File size: 6,029 Bytes
fb6c2da
0177fec
fb6c2da
0177fec
fb6c2da
 
 
0177fec
 
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
0177fec
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0177fec
 
 
 
 
fb6c2da
 
0177fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
0177fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
0177fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import importlib
import math

import cv2
import torch
import numpy as np

import os
from safetensors.torch import load_file

from inspect import isfunction
from PIL import Image, ImageDraw, ImageFont


def log_txt_as_img(wh, xc, size=10):
    # wh a tuple of (width, height)
    # xc a list of captions to plot
    b = len(xc)
    txts = list()
    for bi in range(b):
        txt = Image.new("RGB", wh, color="white")
        draw = ImageDraw.Draw(txt)
        font = ImageFont.truetype('assets/DejaVuSans.ttf', size=size)
        nc = int(40 * (wh[0] / 256))
        lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))

        try:
            draw.text((0, 0), lines, fill="black", font=font)
        except UnicodeEncodeError:
            print("Cant encode string for logging. Skipping.")

        txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
        txts.append(txt)
    txts = np.stack(txts)
    txts = torch.tensor(txts)
    return txts


def ismap(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] > 3)


def isimage(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def mean_flat(tensor):
    """
    https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def count_params(model, verbose=False):
    total_params = sum(p.numel() for p in model.parameters())
    if verbose:
        print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
    return total_params


def instantiate_from_config(config):
    if not "target" in config:
        if config == '__is_first_stage__':
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


checkpoint_dict_replacements = {
    'cond_stage_model.transformer.text_model.embeddings.': 'cond_stage_model.transformer.embeddings.',
    'cond_stage_model.transformer.text_model.encoder.': 'cond_stage_model.transformer.encoder.',
    'cond_stage_model.transformer.text_model.final_layer_norm.': 'cond_stage_model.transformer.final_layer_norm.',
}


def transform_checkpoint_dict_key(k):
    for text, replacement in checkpoint_dict_replacements.items():
        if k.startswith(text):
            k = replacement + k[len(text):]

    return k


def get_state_dict_from_checkpoint(pl_sd):
    pl_sd = pl_sd.pop("state_dict", pl_sd)
    pl_sd.pop("state_dict", None)

    sd = {}
    for k, v in pl_sd.items():
        new_key = transform_checkpoint_dict_key(k)

        if new_key is not None:
            sd[new_key] = v

    pl_sd.clear()
    pl_sd.update(sd)

    return pl_sd


def read_state_dict(checkpoint_file, print_global_state=False):
    _, extension = os.path.splitext(checkpoint_file)
    if extension.lower() == ".safetensors":
        pl_sd = load_file(checkpoint_file, device='cpu')
    else:
        pl_sd = torch.load(checkpoint_file, map_location='cpu')

    if print_global_state and "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")

    sd = get_state_dict_from_checkpoint(pl_sd)
    return sd


def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
    print(f"Loading model from {ckpt}")
    sd = read_state_dict(ckpt)
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    if 'anything' in ckpt.lower() and vae_ckpt is None:
        vae_ckpt = 'models/anything-v4.0.vae.pt'

    if vae_ckpt is not None and vae_ckpt != 'None':
        print(f"Loading vae model from {vae_ckpt}")
        vae_sd = torch.load(vae_ckpt, map_location="cpu")
        if "global_step" in vae_sd:
            print(f"Global Step: {vae_sd['global_step']}")
        sd = vae_sd["state_dict"]
        m, u = model.first_stage_model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
            print(u)

    model.cuda()
    model.eval()
    return model


def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
    h, w = image.shape[:2]
    if resize_short_edge is not None:
        k = resize_short_edge / min(h, w)
    else:
        k = max_resolution / (h * w)
        k = k**0.5
    h = int(np.round(h * k / 64)) * 64
    w = int(np.round(w * k / 64)) * 64
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
    return image


# make uc and prompt shapes match via padding for long prompts
null_cond = None

def fix_cond_shapes(model, prompt_condition, uc):
    if uc is None:
        return prompt_condition, uc
    global null_cond
    if null_cond is None:
        null_cond = model.get_learned_conditioning([""])
    while prompt_condition.shape[1] > uc.shape[1]:
        uc = torch.cat((uc, null_cond.repeat((uc.shape[0], 1, 1))), axis=1)
    while prompt_condition.shape[1] < uc.shape[1]:
        prompt_condition = torch.cat((prompt_condition, null_cond.repeat((prompt_condition.shape[0], 1, 1))), axis=1)
    return prompt_condition, uc