File size: 9,518 Bytes
3d6f241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
import torch.nn as nn


class VGG(nn.Module):
    def __init__(self, features, num_classes=1000):
        super(VGG, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )


class VGG_SOD(nn.Module):
    def __init__(self, features, num_classes=100):
        super(VGG_SOD, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 100),
        )


class VGG_FCN32S(nn.Module):
    def __init__(self, features, num_classes=1000):
        super(VGG_FCN32S, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Conv2d(512,4096,(7, 7)),
            nn.ReLU(True),
            nn.Dropout(0.5),
            nn.Conv2d(4096,4096,(1, 1)),
            nn.ReLU(True),
            nn.Dropout(0.5),
        )


class VGG_PRUNED(nn.Module):
    def __init__(self, features, num_classes=1000):
        super(VGG_PRUNED, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(0.5),
        )


class NIN(nn.Module):
    def __init__(self, pooling):
        super(NIN, self).__init__()
        if pooling == 'max':
            pool2d = nn.MaxPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
        elif pooling == 'avg':
            pool2d = nn.AvgPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)

        self.features = nn.Sequential(
            nn.Conv2d(3,96,(11, 11),(4, 4)),
            nn.ReLU(inplace=True),
            nn.Conv2d(96,96,(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(96,96,(1, 1)),
            nn.ReLU(inplace=True),
            pool2d,
            nn.Conv2d(96,256,(5, 5),(1, 1),(2, 2)),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,256,(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,256,(1, 1)),
            nn.ReLU(inplace=True),
            pool2d,
            nn.Conv2d(256,384,(3, 3),(1, 1),(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(384,384,(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(384,384,(1, 1)),
            nn.ReLU(inplace=True),
            pool2d,
            nn.Dropout(0.5),
            nn.Conv2d(384,1024,(3, 3),(1, 1),(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(1024,1024,(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(1024,1000,(1, 1)),
            nn.ReLU(inplace=True),
            nn.AvgPool2d((6, 6),(1, 1),(0, 0),ceil_mode=True),
            nn.Softmax(),
        )



class ModelParallel(nn.Module):
    def __init__(self, net, device_ids, device_splits):
        super(ModelParallel, self).__init__()
        self.device_list = self.name_devices(device_ids.split(','))
        self.chunks = self.chunks_to_devices(self.split_net(net, device_splits.split(',')))

    def name_devices(self, input_list):
        device_list = []
        for i, device in enumerate(input_list):
            if str(device).lower() != 'c':
                device_list.append("cuda:" + str(device))
            else:
                device_list.append("cpu")
        return device_list

    def split_net(self, net, device_splits):
        chunks, cur_chunk = [], nn.Sequential()
        for i, l in enumerate(net):
            cur_chunk.add_module(str(i), net[i])
            if str(i) in device_splits and device_splits != '':
                del device_splits[0]
                chunks.append(cur_chunk)
                cur_chunk = nn.Sequential()
        chunks.append(cur_chunk)
        return chunks

    def chunks_to_devices(self, chunks):
        for i, chunk in enumerate(chunks):
            chunk.to(self.device_list[i])
        return chunks

    def c(self, input, i):
        if input.type() == 'torch.FloatTensor' and 'cuda' in self.device_list[i]:
            input = input.type('torch.cuda.FloatTensor')
        elif input.type() == 'torch.cuda.FloatTensor' and 'cpu' in self.device_list[i]:
            input = input.type('torch.FloatTensor')
        return input

    def forward(self, input):
        for i, chunk in enumerate(self.chunks):
            if i < len(self.chunks) -1:
                input = self.c(chunk(self.c(input, i).to(self.device_list[i])), i+1).to(self.device_list[i+1])
            else:
                input = chunk(input)
        return input



def buildSequential(channel_list, pooling):
    layers = []
    in_channels = 3
    if pooling == 'max':
        pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
    elif pooling == 'avg':
        pool2d = nn.AvgPool2d(kernel_size=2, stride=2)
    else:
        raise ValueError("Unrecognized pooling parameter")
    for c in channel_list:
        if c == 'P':
            layers += [pool2d]
        else:
            conv2d = nn.Conv2d(in_channels, c, kernel_size=3, padding=1)
            layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = c
    return nn.Sequential(*layers)


channel_list = {
'VGG-16p': [24, 22, 'P', 41, 51, 'P', 108, 89, 111, 'P', 184, 276, 228, 'P', 512, 512, 512, 'P'],
'VGG-16': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 'P', 512, 512, 512, 'P', 512, 512, 512, 'P'],
'VGG-19': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 256, 'P', 512, 512, 512, 512, 'P', 512, 512, 512, 512, 'P'],
}

nin_dict = {
'C': ['conv1', 'cccp1', 'cccp2', 'conv2', 'cccp3', 'cccp4', 'conv3', 'cccp5', 'cccp6', 'conv4-1024', 'cccp7-1024', 'cccp8-1024'],
'R': ['relu0', 'relu1', 'relu2', 'relu3', 'relu5', 'relu6', 'relu7', 'relu8', 'relu9', 'relu10', 'relu11', 'relu12'],
'P': ['pool1', 'pool2', 'pool3', 'pool4'],
'D': ['drop'],
}
vgg16_dict = {
'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3'],
'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu4_1', 'relu4_2', 'relu4_3', 'relu5_1', 'relu5_2', 'relu5_3'],
'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
}
vgg19_dict = {
'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4'],
'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu3_4', 'relu4_1', 'relu4_2', 'relu4_3', 'relu4_4', 'relu5_1', 'relu5_2', 'relu5_3', 'relu5_4'],
'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
}


def modelSelector(model_file, pooling):
    vgg_list = ["fcn32s", "pruning", "sod", "vgg"]
    if any(name in model_file for name in vgg_list):
        if "pruning" in model_file:
            print("VGG-16 Architecture Detected")
            print("Using The Channel Pruning Model")
            cnn, layerList = VGG_PRUNED(buildSequential(channel_list['VGG-16p'], pooling)), vgg16_dict
        elif "fcn32s" in model_file:
            print("VGG-16 Architecture Detected")
            print("Using the fcn32s-heavy-pascal Model")
            cnn, layerList = VGG_FCN32S(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
        elif "sod" in model_file:
            print("VGG-16 Architecture Detected")
            print("Using The SOD Fintune Model")
            cnn, layerList = VGG_SOD(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
        elif "19" in model_file:
            print("VGG-19 Architecture Detected")
            cnn, layerList = VGG(buildSequential(channel_list['VGG-19'], pooling)), vgg19_dict
        elif "16" in model_file:
            print("VGG-16 Architecture Detected")
            cnn, layerList = VGG(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
        else:
            raise ValueError("VGG architecture not recognized.")
    elif "nin" in model_file:
        print("NIN Architecture Detected")
        cnn, layerList = NIN(pooling), nin_dict
    else:
        raise ValueError("Model architecture not recognized.")
    return cnn, layerList


# Print like Torch7/loadcaffe
def print_loadcaffe(cnn, layerList):
    c = 0
    for l in list(cnn):
         if "Conv2d" in str(l):
             in_c, out_c, ks  = str(l.in_channels), str(l.out_channels), str(l.kernel_size)
             print(layerList['C'][c] +": " +  (out_c + " " + in_c + " " + ks).replace(")",'').replace("(",'').replace(",",'') )
             c+=1
         if c == len(layerList['C']):
             break


# Load the model, and configure pooling layer type
def loadCaffemodel(model_file, pooling, use_gpu, disable_check):
    cnn, layerList = modelSelector(str(model_file).lower(), pooling)

    cnn.load_state_dict(torch.load(model_file), strict=(not disable_check))
    print("Successfully loaded " + str(model_file))

    # Maybe convert the model to cuda now, to avoid later issues
    if "c" not in str(use_gpu).lower() or "c" not in str(use_gpu[0]).lower():
        cnn = cnn.cuda()
    cnn = cnn.features

    print_loadcaffe(cnn, layerList)

    return cnn, layerList