Owos commited on
Commit
3d6f241
·
1 Parent(s): 8970ea4

Upload CaffeLoader.py

Browse files
Files changed (1) hide show
  1. CaffeLoader.py +254 -0
CaffeLoader.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+
5
+ class VGG(nn.Module):
6
+ def __init__(self, features, num_classes=1000):
7
+ super(VGG, self).__init__()
8
+ self.features = features
9
+ self.classifier = nn.Sequential(
10
+ nn.Linear(512 * 7 * 7, 4096),
11
+ nn.ReLU(True),
12
+ nn.Dropout(),
13
+ nn.Linear(4096, 4096),
14
+ nn.ReLU(True),
15
+ nn.Dropout(),
16
+ nn.Linear(4096, num_classes),
17
+ )
18
+
19
+
20
+ class VGG_SOD(nn.Module):
21
+ def __init__(self, features, num_classes=100):
22
+ super(VGG_SOD, self).__init__()
23
+ self.features = features
24
+ self.classifier = nn.Sequential(
25
+ nn.Linear(512 * 7 * 7, 4096),
26
+ nn.ReLU(True),
27
+ nn.Dropout(),
28
+ nn.Linear(4096, 4096),
29
+ nn.ReLU(True),
30
+ nn.Dropout(),
31
+ nn.Linear(4096, 100),
32
+ )
33
+
34
+
35
+ class VGG_FCN32S(nn.Module):
36
+ def __init__(self, features, num_classes=1000):
37
+ super(VGG_FCN32S, self).__init__()
38
+ self.features = features
39
+ self.classifier = nn.Sequential(
40
+ nn.Conv2d(512,4096,(7, 7)),
41
+ nn.ReLU(True),
42
+ nn.Dropout(0.5),
43
+ nn.Conv2d(4096,4096,(1, 1)),
44
+ nn.ReLU(True),
45
+ nn.Dropout(0.5),
46
+ )
47
+
48
+
49
+ class VGG_PRUNED(nn.Module):
50
+ def __init__(self, features, num_classes=1000):
51
+ super(VGG_PRUNED, self).__init__()
52
+ self.features = features
53
+ self.classifier = nn.Sequential(
54
+ nn.Linear(512 * 7 * 7, 4096),
55
+ nn.ReLU(True),
56
+ nn.Dropout(0.5),
57
+ nn.Linear(4096, 4096),
58
+ nn.ReLU(True),
59
+ nn.Dropout(0.5),
60
+ )
61
+
62
+
63
+ class NIN(nn.Module):
64
+ def __init__(self, pooling):
65
+ super(NIN, self).__init__()
66
+ if pooling == 'max':
67
+ pool2d = nn.MaxPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
68
+ elif pooling == 'avg':
69
+ pool2d = nn.AvgPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
70
+
71
+ self.features = nn.Sequential(
72
+ nn.Conv2d(3,96,(11, 11),(4, 4)),
73
+ nn.ReLU(inplace=True),
74
+ nn.Conv2d(96,96,(1, 1)),
75
+ nn.ReLU(inplace=True),
76
+ nn.Conv2d(96,96,(1, 1)),
77
+ nn.ReLU(inplace=True),
78
+ pool2d,
79
+ nn.Conv2d(96,256,(5, 5),(1, 1),(2, 2)),
80
+ nn.ReLU(inplace=True),
81
+ nn.Conv2d(256,256,(1, 1)),
82
+ nn.ReLU(inplace=True),
83
+ nn.Conv2d(256,256,(1, 1)),
84
+ nn.ReLU(inplace=True),
85
+ pool2d,
86
+ nn.Conv2d(256,384,(3, 3),(1, 1),(1, 1)),
87
+ nn.ReLU(inplace=True),
88
+ nn.Conv2d(384,384,(1, 1)),
89
+ nn.ReLU(inplace=True),
90
+ nn.Conv2d(384,384,(1, 1)),
91
+ nn.ReLU(inplace=True),
92
+ pool2d,
93
+ nn.Dropout(0.5),
94
+ nn.Conv2d(384,1024,(3, 3),(1, 1),(1, 1)),
95
+ nn.ReLU(inplace=True),
96
+ nn.Conv2d(1024,1024,(1, 1)),
97
+ nn.ReLU(inplace=True),
98
+ nn.Conv2d(1024,1000,(1, 1)),
99
+ nn.ReLU(inplace=True),
100
+ nn.AvgPool2d((6, 6),(1, 1),(0, 0),ceil_mode=True),
101
+ nn.Softmax(),
102
+ )
103
+
104
+
105
+
106
+ class ModelParallel(nn.Module):
107
+ def __init__(self, net, device_ids, device_splits):
108
+ super(ModelParallel, self).__init__()
109
+ self.device_list = self.name_devices(device_ids.split(','))
110
+ self.chunks = self.chunks_to_devices(self.split_net(net, device_splits.split(',')))
111
+
112
+ def name_devices(self, input_list):
113
+ device_list = []
114
+ for i, device in enumerate(input_list):
115
+ if str(device).lower() != 'c':
116
+ device_list.append("cuda:" + str(device))
117
+ else:
118
+ device_list.append("cpu")
119
+ return device_list
120
+
121
+ def split_net(self, net, device_splits):
122
+ chunks, cur_chunk = [], nn.Sequential()
123
+ for i, l in enumerate(net):
124
+ cur_chunk.add_module(str(i), net[i])
125
+ if str(i) in device_splits and device_splits != '':
126
+ del device_splits[0]
127
+ chunks.append(cur_chunk)
128
+ cur_chunk = nn.Sequential()
129
+ chunks.append(cur_chunk)
130
+ return chunks
131
+
132
+ def chunks_to_devices(self, chunks):
133
+ for i, chunk in enumerate(chunks):
134
+ chunk.to(self.device_list[i])
135
+ return chunks
136
+
137
+ def c(self, input, i):
138
+ if input.type() == 'torch.FloatTensor' and 'cuda' in self.device_list[i]:
139
+ input = input.type('torch.cuda.FloatTensor')
140
+ elif input.type() == 'torch.cuda.FloatTensor' and 'cpu' in self.device_list[i]:
141
+ input = input.type('torch.FloatTensor')
142
+ return input
143
+
144
+ def forward(self, input):
145
+ for i, chunk in enumerate(self.chunks):
146
+ if i < len(self.chunks) -1:
147
+ input = self.c(chunk(self.c(input, i).to(self.device_list[i])), i+1).to(self.device_list[i+1])
148
+ else:
149
+ input = chunk(input)
150
+ return input
151
+
152
+
153
+
154
+ def buildSequential(channel_list, pooling):
155
+ layers = []
156
+ in_channels = 3
157
+ if pooling == 'max':
158
+ pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
159
+ elif pooling == 'avg':
160
+ pool2d = nn.AvgPool2d(kernel_size=2, stride=2)
161
+ else:
162
+ raise ValueError("Unrecognized pooling parameter")
163
+ for c in channel_list:
164
+ if c == 'P':
165
+ layers += [pool2d]
166
+ else:
167
+ conv2d = nn.Conv2d(in_channels, c, kernel_size=3, padding=1)
168
+ layers += [conv2d, nn.ReLU(inplace=True)]
169
+ in_channels = c
170
+ return nn.Sequential(*layers)
171
+
172
+
173
+ channel_list = {
174
+ 'VGG-16p': [24, 22, 'P', 41, 51, 'P', 108, 89, 111, 'P', 184, 276, 228, 'P', 512, 512, 512, 'P'],
175
+ 'VGG-16': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 'P', 512, 512, 512, 'P', 512, 512, 512, 'P'],
176
+ 'VGG-19': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 256, 'P', 512, 512, 512, 512, 'P', 512, 512, 512, 512, 'P'],
177
+ }
178
+
179
+ nin_dict = {
180
+ 'C': ['conv1', 'cccp1', 'cccp2', 'conv2', 'cccp3', 'cccp4', 'conv3', 'cccp5', 'cccp6', 'conv4-1024', 'cccp7-1024', 'cccp8-1024'],
181
+ 'R': ['relu0', 'relu1', 'relu2', 'relu3', 'relu5', 'relu6', 'relu7', 'relu8', 'relu9', 'relu10', 'relu11', 'relu12'],
182
+ 'P': ['pool1', 'pool2', 'pool3', 'pool4'],
183
+ 'D': ['drop'],
184
+ }
185
+ vgg16_dict = {
186
+ 'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3'],
187
+ 'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu4_1', 'relu4_2', 'relu4_3', 'relu5_1', 'relu5_2', 'relu5_3'],
188
+ 'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
189
+ }
190
+ vgg19_dict = {
191
+ 'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4'],
192
+ 'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu3_4', 'relu4_1', 'relu4_2', 'relu4_3', 'relu4_4', 'relu5_1', 'relu5_2', 'relu5_3', 'relu5_4'],
193
+ 'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
194
+ }
195
+
196
+
197
+ def modelSelector(model_file, pooling):
198
+ vgg_list = ["fcn32s", "pruning", "sod", "vgg"]
199
+ if any(name in model_file for name in vgg_list):
200
+ if "pruning" in model_file:
201
+ print("VGG-16 Architecture Detected")
202
+ print("Using The Channel Pruning Model")
203
+ cnn, layerList = VGG_PRUNED(buildSequential(channel_list['VGG-16p'], pooling)), vgg16_dict
204
+ elif "fcn32s" in model_file:
205
+ print("VGG-16 Architecture Detected")
206
+ print("Using the fcn32s-heavy-pascal Model")
207
+ cnn, layerList = VGG_FCN32S(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
208
+ elif "sod" in model_file:
209
+ print("VGG-16 Architecture Detected")
210
+ print("Using The SOD Fintune Model")
211
+ cnn, layerList = VGG_SOD(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
212
+ elif "19" in model_file:
213
+ print("VGG-19 Architecture Detected")
214
+ cnn, layerList = VGG(buildSequential(channel_list['VGG-19'], pooling)), vgg19_dict
215
+ elif "16" in model_file:
216
+ print("VGG-16 Architecture Detected")
217
+ cnn, layerList = VGG(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
218
+ else:
219
+ raise ValueError("VGG architecture not recognized.")
220
+ elif "nin" in model_file:
221
+ print("NIN Architecture Detected")
222
+ cnn, layerList = NIN(pooling), nin_dict
223
+ else:
224
+ raise ValueError("Model architecture not recognized.")
225
+ return cnn, layerList
226
+
227
+
228
+ # Print like Torch7/loadcaffe
229
+ def print_loadcaffe(cnn, layerList):
230
+ c = 0
231
+ for l in list(cnn):
232
+ if "Conv2d" in str(l):
233
+ in_c, out_c, ks = str(l.in_channels), str(l.out_channels), str(l.kernel_size)
234
+ print(layerList['C'][c] +": " + (out_c + " " + in_c + " " + ks).replace(")",'').replace("(",'').replace(",",'') )
235
+ c+=1
236
+ if c == len(layerList['C']):
237
+ break
238
+
239
+
240
+ # Load the model, and configure pooling layer type
241
+ def loadCaffemodel(model_file, pooling, use_gpu, disable_check):
242
+ cnn, layerList = modelSelector(str(model_file).lower(), pooling)
243
+
244
+ cnn.load_state_dict(torch.load(model_file), strict=(not disable_check))
245
+ print("Successfully loaded " + str(model_file))
246
+
247
+ # Maybe convert the model to cuda now, to avoid later issues
248
+ if "c" not in str(use_gpu).lower() or "c" not in str(use_gpu[0]).lower():
249
+ cnn = cnn.cuda()
250
+ cnn = cnn.features
251
+
252
+ print_loadcaffe(cnn, layerList)
253
+
254
+ return cnn, layerList