db: Silence threshold in dB
"""
# Convert threshold to linear scale
threshold_linear = 10 ** (threshold_db / 20)
# Find non-silent regions
non_silent = np.abs(audio) > threshold_linear
if not np.any(non_silent):
return audio # All audio is below threshold
# Find first and last non-silent samples
first_non_silent = np.where(non_silent)[0][0]
last_non_silent = np.where(non_silent)[0][-1]
return audio[first_non_silent:last_non_silent + 1]
def get_audio_stats(audio: ndarray, sample_rate: int) -> dict:
"""Get statistics about the audio"""
peak_level = np.max(np.abs(audio))
rms_level = np.sqrt(np.mean(audio ** 2))
# Convert to dB
peak_db = 20 * np.log10(peak_level) if peak_level > 0 else -np.inf
rms_db = 20 * np.log10(rms_level) if rms_level > 0 else -np.inf
return {
'duration_seconds': len(audio) / sample_rate,
'peak_level_db': peak_db,
'rms_level_db': rms_db,
'sample_rate': sample_rate,
'samples': len(audio),
'channels': 1 if len(audio.shape) == 1 else audio.shape[1]
}
def merge_audio_files(file_paths: list[str]) -> tuple[tuple[ndarray, int | float] | None, str]:
"""
Merge multiple audio files by concatenating them
Args:
file_paths: List of audio file paths
Returns:
tuple: (sample_rate, merged_audio_array, status_message)
"""
if not file_paths or len(file_paths) == 0:
return None, "β No audio files to merge"
if len(file_paths) == 1:
return None, "β Please upload at least 2 audio files to merge"
try:
merged_audio_segments = []
target_sample_rate = None
file_durations = []
for i, file_path in enumerate(file_paths):
# Load audio file
audio_data, sample_rate, duration = load_audio_info(file_path)
if audio_data is None:
continue
# Set target sample rate from first file
if target_sample_rate is None:
target_sample_rate = sample_rate
elif sample_rate != target_sample_rate:
# Resample if different sample rate
from scipy import signal
num_samples = int(len(audio_data) * target_sample_rate / sample_rate)
audio_data = signal.resample(audio_data, num_samples)
# Convert stereo to mono if needed
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
merged_audio_segments.append(audio_data)
file_durations.append(len(audio_data) / target_sample_rate)
if not merged_audio_segments:
return None, "β No valid audio files found"
# Concatenate all audio arrays
final_audio = np.concatenate(merged_audio_segments)
# Create status message
total_duration = len(final_audio) / target_sample_rate
status = f"""β
Successfully merged {len(file_paths)} audio files!
π΅ **Merge Details:**
β’ Total duration: {format_time(total_duration)} ({total_duration:.2f} seconds)
β’ Sample rate: {target_sample_rate:,} Hz
β’ Files processed: {len(merged_audio_segments)}
β’ Individual durations: {', '.join([f'{d:.1f}s' for d in file_durations])}
π§ **Result:** Ready for playback and download!"""
return (target_sample_rate, final_audio), status
except Exception as e:
return None, f"β Error merging audio files: {str(e)}"
|