File size: 13,112 Bytes
494a865 a4cf580 291c5d0 494a865 291c5d0 a4cf580 ab94812 494a865 6894106 d4cb6d3 6894106 a4cf580 291c5d0 05e07f8 a60e987 05e07f8 12884df 4eb456f a60e987 ec9f581 a60e987 743cfd6 a60e987 ec9f581 a60e987 ec9f581 a60e987 743cfd6 a60e987 12884df 2706dc5 6894106 2f044c0 bde9b8e 2706dc5 4eb456f 2f044c0 05e07f8 494a865 2706dc5 743cfd6 6894106 291c5d0 494a865 12884df ab94812 12884df ab94812 12884df ab94812 6949c47 12884df 6949c47 ab94812 12884df ab94812 6949c47 12884df 6949c47 494a865 ab94812 494a865 65efae5 494a865 12884df 494a865 12884df 494a865 ab94812 2706dc5 9f850ce 2706dc5 12884df 9f850ce 2706dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import argparse
import base64
import os
import tempfile
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from PIL import Image
from smolagents import CodeAgent, InferenceClientModel
import filters as flt
import judges as jdg
LANGFUSE_PUBLIC_KEY = os.environ["LANGFURE_PUBLIC_KEY"]
LANGFUSE_SECRET_KEY = os.environ["LANGFUSE_SECRET_KEY"]
LANGFUSE_AUTH = base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
trace_provider = TracerProvider()
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
HUGGING_FACE_TOKEN = os.environ["HUGGING_FACE_TOKEN"]
image_operator_model = InferenceClientModel(
model_id="Qwen/Qwen3-32B", provider="nebius", token=HUGGING_FACE_TOKEN, max_tokens=5000
)
picture_operator_prompt = """
You are an image processing agent capable of applying visual enhancements to images.
Your task is to process images based on directives from an art director.
You can adjust the following parameters: contrast, exposure, saturation,
shadows/highlights, temperature, tint, hue, saturation (per color), and luminance (per color).
Inputs:
Original image path
Output image path
User query (serves as creative reference)
Ordered list of enhancements to apply
Rules:
Always begin with the original image for each set of transformations.
Never reuse previously processed images as a starting point.
Apply only the operations explicitly listed. Do not invent or introduce new tools or methods.
For each enhancement, you'll receive a qualitative assessment such as “too much,” “too little,” or “just right.”
Use your understanding of image processing tools to translate qualitative feedback into quantitative adjustments.
After completing the initial enhancement list, pass the resulting image to the critic for evaluation.
Adjust parameters based on the critic’s feedback.
Iterate until the critic responds with “just right” for all changes.
Once all enhancements are satisfactory, your task is complete.
You must call to conversion function rgb_to_hsl and hsl_to_rgb only once for each.
You will be fined every time you exceed 1 call for each function.
You must save the image only once.
The code must be structured as follows :
1. You load the image
2. You call the needed that take a rgb image as input
3. You convert the image into h, s, li canals
4. You adjust the saturation, luminance and hue of color channels
5. You convert back into r,g,b
6. You save the rgb image
Examples:
Prompt: Increase contrast by a lot and orange saturation by a bit.
Answer:
img = load_image(path=image_path)
# Apply strong contrast adjustment
img = adjust_contrast(
img=img,
factor=1.1 # 1.1 is considered a lot per tool documentation
)
# Convert to HSL for color-specific adjustments
h, s, li = rgb_to_hsl(img)
# Enhance orange saturation slightly
h, s, li = adjust_saturation_color(
h=h,
s=s,
li=li,
color='orange',
factor=0.2)
# Convert back to RGB
# Save the result
save_image(
h, s, li
output_directory=output_directory
)
critic(output_directory=output_path,
original_image_path=image_path,
user_prompt=user_query,
list_of_enhancements=enhancements)
Prompt 2: increase contrast by a lot, raise saturation medium,
add some vignetage, a very little of grain,
raise the exposition by a tiny bit,
raise the orange saturation by a bit, the blue yellow and green luminance by a lot
Answer:
img = load_image(path=image_path)
# Convert back to RGB and apply global adjustments
img = adjust_contrast(img, factor=1.5) # Increase contrast a lot
img = adjust_saturation(img, factor=1.2) # Medium saturation increase
img = adjust_exposure(img, ev=0.05) # Tiny exposure increase
img = add_vignette(img, strength=0.5) # Add some vignette
img = add_grain(img, amount=0.01) # Add very little grain
h, s, li = rgb_to_hsl(img)
# Adjust orange saturation by a bit
h, s, li = adjust_saturation_color(h, s, li, color='orange', factor=1.1)
# Increase luminance for blue, yellow, and green by a lot (factor=2)
for color in ['blue', 'yellow', 'green']:
h, s, li = adjust_luminance_color(h, s, li, color=color, factor=2)
# Save the processed image
save_image(h, s, li, output_directory=output_directory)
# Final confirmation
critic(output_directory=output_path,
original_image_path=image_path,
user_prompt=user_query,
list_of_enhancements=enhancements)
Prompt 3:
Here’s my proposal to enhance the image with a vibrant,
Instagram-style aesthetic while preserving its serene energy:
**1. Global Adjustments**
**Contrast**: Slightly increased to add depth to the balloons'
patterns without flattening the sky's gradient.
**Exposure**: Brightened moderately to amplify the sunlit atmosphere,
especially on the foreground balloon's geometric design.
**Saturation**: Boosted a lot to intensify the mosaic of colors
(red, orange, yellow, green, blue) on the balloons, making them feel more dynamic.
**Temperature**: Warmed up to enhance the golden-hour glow, complementing the balloons' warm gradients.
**Shadows/Highlights**: Shadows lifted slightly to reveal texture
in the balloon fabrics, while highlights are tamed
to avoid blowing out the sky's delicate clouds.
**2. Color-Specific Tweaks**
**Red**: Boosted saturation significantly for the background Red Bull
balloon to make the brand text pop, while slightly increasing
luminance to prevent it from feeling too heavy.
**Orange**: Enhanced hue slightly, shifting toward amber to deepen the
middle balloon's gradient, adding warmth without muddiness.
**Blue**: Adjusted hue to a richer cobalt tone in the foreground balloon's
pattern, making the geometric shapes stand out against warmer hues.
**Green**: Increased luminance moderately in the foreground balloon's
green sections to balance the vibrant reds and oranges.
**3. Subtle Textures**
**Vignette**: Applied barely, with a subtle darkening at the corners
to frame the balloons without distracting from the sky's serenity.
**Grain**: Omitted entirely—this scene’s tranquility works best with a clean, smooth finish.
**Result**: A luminous, hyper-saturated scene where the balloons’ colors
feel bolder and more immersive, the sky appears crisper,
and the overall mood is elevated to evoke joyful adventure.
The adjustments amplify the image’s natural vibrancy
without sacrificing its peaceful essence.
Answer:
img = load_image(path=image_path)
# Apply global adjustments in RGB space
img = adjust_exposure(img=img,
ev=0.1 # Moderate brightening for golden-hour amplification
)
img = adjust_contrast(
img=img,
factor=1.05 # Slightly increased depth for balloon patterns
)
img = adjust_saturation(img=img, factor=1.8 # "Boosted a lot" to enhance vibrancy
)
img = adjust_temperature(img=img, delta=500 # Warm up by 500 mireds for golden-hour glow
)
img = adjust_shadows_highlights(img=img, shadow=1.1, # Slight shadow lifting to reveal textures
highlight=0.9 # Tame highlights to preserve sky colors
)
img = add_vignette(
img=img,
strength=0.3 # Subtle corner darkening for framing effect
)
# Convert to HSL for color-specific adjustments
h, s, li = rgb_to_hsl(img)
# Red color tweaks: Boost saturation and luminance
h, s, li = adjust_saturation_color(
h=h,
s=s,
li=li,
color='red',
factor=1.4 # "Significantly" boosted saturation
)
h, s, li = adjust_luminance_color(
h=h,
s=s,
li=li,
color='red',
factor=1.1 # Slight luminance lift to avoid heaviness
)
# Orange hue shift toward amber
h, s, li = adjust_hue_color(
h=h,
s=s,
li=li,
color='orange',
delta=15 # 15° shift = slight hue adjustment
)
# Blue hue adjustment to cobalt
h, s, li = adjust_hue_color(
h=h,
s=s,
li=li,
color='blue',
delta=15 # Slight shift to richer tones
)
# Green luminance increase for balance
h, s, li = adjust_luminance_color(
h=h,
s=s,
li=li,
color='green',
factor=1.2 # Moderate luminance lift for balance
)
# Save final enhanced image
save_image(
h=h, s=s, li=li,
output_directory=output_path
)
critic(output_directory=output_path,
original_image_path=image_path,
user_prompt=user_query,
list_of_enhancements=enhancements)
"""
picture_operator = CodeAgent(
tools=[
flt.adjust_contrast,
flt.adjust_exposure,
flt.adjust_saturation,
flt.adjust_shadows_highlights,
flt.adjust_hue_color,
flt.adjust_saturation_color,
flt.add_vignette,
flt.add_grain,
flt.save_image,
flt.load_image,
jdg.critic,
flt.rgb_to_hsl,
],
model=image_operator_model,
name="PictureOperator",
description=picture_operator_prompt,
managed_agents=[],
max_steps=4,
)
def resize_longest_side_to_500(image_path):
"""
Resize the image so that its longest side is 500 pixels, preserving aspect ratio.
Args:
image_path (str): Path to the input image.
output_path (str): Path to save the resized image.
"""
base, ext = os.path.splitext(image_path)
output_path = f"{base}_resized{ext}"
with Image.open(image_path) as img:
width, height = img.size
if width >= height:
new_width = 500
new_height = int((500 / width) * height)
else:
new_height = 500
new_width = int((500 / height) * width)
resized_img = img.resize((new_width, new_height), Image.LANCZOS)
resized_img.save(output_path)
return output_path
def run_photo_enchancement_agent(
query: str,
image_path: str = "small_test_image.jpg",
output_directory: str | None = None,
):
"""
Run the photo enhancement agent with the provided query and image path.
Args:
query (str): The user query for the agent.
image_path (str): Path to the input image.
output_path (str): Path to save the output image.
"""
# Create a temporary file for the resized image
if not output_directory:
output_directory = tempfile.mkdtemp()
resized_image_path = resize_longest_side_to_500(image_path=image_path)
image_path = resized_image_path
directions = jdg.call_to_director(image_path, query)
picture_operator.run(
picture_operator_prompt + "\n\nuser_query : " + directions,
additional_args={
"image_path": image_path,
"output_directory": output_directory,
},
)
if __name__ == "__main__":
# Run the agent
parser = argparse.ArgumentParser(description="Run image processing agents.")
parser.add_argument(
"--agent",
"-a",
choices=["ops", "dir"],
required=True,
help="Which agent to run.",
)
parser.add_argument(
"--query",
"-q",
type=str,
required=True,
help="Query to pass to the agent.",
)
parser.add_argument(
"--image_path",
"-i",
type=str,
required=False,
default="small_test_image.jpg",
help="Path to the input image.",
)
args = parser.parse_args()
default_directory = tempfile.mkdtemp()
if args.agent == "ops":
picture_operator.run(
args.query,
additional_args={
"image_path": args.image_path,
"output_directory": default_directory,
},
)
elif args.agent == "dir":
directions = jdg.call_to_director(args.image_path, args.query)
picture_operator.run(
picture_operator_prompt + "start with those instructions :" + directions,
additional_args={
"image_path": args.image_path,
"output_path": default_directory,
"enhancements": directions,
"user_query": args.query,
},
)
|