Spaces:
Runtime error
Runtime error
File size: 9,518 Bytes
3d6f241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import torch
import torch.nn as nn
class VGG(nn.Module):
def __init__(self, features, num_classes=1000):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
class VGG_SOD(nn.Module):
def __init__(self, features, num_classes=100):
super(VGG_SOD, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 100),
)
class VGG_FCN32S(nn.Module):
def __init__(self, features, num_classes=1000):
super(VGG_FCN32S, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Conv2d(512,4096,(7, 7)),
nn.ReLU(True),
nn.Dropout(0.5),
nn.Conv2d(4096,4096,(1, 1)),
nn.ReLU(True),
nn.Dropout(0.5),
)
class VGG_PRUNED(nn.Module):
def __init__(self, features, num_classes=1000):
super(VGG_PRUNED, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(0.5),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(0.5),
)
class NIN(nn.Module):
def __init__(self, pooling):
super(NIN, self).__init__()
if pooling == 'max':
pool2d = nn.MaxPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
elif pooling == 'avg':
pool2d = nn.AvgPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
self.features = nn.Sequential(
nn.Conv2d(3,96,(11, 11),(4, 4)),
nn.ReLU(inplace=True),
nn.Conv2d(96,96,(1, 1)),
nn.ReLU(inplace=True),
nn.Conv2d(96,96,(1, 1)),
nn.ReLU(inplace=True),
pool2d,
nn.Conv2d(96,256,(5, 5),(1, 1),(2, 2)),
nn.ReLU(inplace=True),
nn.Conv2d(256,256,(1, 1)),
nn.ReLU(inplace=True),
nn.Conv2d(256,256,(1, 1)),
nn.ReLU(inplace=True),
pool2d,
nn.Conv2d(256,384,(3, 3),(1, 1),(1, 1)),
nn.ReLU(inplace=True),
nn.Conv2d(384,384,(1, 1)),
nn.ReLU(inplace=True),
nn.Conv2d(384,384,(1, 1)),
nn.ReLU(inplace=True),
pool2d,
nn.Dropout(0.5),
nn.Conv2d(384,1024,(3, 3),(1, 1),(1, 1)),
nn.ReLU(inplace=True),
nn.Conv2d(1024,1024,(1, 1)),
nn.ReLU(inplace=True),
nn.Conv2d(1024,1000,(1, 1)),
nn.ReLU(inplace=True),
nn.AvgPool2d((6, 6),(1, 1),(0, 0),ceil_mode=True),
nn.Softmax(),
)
class ModelParallel(nn.Module):
def __init__(self, net, device_ids, device_splits):
super(ModelParallel, self).__init__()
self.device_list = self.name_devices(device_ids.split(','))
self.chunks = self.chunks_to_devices(self.split_net(net, device_splits.split(',')))
def name_devices(self, input_list):
device_list = []
for i, device in enumerate(input_list):
if str(device).lower() != 'c':
device_list.append("cuda:" + str(device))
else:
device_list.append("cpu")
return device_list
def split_net(self, net, device_splits):
chunks, cur_chunk = [], nn.Sequential()
for i, l in enumerate(net):
cur_chunk.add_module(str(i), net[i])
if str(i) in device_splits and device_splits != '':
del device_splits[0]
chunks.append(cur_chunk)
cur_chunk = nn.Sequential()
chunks.append(cur_chunk)
return chunks
def chunks_to_devices(self, chunks):
for i, chunk in enumerate(chunks):
chunk.to(self.device_list[i])
return chunks
def c(self, input, i):
if input.type() == 'torch.FloatTensor' and 'cuda' in self.device_list[i]:
input = input.type('torch.cuda.FloatTensor')
elif input.type() == 'torch.cuda.FloatTensor' and 'cpu' in self.device_list[i]:
input = input.type('torch.FloatTensor')
return input
def forward(self, input):
for i, chunk in enumerate(self.chunks):
if i < len(self.chunks) -1:
input = self.c(chunk(self.c(input, i).to(self.device_list[i])), i+1).to(self.device_list[i+1])
else:
input = chunk(input)
return input
def buildSequential(channel_list, pooling):
layers = []
in_channels = 3
if pooling == 'max':
pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
elif pooling == 'avg':
pool2d = nn.AvgPool2d(kernel_size=2, stride=2)
else:
raise ValueError("Unrecognized pooling parameter")
for c in channel_list:
if c == 'P':
layers += [pool2d]
else:
conv2d = nn.Conv2d(in_channels, c, kernel_size=3, padding=1)
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = c
return nn.Sequential(*layers)
channel_list = {
'VGG-16p': [24, 22, 'P', 41, 51, 'P', 108, 89, 111, 'P', 184, 276, 228, 'P', 512, 512, 512, 'P'],
'VGG-16': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 'P', 512, 512, 512, 'P', 512, 512, 512, 'P'],
'VGG-19': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 256, 'P', 512, 512, 512, 512, 'P', 512, 512, 512, 512, 'P'],
}
nin_dict = {
'C': ['conv1', 'cccp1', 'cccp2', 'conv2', 'cccp3', 'cccp4', 'conv3', 'cccp5', 'cccp6', 'conv4-1024', 'cccp7-1024', 'cccp8-1024'],
'R': ['relu0', 'relu1', 'relu2', 'relu3', 'relu5', 'relu6', 'relu7', 'relu8', 'relu9', 'relu10', 'relu11', 'relu12'],
'P': ['pool1', 'pool2', 'pool3', 'pool4'],
'D': ['drop'],
}
vgg16_dict = {
'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3'],
'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu4_1', 'relu4_2', 'relu4_3', 'relu5_1', 'relu5_2', 'relu5_3'],
'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
}
vgg19_dict = {
'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4'],
'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu3_4', 'relu4_1', 'relu4_2', 'relu4_3', 'relu4_4', 'relu5_1', 'relu5_2', 'relu5_3', 'relu5_4'],
'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
}
def modelSelector(model_file, pooling):
vgg_list = ["fcn32s", "pruning", "sod", "vgg"]
if any(name in model_file for name in vgg_list):
if "pruning" in model_file:
print("VGG-16 Architecture Detected")
print("Using The Channel Pruning Model")
cnn, layerList = VGG_PRUNED(buildSequential(channel_list['VGG-16p'], pooling)), vgg16_dict
elif "fcn32s" in model_file:
print("VGG-16 Architecture Detected")
print("Using the fcn32s-heavy-pascal Model")
cnn, layerList = VGG_FCN32S(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
elif "sod" in model_file:
print("VGG-16 Architecture Detected")
print("Using The SOD Fintune Model")
cnn, layerList = VGG_SOD(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
elif "19" in model_file:
print("VGG-19 Architecture Detected")
cnn, layerList = VGG(buildSequential(channel_list['VGG-19'], pooling)), vgg19_dict
elif "16" in model_file:
print("VGG-16 Architecture Detected")
cnn, layerList = VGG(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
else:
raise ValueError("VGG architecture not recognized.")
elif "nin" in model_file:
print("NIN Architecture Detected")
cnn, layerList = NIN(pooling), nin_dict
else:
raise ValueError("Model architecture not recognized.")
return cnn, layerList
# Print like Torch7/loadcaffe
def print_loadcaffe(cnn, layerList):
c = 0
for l in list(cnn):
if "Conv2d" in str(l):
in_c, out_c, ks = str(l.in_channels), str(l.out_channels), str(l.kernel_size)
print(layerList['C'][c] +": " + (out_c + " " + in_c + " " + ks).replace(")",'').replace("(",'').replace(",",'') )
c+=1
if c == len(layerList['C']):
break
# Load the model, and configure pooling layer type
def loadCaffemodel(model_file, pooling, use_gpu, disable_check):
cnn, layerList = modelSelector(str(model_file).lower(), pooling)
cnn.load_state_dict(torch.load(model_file), strict=(not disable_check))
print("Successfully loaded " + str(model_file))
# Maybe convert the model to cuda now, to avoid later issues
if "c" not in str(use_gpu).lower() or "c" not in str(use_gpu[0]).lower():
cnn = cnn.cuda()
cnn = cnn.features
print_loadcaffe(cnn, layerList)
return cnn, layerList
|