File size: 5,125 Bytes
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import json
import cv2
import torch
import os
from basicsr.utils import img2tensor, tensor2img
import random

class dataset_coco():
    def __init__(self, path_json, root_path, image_size, mode='train'):
        super(dataset_coco, self).__init__()
        with open(path_json, 'r', encoding='utf-8') as fp:
            data = json.load(fp)
        data = data['images']
        self.paths = []
        self.root_path = root_path
        for file in data:
            input_path = file['filepath']
            if mode == 'train':
                if 'val' not in input_path:
                    self.paths.append(file)
            else:
                if 'val' in input_path:
                    self.paths.append(file)

    def __getitem__(self, idx):
        file = self.paths[idx]
        input_path = file['filepath']
        input_name = file['filename']
        path = os.path.join(self.root_path, input_path, input_name)
        im = cv2.imread(path)
        im = cv2.resize(im, (512,512))
        im = img2tensor(im, bgr2rgb=True, float32=True)/255.
        sentences = file['sentences']
        sentence =  sentences[int(random.random()*len(sentences))]['raw'].strip('.')
        return {'im':im, 'sentence':sentence}

    def __len__(self):
        return len(self.paths)


class dataset_coco_mask():
    def __init__(self, path_json, root_path_im, root_path_mask, image_size):
        super(dataset_coco_mask, self).__init__()
        with open(path_json, 'r', encoding='utf-8') as fp:
            data = json.load(fp)
        data = data['annotations']
        self.files = []
        self.root_path_im = root_path_im
        self.root_path_mask = root_path_mask
        for file in data:
            name = "%012d.png"%file['image_id']
            self.files.append({'name':name, 'sentence':file['caption']})

    def __getitem__(self, idx):
        file = self.files[idx]
        name = file['name']
        # print(os.path.join(self.root_path_im, name))
        im = cv2.imread(os.path.join(self.root_path_im, name.replace('.png','.jpg')))
        im = cv2.resize(im, (512,512))
        im = img2tensor(im, bgr2rgb=True, float32=True)/255.

        mask = cv2.imread(os.path.join(self.root_path_mask, name))#[:,:,0]
        mask = cv2.resize(mask, (512,512))
        mask = img2tensor(mask, bgr2rgb=True, float32=True)[0].unsqueeze(0)#/255.

        sentence = file['sentence']
        return {'im':im, 'mask':mask, 'sentence':sentence}

    def __len__(self):
        return len(self.files)


class dataset_coco_mask_color():
    def __init__(self, path_json, root_path_im, root_path_mask, image_size):
        super(dataset_coco_mask_color, self).__init__()
        with open(path_json, 'r', encoding='utf-8') as fp:
            data = json.load(fp)
        data = data['annotations']
        self.files = []
        self.root_path_im = root_path_im
        self.root_path_mask = root_path_mask
        for file in data:
            name = "%012d.png"%file['image_id']
            self.files.append({'name':name, 'sentence':file['caption']})

    def __getitem__(self, idx):
        file = self.files[idx]
        name = file['name']
        # print(os.path.join(self.root_path_im, name))
        im = cv2.imread(os.path.join(self.root_path_im, name.replace('.png','.jpg')))
        im = cv2.resize(im, (512,512))
        im = img2tensor(im, bgr2rgb=True, float32=True)/255.

        mask = cv2.imread(os.path.join(self.root_path_mask, name))#[:,:,0]
        mask = cv2.resize(mask, (512,512))
        mask = img2tensor(mask, bgr2rgb=True, float32=True)/255.#[0].unsqueeze(0)#/255.

        sentence = file['sentence']
        return {'im':im, 'mask':mask, 'sentence':sentence}

    def __len__(self):
        return len(self.files)

class dataset_coco_mask_color_sig():
    def __init__(self, path_json, root_path_im, root_path_mask, image_size):
        super(dataset_coco_mask_color_sig, self).__init__()
        with open(path_json, 'r', encoding='utf-8') as fp:
            data = json.load(fp)
        data = data['annotations']
        self.files = []
        self.root_path_im = root_path_im
        self.root_path_mask = root_path_mask
        reg = {}
        for file in data:
            name = "%012d.png"%file['image_id']
            if name in reg:
                continue
            self.files.append({'name':name, 'sentence':file['caption']})
            reg[name] = name

    def __getitem__(self, idx):
        file = self.files[idx]
        name = file['name']
        # print(os.path.join(self.root_path_im, name))
        im = cv2.imread(os.path.join(self.root_path_im, name.replace('.png','.jpg')))
        im = cv2.resize(im, (512,512))
        im = img2tensor(im, bgr2rgb=True, float32=True)/255.

        mask = cv2.imread(os.path.join(self.root_path_mask, name))#[:,:,0]
        mask = cv2.resize(mask, (512,512))
        mask = img2tensor(mask, bgr2rgb=True, float32=True)/255.#[0].unsqueeze(0)#/255.

        sentence = file['sentence']
        return {'im':im, 'mask':mask, 'sentence':sentence, 'name': name}

    def __len__(self):
        return len(self.files)