File size: 10,234 Bytes
ae8e1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os.path
import random
import numpy as np
import torch
import re
import torch.utils.data
import json
import kaldiio
from tqdm import tqdm
from text import text_to_sequence
class BaseLoader(torch.utils.data.Dataset):
def __init__(self, utts: str, hparams, feats_scp: str, utt2text:str):
"""
:param utts: file path. A list of utts for this loader. These are the only utts that this loader has access.
This loader only deals with text, duration and feats. Other files despite `utts` can be larger.
"""
self.n_mel_channels = hparams.n_mel_channels
self.sampling_rate = hparams.sampling_rate
self.utts = self.get_utts(utts)
self.utt2feat = self.get_utt2feat(feats_scp)
self.utt2text = self.get_utt2text(utt2text)
def get_utts(self, utts: str) -> list:
with open(utts, 'r') as f:
L = f.readlines()
L = list(map(lambda x: x.strip(), L))
random.seed(1234)
random.shuffle(L)
return L
def get_utt2feat(self, feats_scp: str):
utt2feat = kaldiio.load_scp(feats_scp) # lazy load mode
print(f"Succeed reading feats from {feats_scp}")
return utt2feat
def get_utt2text(self, utt2text: str):
with open(utt2text, 'r') as f:
L = f.readlines()
utt2text = {line.split()[0]: line.strip().split(" ", 1)[1] for line in L}
return utt2text
def get_mel_from_kaldi(self, utt):
feat = self.utt2feat[utt]
feat = torch.FloatTensor(feat).squeeze()
assert self.n_mel_channels in feat.shape
if feat.shape[0] == self.n_mel_channels:
return feat
else:
return feat.T
def get_text(self, utt):
text = self.utt2text[utt]
text_norm = text_to_sequence(text)
text_norm = torch.IntTensor(text_norm)
return text_norm
def __getitem__(self, index):
res = self.get_mel_text_pair(self.utts[index])
return res
def __len__(self):
return len(self.utts)
def sample_test_batch(self, size):
idx = np.random.choice(range(len(self)), size=size, replace=False)
test_batch = []
for index in idx:
test_batch.append(self.__getitem__(index))
return test_batch
class SpkIDLoader(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk: str):
"""
:param utt2spk: json file path (utt name -> spk id)
This loader loads speaker as a speaker ID for embedding table
"""
super(SpkIDLoader, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
self.utt2spk = self.get_utt2spk(utt2spk)
def get_utt2spk(self, utt2spk: str) -> dict:
with open(utt2spk, 'r') as f:
res = json.load(f)
return res
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = self.utt2spk[utt]
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
assert sum(dur) == mel.shape[1], f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}"
res = {
"utt": utt,
"mel": mel,
"spk_ids": spkid
}
return res
def __getitem__(self, index):
res = self.get_mel_text_pair(self.utts[index])
return res
def __len__(self):
return len(self.utts)
class SpkIDLoaderWithEmo(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2text:str, utt2spk: str, utt2emo: str):
"""
:param utt2spk: json file path (utt name -> spk id)
This loader loads speaker as a speaker ID for embedding table
"""
super(SpkIDLoaderWithEmo, self).__init__(utts, hparams, feats_scp, utt2text)
self.utt2spk = self.get_utt2spk(utt2spk)
self.utt2emo = self.get_utt2emo(utt2emo)
def get_utt2spk(self, utt2spk: str) -> dict:
with open(utt2spk, 'r') as f:
res = json.load(f)
return res
def get_utt2emo(self, utt2emo: str) -> dict:
with open(utt2emo, 'r') as f:
res = json.load(f)
return res
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = int(self.utt2spk[utt])
emoid = int(self.utt2emo[utt])
text = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
res = {
"utt": utt,
"text": text,
"mel": mel,
"spk_ids": spkid,
"emo_ids": emoid
}
return res
def __getitem__(self, index):
res = self.get_mel_text_pair(self.utts[index])
return res
def __len__(self):
return len(self.utts)
class SpkIDLoaderWithPE(SpkIDLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk: str, var_scp: str):
"""
This loader loads speaker ID together with variance (4-dim pitch, 1-dim energy)
"""
super(SpkIDLoaderWithPE, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration, utt2spk)
self.utt2var = self.get_utt2var(var_scp)
def get_utt2var(self, utt2var: str) -> dict:
res = kaldiio.load_scp(utt2var)
print(f"Succeed reading feats from {utt2var}")
return res
def get_var_from_kaldi(self, utt):
var = self.utt2var[utt]
var = torch.FloatTensor(var).squeeze()
assert 5 in var.shape
if var.shape[0] == 5:
return var
else:
return var.T
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = self.utt2spk[utt]
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
var = self.get_var_from_kaldi(utt)
assert sum(dur) == mel.shape[1] == var.shape[1], \
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}, var: {var.shape[1]}"
res = {
"utt": utt,
"phn_ids": phn_ids,
"mel": mel,
"dur": dur,
"spk_ids": spkid,
"var": var
}
return res
class XvectorLoader(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk_name: str, spk_xvector_scp: str):
"""
:param utt2spk_name: like kaldi-style utt2spk
:param spk_xvector_scp: kaldi-style speaker-level xvector.scp
"""
super(XvectorLoader, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
self.utt2spk = self.get_utt2spk(utt2spk_name)
self.spk2xvector = self.get_spk2xvector(spk_xvector_scp)
def get_utt2spk(self, utt2spk):
res = dict()
with open(utt2spk, 'r') as f:
for l in f.readlines():
res[l.split()[0]] = l.split()[1]
return res
def get_spk2xvector(self, spk_xvector_scp: str) -> dict:
res = kaldiio.load_scp(spk_xvector_scp)
print(f"Succeed reading xvector from {spk_xvector_scp}")
return res
def get_xvector(self, utt):
xv = self.spk2xvector[self.utt2spk[utt]]
xv = torch.FloatTensor(xv).squeeze()
return xv
def get_mel_text_pair(self, utt):
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
xvector = self.get_xvector(utt)
assert sum(dur) == mel.shape[1], \
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}"
res = {
"utt": utt,
"phn_ids": phn_ids,
"mel": mel,
"dur": dur,
"xvector": xvector,
}
return res
class XvectorLoaderWithPE(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk_name: str, spk_xvector_scp: str, var_scp: str):
super(XvectorLoaderWithPE, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
self.utt2spk = self.get_utt2spk(utt2spk_name)
self.spk2xvector = self.get_spk2xvector(spk_xvector_scp)
self.utt2var = self.get_utt2var(var_scp)
def get_spk2xvector(self, spk_xvector_scp: str) -> dict:
res = kaldiio.load_scp(spk_xvector_scp)
print(f"Succeed reading xvector from {spk_xvector_scp}")
return res
def get_utt2spk(self, utt2spk):
res = dict()
with open(utt2spk, 'r') as f:
for l in f.readlines():
res[l.split()[0]] = l.split()[1]
return res
def get_utt2var(self, utt2var: str) -> dict:
res = kaldiio.load_scp(utt2var)
print(f"Succeed reading feats from {utt2var}")
return res
def get_var_from_kaldi(self, utt):
var = self.utt2var[utt]
var = torch.FloatTensor(var).squeeze()
assert 5 in var.shape
if var.shape[0] == 5:
return var
else:
return var.T
def get_xvector(self, utt):
xv = self.spk2xvector[self.utt2spk[utt]]
xv = torch.FloatTensor(xv).squeeze()
return xv
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = self.utt2spk[utt]
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
var = self.get_var_from_kaldi(utt)
xvector = self.get_xvector(utt)
assert sum(dur) == mel.shape[1] == var.shape[1], \
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}, var: {var.shape[1]}"
res = {
"utt": utt,
"phn_ids": phn_ids,
"mel": mel,
"dur": dur,
"spk_ids": spkid,
"var": var,
"xvector": xvector
}
return res
|