AdalAbilbekov
commited on
Commit
·
ae8e1dd
1
Parent(s):
9d9a36a
First commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- app.py +117 -0
- cnnwt_SGD_1959.pt +3 -0
- config.json +37 -0
- configs/.DS_Store +0 -0
- configs/hifigan-config.json +37 -0
- configs/train_grad.json +68 -0
- data_collate.py +147 -0
- data_loader.py +309 -0
- data_preparation.py +108 -0
- env.py +15 -0
- filelists/all_spks/eval_utts.txt +3730 -0
- filelists/all_spks/feats.ark +0 -0
- filelists/all_spks/feats.scp +3 -0
- filelists/all_spks/text +0 -0
- filelists/all_spks/train_utts.txt +0 -0
- filelists/all_spks/utt2emo.json +0 -0
- filelists/all_spks/utt2spk.json +0 -0
- filelists/inference_generated.txt +2 -0
- g_01720000 +3 -0
- grad_uncond.pt +3 -0
- grad_uncond_10k_conf.pt +3 -0
- grad_uncond_cnn_001.pt +3 -0
- inference_EMA.py +89 -0
- inference_intensity_control.ipynb +0 -0
- melspec.py +40 -0
- model/__init__.py +2 -0
- model/__pycache__/__init__.cpython-39.pyc +0 -0
- model/__pycache__/tts.cpython-39.pyc +0 -0
- model/base.py +28 -0
- model/classifier.py +690 -0
- model/diffusion.py +513 -0
- model/monotonic_align/LICENCE +21 -0
- model/monotonic_align/__init__.py +23 -0
- model/monotonic_align/__pycache__/__init__.cpython-39.pyc +0 -0
- model/monotonic_align/build/lib.macosx-11.1-arm64-cpython-310/model/monotonic_align/core.cpython-310-darwin.so +0 -0
- model/monotonic_align/build/temp.linux-x86_64-3.6/core.o +3 -0
- model/monotonic_align/build/temp.macosx-10.9-x86_64-3.6/core.o +0 -0
- model/monotonic_align/build/temp.macosx-11.1-arm64-cpython-310/core.o +0 -0
- model/monotonic_align/core.c +0 -0
- model/monotonic_align/core.pyx +45 -0
- model/monotonic_align/model/monotonic_align/core.cpython-310-darwin.so +0 -0
- model/monotonic_align/setup.py +11 -0
- model/text_encoder.py +326 -0
- model/tts.py +558 -0
- model/utils.py +44 -0
- models.py +283 -0
- text/.DS_Store +0 -0
- text/LICENSE +30 -0
- text/__init__.py +106 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
g_01720000 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model/monotonic_align/build/temp.linux-x86_64-3.6/core.o filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import datetime as dt
|
5 |
+
import numpy as np
|
6 |
+
from scipy.io.wavfile import write
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
from pydub import AudioSegment
|
10 |
+
from model.classifier import SpecClassifier
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from text import text_to_sequence, cmudict
|
13 |
+
from text.symbols import symbols
|
14 |
+
import utils_data as utils
|
15 |
+
from utils import load_checkpoint_no_logger
|
16 |
+
from kaldiio import WriteHelper
|
17 |
+
import os
|
18 |
+
from tqdm import tqdm
|
19 |
+
from text import text_to_sequence, convert_text
|
20 |
+
import sys
|
21 |
+
from model import GradTTSXvector, GradTTSWithEmo
|
22 |
+
import IPython.display as ipd
|
23 |
+
|
24 |
+
device = ('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
device
|
26 |
+
|
27 |
+
hps, args = utils.get_hparams_decode_two_mixture()
|
28 |
+
|
29 |
+
gradtts_uncond_model = GradTTSWithEmo
|
30 |
+
|
31 |
+
gradtts_uncond_model = gradtts_uncond_model(**hps.model).to(device)
|
32 |
+
model = SpecClassifier(
|
33 |
+
in_dim=hps.data.n_mel_channels,
|
34 |
+
d_decoder=hps.model.d_decoder,
|
35 |
+
h_decoder=hps.model.h_decoder,
|
36 |
+
l_decoder=hps.model.l_decoder,
|
37 |
+
k_decoder=hps.model.k_decoder,
|
38 |
+
decoder_dropout=hps.model.decoder_dropout,
|
39 |
+
n_class=hps.model.n_emos,
|
40 |
+
cond_dim=hps.data.n_mel_channels,
|
41 |
+
model_type=getattr(hps.model, "classifier_type", "CNN-with-time")
|
42 |
+
)
|
43 |
+
|
44 |
+
ckpt = './cnnwt_SGD_1959.pt'
|
45 |
+
ckpt_tts = './grad_uncond_cnn_001.pt'
|
46 |
+
|
47 |
+
utils.load_checkpoints_no_logger(ckpt_tts, gradtts_uncond_model, None)
|
48 |
+
utils.load_checkpoints_no_logger(ckpt, model, None)
|
49 |
+
|
50 |
+
_ = model.to(device).eval()
|
51 |
+
|
52 |
+
HIFIGAN_CONFIG = './config.json'
|
53 |
+
HIFIGAN_CHECKPT = './g_01720000'
|
54 |
+
|
55 |
+
from models import Generator as HiFiGAN
|
56 |
+
from env import AttrDict
|
57 |
+
print('Initializing HiFi-GAN...')
|
58 |
+
with open(HIFIGAN_CONFIG) as f:
|
59 |
+
h = AttrDict(json.load(f))
|
60 |
+
vocoder = HiFiGAN(h)
|
61 |
+
vocoder.load_state_dict(torch.load(HIFIGAN_CHECKPT, map_location=lambda loc, storage: loc)['generator'])
|
62 |
+
_ = vocoder.to(device).eval()
|
63 |
+
vocoder.remove_weight_norm()
|
64 |
+
|
65 |
+
def generate_audio(text, quantity, speaker, emotion_1, emotion_2):
|
66 |
+
x, x_lengths = convert_text(text)
|
67 |
+
emo_1, emo_2 = emotion_1, emotion_2
|
68 |
+
emo1 = torch.LongTensor([emo_1]).to(device)
|
69 |
+
emo2 = torch.LongTensor([emo_2]).to(device)
|
70 |
+
sid = torch.LongTensor([spekears.index(speaker)]).to(device)
|
71 |
+
intensity = quantity / 100
|
72 |
+
|
73 |
+
y_enc, y_dec, attn = gradtts_uncond_model.classifier_guidance_decode_two_mixture(
|
74 |
+
x, x_lengths,
|
75 |
+
n_timesteps=10,
|
76 |
+
temperature=2.0,
|
77 |
+
stoc=args.stoc,
|
78 |
+
spk=sid,
|
79 |
+
emo1=emo1,
|
80 |
+
emo2=emo2,
|
81 |
+
emo1_weight=intensity,
|
82 |
+
length_scale=1.,
|
83 |
+
classifier_func=model.forward,
|
84 |
+
guidance=300,
|
85 |
+
classifier_type=model.model_type
|
86 |
+
)
|
87 |
+
y_dec = y_dec.detach()
|
88 |
+
# y_dec = torch.nan_to_num(y_dec)
|
89 |
+
res = y_dec.squeeze().cpu().numpy()
|
90 |
+
x = torch.from_numpy(res).cuda().unsqueeze(0)
|
91 |
+
y_g_hat = vocoder(x)
|
92 |
+
audio = y_g_hat.squeeze()
|
93 |
+
audio = audio * 32768.0
|
94 |
+
audio = audio.detach().cpu().numpy().astype('int16')
|
95 |
+
sr = 22050
|
96 |
+
return sr, audio
|
97 |
+
|
98 |
+
# def sentence_builder(quantity, emotion_1, emotion_2):
|
99 |
+
# return f"""The {quantity} {emotion_1}s from {" and ".join(emotion_2)}"""
|
100 |
+
|
101 |
+
emotions = sorted(["angry", "surprise", "fear", "happy", "neutral", "sad"])
|
102 |
+
spekears = ['Madi', 'Marzhan', 'Akzhol']
|
103 |
+
|
104 |
+
demo = gr.Interface(
|
105 |
+
generate_audio,
|
106 |
+
[
|
107 |
+
gr.Slider(0, 100, value=0, step=10, label="Count", info="Choose between 0 and 100"),
|
108 |
+
gr.Dropdown(spekears, value=spekears[1], label="Narrator", info="Select a narrator."
|
109 |
+
),
|
110 |
+
gr.Dropdown(emotions, label="Emotion 1", info="Select first emotion"),
|
111 |
+
gr.Dropdown(emotions, value=emotions[3], label="Emotion 2", info="Select second emotion."
|
112 |
+
),
|
113 |
+
],
|
114 |
+
"audio"
|
115 |
+
)
|
116 |
+
|
117 |
+
demo.launch()
|
cnnwt_SGD_1959.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dad97a741b8faad42f6d4c0ccd808f20cd4d1e01890db0c3935d131dfafc9977
|
3 |
+
size 1948051
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 1,
|
4 |
+
"batch_size": 64,
|
5 |
+
"learning_rate": 0.0002,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [8,8,2,2],
|
12 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"segment_size": 8192,
|
18 |
+
"num_mels": 80,
|
19 |
+
"num_freq": 1025,
|
20 |
+
"n_fft": 1024,
|
21 |
+
"hop_size": 256,
|
22 |
+
"win_size": 1024,
|
23 |
+
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
|
26 |
+
"fmin": 0,
|
27 |
+
"fmax": 8000,
|
28 |
+
"fmax_for_loss": null,
|
29 |
+
|
30 |
+
"num_workers": 4,
|
31 |
+
|
32 |
+
"dist_config": {
|
33 |
+
"dist_backend": "nccl",
|
34 |
+
"dist_url": "tcp://localhost:54320",
|
35 |
+
"world_size": 1
|
36 |
+
}
|
37 |
+
}
|
configs/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
configs/hifigan-config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 1,
|
4 |
+
"batch_size": 64,
|
5 |
+
"learning_rate": 0.0002,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [8,8,2,2],
|
12 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"segment_size": 8192,
|
18 |
+
"num_mels": 80,
|
19 |
+
"num_freq": 1025,
|
20 |
+
"n_fft": 1024,
|
21 |
+
"hop_size": 256,
|
22 |
+
"win_size": 1024,
|
23 |
+
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
|
26 |
+
"fmin": 0,
|
27 |
+
"fmax": 8000,
|
28 |
+
"fmax_for_loss": null,
|
29 |
+
|
30 |
+
"num_workers": 4,
|
31 |
+
|
32 |
+
"dist_config": {
|
33 |
+
"dist_backend": "nccl",
|
34 |
+
"dist_url": "tcp://localhost:54320",
|
35 |
+
"world_size": 1
|
36 |
+
}
|
37 |
+
}
|
configs/train_grad.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"xvector": false,
|
3 |
+
"pe": false,
|
4 |
+
"train": {
|
5 |
+
"test_size": 6,
|
6 |
+
"n_epochs": 10000,
|
7 |
+
"batch_size": 64,
|
8 |
+
"learning_rate": 1e-4,
|
9 |
+
"seed": 37,
|
10 |
+
"save_every": 1,
|
11 |
+
"use_gt_dur": false
|
12 |
+
},
|
13 |
+
"data": {
|
14 |
+
"load_mel_from_disk": false,
|
15 |
+
"train_utts": "filelists/all_spks/train_utts.txt",
|
16 |
+
"val_utts": "filelists/all_spks/eval_utts.txt",
|
17 |
+
"train_utt2phns": "filelists/all_spks/text",
|
18 |
+
"val_utt2phns": "filelists/all_spks/text",
|
19 |
+
"train_feats_scp": "filelists/all_spks/feats.scp",
|
20 |
+
"val_feats_scp": "filelists/all_spks/feats.scp",
|
21 |
+
"train_utt2spk": "filelists/all_spks/utt2spk.json",
|
22 |
+
"val_utt2spk": "filelists/all_spks/utt2spk.json",
|
23 |
+
"train_utt2emo": "filelists/all_spks/utt2emo.json",
|
24 |
+
"val_utt2emo": "filelists/all_spks/utt2emo.json",
|
25 |
+
|
26 |
+
"train_var_scp": "",
|
27 |
+
"val_var_scp": "",
|
28 |
+
|
29 |
+
"text_cleaners": [
|
30 |
+
"kazakh_cleaners"
|
31 |
+
],
|
32 |
+
"max_wav_value": 32768.0,
|
33 |
+
"sampling_rate": 22050,
|
34 |
+
"filter_length": 1024,
|
35 |
+
"hop_length": 200,
|
36 |
+
"win_length": 800,
|
37 |
+
"n_mel_channels": 80,
|
38 |
+
"mel_fmin": 20.0,
|
39 |
+
"mel_fmax": 8000.0,
|
40 |
+
"utt2phn_path": "data/res_utt2phns.json",
|
41 |
+
"add_blank": false
|
42 |
+
},
|
43 |
+
"model": {
|
44 |
+
"n_vocab": 200,
|
45 |
+
"n_spks": 3,
|
46 |
+
"n_emos": 6,
|
47 |
+
"spk_emb_dim": 64,
|
48 |
+
"n_enc_channels": 192,
|
49 |
+
"filter_channels": 768,
|
50 |
+
"filter_channels_dp": 256,
|
51 |
+
"n_enc_layers": 6,
|
52 |
+
"enc_kernel": 3,
|
53 |
+
"enc_dropout": 0.1,
|
54 |
+
"n_heads": 2,
|
55 |
+
"window_size": 4,
|
56 |
+
"dec_dim": 64,
|
57 |
+
"beta_min": 0.05,
|
58 |
+
"beta_max": 20.0,
|
59 |
+
"pe_scale": 1000,
|
60 |
+
"d_decoder": 128,
|
61 |
+
"l_decoder": 3,
|
62 |
+
"k_decoder": 7,
|
63 |
+
"h_decoder": 4,
|
64 |
+
"decoder_dropout":0.1,
|
65 |
+
|
66 |
+
"classifier_type": "CNN-with-time"
|
67 |
+
}
|
68 |
+
}
|
data_collate.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
import torch.utils.data
|
7 |
+
import json
|
8 |
+
|
9 |
+
import kaldiio
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
|
13 |
+
class BaseCollate:
|
14 |
+
def __init__(self, n_frames_per_step=1):
|
15 |
+
self.n_frames_per_step = n_frames_per_step
|
16 |
+
|
17 |
+
def collate_text_mel(self, batch: [dict]):
|
18 |
+
"""
|
19 |
+
:param batch: list of dicts
|
20 |
+
"""
|
21 |
+
utt = list(map(lambda x: x['utt'], batch))
|
22 |
+
input_lengths, ids_sorted_decreasing = torch.sort(
|
23 |
+
torch.LongTensor([len(x['text']) for x in batch]),
|
24 |
+
dim=0, descending=True)
|
25 |
+
max_input_len = input_lengths[0]
|
26 |
+
|
27 |
+
text_padded = torch.LongTensor(len(batch), max_input_len)
|
28 |
+
text_padded.zero_()
|
29 |
+
for i in range(len(ids_sorted_decreasing)):
|
30 |
+
text = batch[ids_sorted_decreasing[i]]['text']
|
31 |
+
text_padded[i, :text.size(0)] = text
|
32 |
+
|
33 |
+
# Right zero-pad mel-spec
|
34 |
+
num_mels = batch[0]['mel'].size(0)
|
35 |
+
max_target_len = max([x['mel'].size(1) for x in batch])
|
36 |
+
if max_target_len % self.n_frames_per_step != 0:
|
37 |
+
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
38 |
+
assert max_target_len % self.n_frames_per_step == 0
|
39 |
+
|
40 |
+
# include mel padded
|
41 |
+
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
|
42 |
+
mel_padded.zero_()
|
43 |
+
output_lengths = torch.LongTensor(len(batch))
|
44 |
+
for i in range(len(ids_sorted_decreasing)):
|
45 |
+
mel = batch[ids_sorted_decreasing[i]]['mel']
|
46 |
+
mel_padded[i, :, :mel.size(1)] = mel
|
47 |
+
output_lengths[i] = mel.size(1)
|
48 |
+
|
49 |
+
utt_name = np.array(utt)[ids_sorted_decreasing].tolist()
|
50 |
+
if isinstance(utt_name, str):
|
51 |
+
utt_name = [utt_name]
|
52 |
+
|
53 |
+
res = {
|
54 |
+
"utt": utt_name,
|
55 |
+
"text_padded": text_padded,
|
56 |
+
"input_lengths": input_lengths,
|
57 |
+
"mel_padded": mel_padded,
|
58 |
+
"output_lengths": output_lengths,
|
59 |
+
}
|
60 |
+
return res, ids_sorted_decreasing
|
61 |
+
|
62 |
+
|
63 |
+
class SpkIDCollate(BaseCollate):
|
64 |
+
def __call__(self, batch, *args, **kwargs):
|
65 |
+
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
|
66 |
+
spk_ids = torch.LongTensor(list(map(lambda x: x["spk_ids"], batch)))
|
67 |
+
spk_ids = spk_ids[ids_sorted_decreasing]
|
68 |
+
base_data.update({
|
69 |
+
"spk_ids": spk_ids
|
70 |
+
})
|
71 |
+
return base_data
|
72 |
+
|
73 |
+
|
74 |
+
class SpkIDCollateWithEmo(BaseCollate):
|
75 |
+
def __call__(self, batch, *args, **kwargs):
|
76 |
+
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
|
77 |
+
|
78 |
+
spk_ids = torch.LongTensor(list(map(lambda x: x["spk_ids"], batch)))
|
79 |
+
spk_ids = spk_ids[ids_sorted_decreasing]
|
80 |
+
emo_ids = torch.LongTensor(list(map(lambda x: x['emo_ids'], batch)))
|
81 |
+
emo_ids = emo_ids[ids_sorted_decreasing]
|
82 |
+
base_data.update({
|
83 |
+
"spk_ids": spk_ids,
|
84 |
+
"emo_ids": emo_ids
|
85 |
+
})
|
86 |
+
return base_data
|
87 |
+
|
88 |
+
|
89 |
+
class XvectorCollate(BaseCollate):
|
90 |
+
def __call__(self, batch, *args, **kwargs):
|
91 |
+
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
|
92 |
+
xvectors = torch.cat(list(map(lambda x: x["xvector"].unsqueeze(0), batch)), dim=0)
|
93 |
+
xvectors = xvectors[ids_sorted_decreasing]
|
94 |
+
base_data.update({
|
95 |
+
"xvector": xvectors
|
96 |
+
})
|
97 |
+
return base_data
|
98 |
+
|
99 |
+
|
100 |
+
class SpkIDCollateWithPE(BaseCollate):
|
101 |
+
def __call__(self, batch, *args, **kwargs):
|
102 |
+
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
|
103 |
+
spk_ids = torch.LongTensor(list(map(lambda x: x["spk_ids"], batch)))
|
104 |
+
spk_ids = spk_ids[ids_sorted_decreasing]
|
105 |
+
|
106 |
+
num_var = batch[0]["var"].size(0)
|
107 |
+
max_target_len = max([x["var"].size(1) for x in batch])
|
108 |
+
if max_target_len % self.n_frames_per_step != 0:
|
109 |
+
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
110 |
+
assert max_target_len % self.n_frames_per_step == 0
|
111 |
+
|
112 |
+
var_padded = torch.FloatTensor(len(batch), num_var, max_target_len)
|
113 |
+
var_padded.zero_()
|
114 |
+
for i in range(len(ids_sorted_decreasing)):
|
115 |
+
var = batch[ids_sorted_decreasing[i]]["var"]
|
116 |
+
var_padded[i, :, :var.size(1)] = var
|
117 |
+
|
118 |
+
base_data.update({
|
119 |
+
"spk_ids": spk_ids,
|
120 |
+
"var_padded": var_padded
|
121 |
+
})
|
122 |
+
return base_data
|
123 |
+
|
124 |
+
|
125 |
+
class XvectorCollateWithPE(BaseCollate):
|
126 |
+
def __call__(self, batch, *args, **kwargs):
|
127 |
+
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
|
128 |
+
xvectors = torch.cat(list(map(lambda x: x["xvector"].unsqueeze(0), batch)), dim=0)
|
129 |
+
xvectors = xvectors[ids_sorted_decreasing]
|
130 |
+
|
131 |
+
num_var = batch[0]["var"].size(0)
|
132 |
+
max_target_len = max([x["var"].size(1) for x in batch])
|
133 |
+
if max_target_len % self.n_frames_per_step != 0:
|
134 |
+
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
135 |
+
assert max_target_len % self.n_frames_per_step == 0
|
136 |
+
|
137 |
+
var_padded = torch.FloatTensor(len(batch), num_var, max_target_len)
|
138 |
+
var_padded.zero_()
|
139 |
+
for i in range(len(ids_sorted_decreasing)):
|
140 |
+
var = batch[ids_sorted_decreasing[i]]["var"]
|
141 |
+
var_padded[i, :, :var.size(1)] = var
|
142 |
+
|
143 |
+
base_data.update({
|
144 |
+
"xvector": xvectors,
|
145 |
+
"var_padded": var_padded
|
146 |
+
})
|
147 |
+
return base_data
|
data_loader.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
import torch.utils.data
|
7 |
+
import json
|
8 |
+
|
9 |
+
import kaldiio
|
10 |
+
from tqdm import tqdm
|
11 |
+
from text import text_to_sequence
|
12 |
+
|
13 |
+
class BaseLoader(torch.utils.data.Dataset):
|
14 |
+
def __init__(self, utts: str, hparams, feats_scp: str, utt2text:str):
|
15 |
+
"""
|
16 |
+
:param utts: file path. A list of utts for this loader. These are the only utts that this loader has access.
|
17 |
+
This loader only deals with text, duration and feats. Other files despite `utts` can be larger.
|
18 |
+
"""
|
19 |
+
self.n_mel_channels = hparams.n_mel_channels
|
20 |
+
self.sampling_rate = hparams.sampling_rate
|
21 |
+
self.utts = self.get_utts(utts)
|
22 |
+
self.utt2feat = self.get_utt2feat(feats_scp)
|
23 |
+
self.utt2text = self.get_utt2text(utt2text)
|
24 |
+
|
25 |
+
def get_utts(self, utts: str) -> list:
|
26 |
+
with open(utts, 'r') as f:
|
27 |
+
L = f.readlines()
|
28 |
+
L = list(map(lambda x: x.strip(), L))
|
29 |
+
random.seed(1234)
|
30 |
+
random.shuffle(L)
|
31 |
+
return L
|
32 |
+
|
33 |
+
|
34 |
+
def get_utt2feat(self, feats_scp: str):
|
35 |
+
utt2feat = kaldiio.load_scp(feats_scp) # lazy load mode
|
36 |
+
print(f"Succeed reading feats from {feats_scp}")
|
37 |
+
return utt2feat
|
38 |
+
|
39 |
+
def get_utt2text(self, utt2text: str):
|
40 |
+
with open(utt2text, 'r') as f:
|
41 |
+
L = f.readlines()
|
42 |
+
utt2text = {line.split()[0]: line.strip().split(" ", 1)[1] for line in L}
|
43 |
+
return utt2text
|
44 |
+
|
45 |
+
def get_mel_from_kaldi(self, utt):
|
46 |
+
feat = self.utt2feat[utt]
|
47 |
+
feat = torch.FloatTensor(feat).squeeze()
|
48 |
+
assert self.n_mel_channels in feat.shape
|
49 |
+
if feat.shape[0] == self.n_mel_channels:
|
50 |
+
return feat
|
51 |
+
else:
|
52 |
+
return feat.T
|
53 |
+
|
54 |
+
def get_text(self, utt):
|
55 |
+
text = self.utt2text[utt]
|
56 |
+
text_norm = text_to_sequence(text)
|
57 |
+
text_norm = torch.IntTensor(text_norm)
|
58 |
+
return text_norm
|
59 |
+
|
60 |
+
def __getitem__(self, index):
|
61 |
+
res = self.get_mel_text_pair(self.utts[index])
|
62 |
+
return res
|
63 |
+
|
64 |
+
def __len__(self):
|
65 |
+
return len(self.utts)
|
66 |
+
|
67 |
+
def sample_test_batch(self, size):
|
68 |
+
idx = np.random.choice(range(len(self)), size=size, replace=False)
|
69 |
+
test_batch = []
|
70 |
+
for index in idx:
|
71 |
+
test_batch.append(self.__getitem__(index))
|
72 |
+
return test_batch
|
73 |
+
|
74 |
+
|
75 |
+
class SpkIDLoader(BaseLoader):
|
76 |
+
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
|
77 |
+
utt2phn_duration: str, utt2spk: str):
|
78 |
+
"""
|
79 |
+
:param utt2spk: json file path (utt name -> spk id)
|
80 |
+
This loader loads speaker as a speaker ID for embedding table
|
81 |
+
"""
|
82 |
+
super(SpkIDLoader, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
|
83 |
+
self.utt2spk = self.get_utt2spk(utt2spk)
|
84 |
+
|
85 |
+
def get_utt2spk(self, utt2spk: str) -> dict:
|
86 |
+
with open(utt2spk, 'r') as f:
|
87 |
+
res = json.load(f)
|
88 |
+
return res
|
89 |
+
|
90 |
+
def get_mel_text_pair(self, utt):
|
91 |
+
# separate filename and text
|
92 |
+
spkid = self.utt2spk[utt]
|
93 |
+
phn_ids = self.get_text(utt)
|
94 |
+
mel = self.get_mel_from_kaldi(utt)
|
95 |
+
dur = self.get_dur_from_kaldi(utt)
|
96 |
+
|
97 |
+
assert sum(dur) == mel.shape[1], f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}"
|
98 |
+
res = {
|
99 |
+
"utt": utt,
|
100 |
+
"mel": mel,
|
101 |
+
"spk_ids": spkid
|
102 |
+
}
|
103 |
+
return res
|
104 |
+
|
105 |
+
def __getitem__(self, index):
|
106 |
+
res = self.get_mel_text_pair(self.utts[index])
|
107 |
+
return res
|
108 |
+
|
109 |
+
def __len__(self):
|
110 |
+
return len(self.utts)
|
111 |
+
|
112 |
+
|
113 |
+
class SpkIDLoaderWithEmo(BaseLoader):
|
114 |
+
def __init__(self, utts: str, hparams, feats_scp: str, utt2text:str, utt2spk: str, utt2emo: str):
|
115 |
+
"""
|
116 |
+
:param utt2spk: json file path (utt name -> spk id)
|
117 |
+
This loader loads speaker as a speaker ID for embedding table
|
118 |
+
"""
|
119 |
+
super(SpkIDLoaderWithEmo, self).__init__(utts, hparams, feats_scp, utt2text)
|
120 |
+
self.utt2spk = self.get_utt2spk(utt2spk)
|
121 |
+
self.utt2emo = self.get_utt2emo(utt2emo)
|
122 |
+
|
123 |
+
def get_utt2spk(self, utt2spk: str) -> dict:
|
124 |
+
with open(utt2spk, 'r') as f:
|
125 |
+
res = json.load(f)
|
126 |
+
return res
|
127 |
+
|
128 |
+
def get_utt2emo(self, utt2emo: str) -> dict:
|
129 |
+
with open(utt2emo, 'r') as f:
|
130 |
+
res = json.load(f)
|
131 |
+
return res
|
132 |
+
|
133 |
+
def get_mel_text_pair(self, utt):
|
134 |
+
# separate filename and text
|
135 |
+
spkid = int(self.utt2spk[utt])
|
136 |
+
emoid = int(self.utt2emo[utt])
|
137 |
+
text = self.get_text(utt)
|
138 |
+
mel = self.get_mel_from_kaldi(utt)
|
139 |
+
|
140 |
+
res = {
|
141 |
+
"utt": utt,
|
142 |
+
"text": text,
|
143 |
+
"mel": mel,
|
144 |
+
"spk_ids": spkid,
|
145 |
+
"emo_ids": emoid
|
146 |
+
}
|
147 |
+
return res
|
148 |
+
|
149 |
+
def __getitem__(self, index):
|
150 |
+
res = self.get_mel_text_pair(self.utts[index])
|
151 |
+
return res
|
152 |
+
|
153 |
+
def __len__(self):
|
154 |
+
return len(self.utts)
|
155 |
+
|
156 |
+
|
157 |
+
class SpkIDLoaderWithPE(SpkIDLoader):
|
158 |
+
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
|
159 |
+
utt2phn_duration: str, utt2spk: str, var_scp: str):
|
160 |
+
"""
|
161 |
+
This loader loads speaker ID together with variance (4-dim pitch, 1-dim energy)
|
162 |
+
"""
|
163 |
+
super(SpkIDLoaderWithPE, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration, utt2spk)
|
164 |
+
self.utt2var = self.get_utt2var(var_scp)
|
165 |
+
|
166 |
+
def get_utt2var(self, utt2var: str) -> dict:
|
167 |
+
res = kaldiio.load_scp(utt2var)
|
168 |
+
print(f"Succeed reading feats from {utt2var}")
|
169 |
+
return res
|
170 |
+
|
171 |
+
def get_var_from_kaldi(self, utt):
|
172 |
+
var = self.utt2var[utt]
|
173 |
+
var = torch.FloatTensor(var).squeeze()
|
174 |
+
assert 5 in var.shape
|
175 |
+
if var.shape[0] == 5:
|
176 |
+
return var
|
177 |
+
else:
|
178 |
+
return var.T
|
179 |
+
|
180 |
+
def get_mel_text_pair(self, utt):
|
181 |
+
# separate filename and text
|
182 |
+
spkid = self.utt2spk[utt]
|
183 |
+
phn_ids = self.get_text(utt)
|
184 |
+
mel = self.get_mel_from_kaldi(utt)
|
185 |
+
dur = self.get_dur_from_kaldi(utt)
|
186 |
+
var = self.get_var_from_kaldi(utt)
|
187 |
+
|
188 |
+
assert sum(dur) == mel.shape[1] == var.shape[1], \
|
189 |
+
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}, var: {var.shape[1]}"
|
190 |
+
|
191 |
+
res = {
|
192 |
+
"utt": utt,
|
193 |
+
"phn_ids": phn_ids,
|
194 |
+
"mel": mel,
|
195 |
+
"dur": dur,
|
196 |
+
"spk_ids": spkid,
|
197 |
+
"var": var
|
198 |
+
}
|
199 |
+
return res
|
200 |
+
|
201 |
+
|
202 |
+
class XvectorLoader(BaseLoader):
|
203 |
+
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
|
204 |
+
utt2phn_duration: str, utt2spk_name: str, spk_xvector_scp: str):
|
205 |
+
"""
|
206 |
+
:param utt2spk_name: like kaldi-style utt2spk
|
207 |
+
:param spk_xvector_scp: kaldi-style speaker-level xvector.scp
|
208 |
+
"""
|
209 |
+
super(XvectorLoader, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
|
210 |
+
self.utt2spk = self.get_utt2spk(utt2spk_name)
|
211 |
+
self.spk2xvector = self.get_spk2xvector(spk_xvector_scp)
|
212 |
+
|
213 |
+
def get_utt2spk(self, utt2spk):
|
214 |
+
res = dict()
|
215 |
+
with open(utt2spk, 'r') as f:
|
216 |
+
for l in f.readlines():
|
217 |
+
res[l.split()[0]] = l.split()[1]
|
218 |
+
return res
|
219 |
+
|
220 |
+
def get_spk2xvector(self, spk_xvector_scp: str) -> dict:
|
221 |
+
res = kaldiio.load_scp(spk_xvector_scp)
|
222 |
+
print(f"Succeed reading xvector from {spk_xvector_scp}")
|
223 |
+
return res
|
224 |
+
|
225 |
+
def get_xvector(self, utt):
|
226 |
+
xv = self.spk2xvector[self.utt2spk[utt]]
|
227 |
+
xv = torch.FloatTensor(xv).squeeze()
|
228 |
+
return xv
|
229 |
+
|
230 |
+
def get_mel_text_pair(self, utt):
|
231 |
+
phn_ids = self.get_text(utt)
|
232 |
+
mel = self.get_mel_from_kaldi(utt)
|
233 |
+
dur = self.get_dur_from_kaldi(utt)
|
234 |
+
xvector = self.get_xvector(utt)
|
235 |
+
|
236 |
+
assert sum(dur) == mel.shape[1], \
|
237 |
+
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}"
|
238 |
+
|
239 |
+
res = {
|
240 |
+
"utt": utt,
|
241 |
+
"phn_ids": phn_ids,
|
242 |
+
"mel": mel,
|
243 |
+
"dur": dur,
|
244 |
+
"xvector": xvector,
|
245 |
+
}
|
246 |
+
return res
|
247 |
+
|
248 |
+
|
249 |
+
class XvectorLoaderWithPE(BaseLoader):
|
250 |
+
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
|
251 |
+
utt2phn_duration: str, utt2spk_name: str, spk_xvector_scp: str, var_scp: str):
|
252 |
+
super(XvectorLoaderWithPE, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
|
253 |
+
self.utt2spk = self.get_utt2spk(utt2spk_name)
|
254 |
+
self.spk2xvector = self.get_spk2xvector(spk_xvector_scp)
|
255 |
+
self.utt2var = self.get_utt2var(var_scp)
|
256 |
+
|
257 |
+
def get_spk2xvector(self, spk_xvector_scp: str) -> dict:
|
258 |
+
res = kaldiio.load_scp(spk_xvector_scp)
|
259 |
+
print(f"Succeed reading xvector from {spk_xvector_scp}")
|
260 |
+
return res
|
261 |
+
|
262 |
+
def get_utt2spk(self, utt2spk):
|
263 |
+
res = dict()
|
264 |
+
with open(utt2spk, 'r') as f:
|
265 |
+
for l in f.readlines():
|
266 |
+
res[l.split()[0]] = l.split()[1]
|
267 |
+
return res
|
268 |
+
|
269 |
+
def get_utt2var(self, utt2var: str) -> dict:
|
270 |
+
res = kaldiio.load_scp(utt2var)
|
271 |
+
print(f"Succeed reading feats from {utt2var}")
|
272 |
+
return res
|
273 |
+
|
274 |
+
def get_var_from_kaldi(self, utt):
|
275 |
+
var = self.utt2var[utt]
|
276 |
+
var = torch.FloatTensor(var).squeeze()
|
277 |
+
assert 5 in var.shape
|
278 |
+
if var.shape[0] == 5:
|
279 |
+
return var
|
280 |
+
else:
|
281 |
+
return var.T
|
282 |
+
|
283 |
+
def get_xvector(self, utt):
|
284 |
+
xv = self.spk2xvector[self.utt2spk[utt]]
|
285 |
+
xv = torch.FloatTensor(xv).squeeze()
|
286 |
+
return xv
|
287 |
+
|
288 |
+
def get_mel_text_pair(self, utt):
|
289 |
+
# separate filename and text
|
290 |
+
spkid = self.utt2spk[utt]
|
291 |
+
phn_ids = self.get_text(utt)
|
292 |
+
mel = self.get_mel_from_kaldi(utt)
|
293 |
+
dur = self.get_dur_from_kaldi(utt)
|
294 |
+
var = self.get_var_from_kaldi(utt)
|
295 |
+
xvector = self.get_xvector(utt)
|
296 |
+
|
297 |
+
assert sum(dur) == mel.shape[1] == var.shape[1], \
|
298 |
+
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}, var: {var.shape[1]}"
|
299 |
+
|
300 |
+
res = {
|
301 |
+
"utt": utt,
|
302 |
+
"phn_ids": phn_ids,
|
303 |
+
"mel": mel,
|
304 |
+
"dur": dur,
|
305 |
+
"spk_ids": spkid,
|
306 |
+
"var": var,
|
307 |
+
"xvector": xvector
|
308 |
+
}
|
309 |
+
return res
|
data_preparation.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kaldiio
|
2 |
+
import os
|
3 |
+
import librosa
|
4 |
+
from tqdm import tqdm
|
5 |
+
import glob
|
6 |
+
import json
|
7 |
+
from shutil import copyfile
|
8 |
+
import pandas as pd
|
9 |
+
import argparse
|
10 |
+
from text import _clean_text, symbols
|
11 |
+
from num2words import num2words
|
12 |
+
import re
|
13 |
+
from melspec import mel_spectrogram
|
14 |
+
import torchaudio
|
15 |
+
|
16 |
+
if __name__ == '__main__':
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument('-d', '--data', type=str, required=True, help='path to the emotional dataset')
|
19 |
+
args = parser.parse_args()
|
20 |
+
dataset_path = args.data
|
21 |
+
filelists_path = 'filelists/all_spks/'
|
22 |
+
feats_scp_file = filelists_path + 'feats.scp'
|
23 |
+
feats_ark_file = filelists_path + 'feats.ark'
|
24 |
+
|
25 |
+
|
26 |
+
spks = ['1263201035', '805570882', '399172782']
|
27 |
+
train_files = []
|
28 |
+
eval_files = []
|
29 |
+
for spk in spks:
|
30 |
+
train_files += glob.glob(dataset_path + spk + "/train/*.wav")
|
31 |
+
eval_files += glob.glob(dataset_path + spk + "/eval/*.wav")
|
32 |
+
|
33 |
+
os.makedirs(filelists_path, exist_ok=True)
|
34 |
+
|
35 |
+
with open(filelists_path + 'train_utts.txt', 'w', encoding='utf-8') as f:
|
36 |
+
for wav_path in train_files:
|
37 |
+
wav_name = os.path.splitext(os.path.basename(wav_path))[0]
|
38 |
+
f.write(wav_name + '\n')
|
39 |
+
with open(filelists_path + 'eval_utts.txt', 'w', encoding='utf-8') as f:
|
40 |
+
for wav_path in eval_files:
|
41 |
+
wav_name = os.path.splitext(os.path.basename(wav_path))[0]
|
42 |
+
f.write(wav_name + '\n')
|
43 |
+
|
44 |
+
with open(feats_scp_file, 'w') as feats_scp, \
|
45 |
+
kaldiio.WriteHelper(f'ark,scp:{feats_ark_file},{feats_scp_file}') as writer:
|
46 |
+
for root, dirs, files in os.walk(dataset_path):
|
47 |
+
for file in tqdm(files):
|
48 |
+
if file.endswith('.wav'):
|
49 |
+
# Get the file name and relative path to the root folder
|
50 |
+
wav_path = os.path.join(root, file)
|
51 |
+
rel_path = os.path.relpath(wav_path, dataset_path)
|
52 |
+
wav_name = os.path.splitext(os.path.basename(wav_path))[0]
|
53 |
+
signal, rate = torchaudio.load(wav_path)
|
54 |
+
spec = mel_spectrogram(signal, 1024, 80, 22050, 256,
|
55 |
+
1024, 0, 8000, center=False).squeeze()
|
56 |
+
# Write the features to feats.ark and feats.scp
|
57 |
+
writer[wav_name] = spec
|
58 |
+
|
59 |
+
|
60 |
+
emotions = [os.path.basename(x).split("_")[1] for x in glob.glob(dataset_path + '/**/**/*')]
|
61 |
+
emotions = sorted(set(emotions))
|
62 |
+
|
63 |
+
utt2spk = {}
|
64 |
+
utt2emo = {}
|
65 |
+
wavs = glob.glob(dataset_path + '**/**/*.wav')
|
66 |
+
for wav_path in tqdm(wavs):
|
67 |
+
wav_name = os.path.splitext(os.path.basename(wav_path))[0]
|
68 |
+
emotion = emotions.index(wav_name.split("_")[1])
|
69 |
+
if wav_path.split('/')[-3] == '1263201035':
|
70 |
+
spk = 0 ## labels should start with 0
|
71 |
+
elif wav_path.split('/')[-3] == '805570882':
|
72 |
+
spk = 1
|
73 |
+
else:
|
74 |
+
spk = 2
|
75 |
+
utt2spk[wav_name] = str(spk)
|
76 |
+
utt2emo[wav_name] = str(emotion)
|
77 |
+
utt2spk = dict(sorted(utt2spk.items()))
|
78 |
+
utt2emo = dict(sorted(utt2emo.items()))
|
79 |
+
|
80 |
+
with open(filelists_path + 'utt2emo.json', 'w') as fp:
|
81 |
+
json.dump(utt2emo, fp, indent=4)
|
82 |
+
with open(filelists_path + 'utt2spk.json', 'w') as fp:
|
83 |
+
json.dump(utt2spk, fp, indent=4)
|
84 |
+
|
85 |
+
txt_files = sorted(glob.glob(dataset_path + '/**/**/*.txt'))
|
86 |
+
count = 0
|
87 |
+
txt = []
|
88 |
+
basenames = []
|
89 |
+
utt2text = {}
|
90 |
+
flag = False
|
91 |
+
with open(filelists_path + 'text', 'w', encoding='utf-8') as write:
|
92 |
+
for txt_path in txt_files:
|
93 |
+
basename = os.path.basename(txt_path).replace('.txt', '')
|
94 |
+
with open(txt_path, 'r', encoding='utf-8') as f:
|
95 |
+
txt.append(_clean_text(f.read().strip("\n"), cleaner_names=["kazakh_cleaners"]).replace("'", ""))
|
96 |
+
basenames.append(basename)
|
97 |
+
output_string = [re.sub('(\d+)', lambda m: num2words(m.group(), lang='kz'), sentence) for sentence in txt]
|
98 |
+
cleaned_txt = []
|
99 |
+
for t in output_string:
|
100 |
+
cleaned_txt.append(''.join([s for s in t if s in symbols]))
|
101 |
+
utt2text = {basenames[i]: cleaned_txt[i] for i in range(len(cleaned_txt))}
|
102 |
+
utt2text = dict(sorted(utt2text.items()))
|
103 |
+
|
104 |
+
vocab = set()
|
105 |
+
with open(filelists_path + '/text', 'w', encoding='utf-8') as f:
|
106 |
+
for x, y in utt2text.items():
|
107 |
+
for c in y: vocab.add(c)
|
108 |
+
f.write(x + ' ' + y + '\n')
|
env.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
|
5 |
+
class AttrDict(dict):
|
6 |
+
def __init__(self, *args, **kwargs):
|
7 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
8 |
+
self.__dict__ = self
|
9 |
+
|
10 |
+
|
11 |
+
def build_env(config, config_name, path):
|
12 |
+
t_path = os.path.join(path, config_name)
|
13 |
+
if config != t_path:
|
14 |
+
os.makedirs(path, exist_ok=True)
|
15 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
filelists/all_spks/eval_utts.txt
ADDED
@@ -0,0 +1,3730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1263201035_surprise_47861
|
2 |
+
1263201035_angry_49695
|
3 |
+
1263201035_happy_52657
|
4 |
+
1263201035_surprise_40339
|
5 |
+
1263201035_angry_7782
|
6 |
+
1263201035_sad_48693
|
7 |
+
1263201035_happy_50748
|
8 |
+
1263201035_fear_53711
|
9 |
+
1263201035_sad_73370
|
10 |
+
1263201035_surprise_40186
|
11 |
+
1263201035_neutral_40342
|
12 |
+
1263201035_happy_66930
|
13 |
+
1263201035_fear_67139
|
14 |
+
1263201035_angry_66597
|
15 |
+
1263201035_sad_11219
|
16 |
+
1263201035_neutral_53029
|
17 |
+
1263201035_sad_51009
|
18 |
+
1263201035_happy_31206
|
19 |
+
1263201035_fear_34063
|
20 |
+
1263201035_neutral_75999
|
21 |
+
1263201035_angry_33304
|
22 |
+
1263201035_angry_33668
|
23 |
+
1263201035_angry_29852
|
24 |
+
1263201035_sad_73176
|
25 |
+
1263201035_fear_8425
|
26 |
+
1263201035_fear_40145
|
27 |
+
1263201035_sad_73359
|
28 |
+
1263201035_sad_31284
|
29 |
+
1263201035_fear_49804
|
30 |
+
1263201035_fear_30407
|
31 |
+
1263201035_surprise_66220
|
32 |
+
1263201035_angry_49725
|
33 |
+
1263201035_angry_75638
|
34 |
+
1263201035_neutral_67147
|
35 |
+
1263201035_angry_34047
|
36 |
+
1263201035_surprise_51008
|
37 |
+
1263201035_fear_40255
|
38 |
+
1263201035_happy_40037
|
39 |
+
1263201035_sad_40178
|
40 |
+
1263201035_sad_49944
|
41 |
+
1263201035_neutral_52556
|
42 |
+
1263201035_sad_32732
|
43 |
+
1263201035_angry_67696
|
44 |
+
1263201035_neutral_52335
|
45 |
+
1263201035_surprise_33940
|
46 |
+
1263201035_surprise_31598
|
47 |
+
1263201035_happy_33813
|
48 |
+
1263201035_happy_52477
|
49 |
+
1263201035_neutral_8508
|
50 |
+
1263201035_happy_22572
|
51 |
+
1263201035_neutral_34101
|
52 |
+
1263201035_happy_4851
|
53 |
+
1263201035_angry_33831
|
54 |
+
1263201035_happy_47841
|
55 |
+
1263201035_angry_48038
|
56 |
+
1263201035_angry_4986
|
57 |
+
1263201035_surprise_29809
|
58 |
+
1263201035_sad_8464
|
59 |
+
1263201035_fear_47763
|
60 |
+
1263201035_happy_29035
|
61 |
+
1263201035_fear_16121
|
62 |
+
1263201035_neutral_4901
|
63 |
+
1263201035_surprise_51233
|
64 |
+
1263201035_sad_33897
|
65 |
+
1263201035_happy_50855
|
66 |
+
1263201035_neutral_31468
|
67 |
+
1263201035_happy_5320
|
68 |
+
1263201035_neutral_66915
|
69 |
+
1263201035_sad_67518
|
70 |
+
1263201035_sad_5335
|
71 |
+
1263201035_sad_52022
|
72 |
+
1263201035_neutral_42295
|
73 |
+
1263201035_happy_63621
|
74 |
+
1263201035_happy_40137
|
75 |
+
1263201035_happy_33655
|
76 |
+
1263201035_neutral_66444
|
77 |
+
1263201035_fear_66382
|
78 |
+
1263201035_surprise_72795
|
79 |
+
1263201035_happy_30297
|
80 |
+
1263201035_angry_8319
|
81 |
+
1263201035_neutral_65132
|
82 |
+
1263201035_happy_31356
|
83 |
+
1263201035_neutral_39066
|
84 |
+
1263201035_surprise_47951
|
85 |
+
1263201035_happy_33626
|
86 |
+
1263201035_sad_50658
|
87 |
+
1263201035_sad_53223
|
88 |
+
1263201035_happy_30012
|
89 |
+
1263201035_fear_40340
|
90 |
+
1263201035_angry_15112
|
91 |
+
1263201035_happy_67544
|
92 |
+
1263201035_happy_51390
|
93 |
+
1263201035_angry_51499
|
94 |
+
1263201035_sad_29077
|
95 |
+
1263201035_angry_75293
|
96 |
+
1263201035_angry_16061
|
97 |
+
1263201035_surprise_47777
|
98 |
+
1263201035_happy_72797
|
99 |
+
1263201035_angry_30428
|
100 |
+
1263201035_neutral_53208
|
101 |
+
1263201035_angry_53197
|
102 |
+
1263201035_happy_75643
|
103 |
+
1263201035_neutral_10824
|
104 |
+
1263201035_happy_49642
|
105 |
+
1263201035_surprise_29714
|
106 |
+
1263201035_sad_50636
|
107 |
+
1263201035_happy_10510
|
108 |
+
1263201035_sad_33891
|
109 |
+
1263201035_happy_52624
|
110 |
+
1263201035_neutral_67354
|
111 |
+
1263201035_angry_48056
|
112 |
+
1263201035_surprise_75526
|
113 |
+
1263201035_sad_75797
|
114 |
+
1263201035_fear_4619
|
115 |
+
1263201035_fear_67891
|
116 |
+
1263201035_sad_31528
|
117 |
+
1263201035_happy_32640
|
118 |
+
1263201035_neutral_4164
|
119 |
+
1263201035_neutral_8352
|
120 |
+
1263201035_surprise_50242
|
121 |
+
1263201035_sad_4376
|
122 |
+
1263201035_sad_50810
|
123 |
+
1263201035_neutral_51154
|
124 |
+
1263201035_neutral_4966
|
125 |
+
1263201035_fear_49929
|
126 |
+
1263201035_angry_53663
|
127 |
+
1263201035_angry_38901
|
128 |
+
1263201035_surprise_9306
|
129 |
+
1263201035_surprise_29785
|
130 |
+
1263201035_angry_32730
|
131 |
+
1263201035_happy_30869
|
132 |
+
1263201035_angry_75682
|
133 |
+
1263201035_happy_75952
|
134 |
+
1263201035_fear_4576
|
135 |
+
1263201035_neutral_63328
|
136 |
+
1263201035_fear_50244
|
137 |
+
1263201035_surprise_51865
|
138 |
+
1263201035_fear_22543
|
139 |
+
1263201035_angry_73324
|
140 |
+
1263201035_sad_72922
|
141 |
+
1263201035_fear_29157
|
142 |
+
1263201035_fear_31299
|
143 |
+
1263201035_neutral_38837
|
144 |
+
1263201035_neutral_29108
|
145 |
+
1263201035_neutral_52324
|
146 |
+
1263201035_neutral_5031
|
147 |
+
1263201035_surprise_75767
|
148 |
+
1263201035_surprise_52615
|
149 |
+
1263201035_happy_39662
|
150 |
+
1263201035_neutral_30912
|
151 |
+
1263201035_fear_72966
|
152 |
+
1263201035_neutral_39697
|
153 |
+
1263201035_happy_29865
|
154 |
+
1263201035_sad_52970
|
155 |
+
1263201035_sad_53429
|
156 |
+
1263201035_angry_38884
|
157 |
+
1263201035_surprise_66140
|
158 |
+
1263201035_angry_39846
|
159 |
+
1263201035_happy_10659
|
160 |
+
1263201035_happy_40112
|
161 |
+
1263201035_neutral_7703
|
162 |
+
1263201035_happy_32874
|
163 |
+
1263201035_fear_63714
|
164 |
+
1263201035_sad_53877
|
165 |
+
1263201035_fear_5013
|
166 |
+
1263201035_fear_29773
|
167 |
+
1263201035_happy_5066
|
168 |
+
1263201035_sad_38392
|
169 |
+
1263201035_surprise_39435
|
170 |
+
1263201035_angry_32501
|
171 |
+
1263201035_angry_73202
|
172 |
+
1263201035_sad_11121
|
173 |
+
1263201035_angry_66478
|
174 |
+
1263201035_angry_75908
|
175 |
+
1263201035_happy_9694
|
176 |
+
1263201035_surprise_11194
|
177 |
+
1263201035_sad_5051
|
178 |
+
1263201035_angry_32308
|
179 |
+
1263201035_surprise_5246
|
180 |
+
1263201035_angry_74571
|
181 |
+
1263201035_angry_75150
|
182 |
+
1263201035_angry_16113
|
183 |
+
1263201035_neutral_30884
|
184 |
+
1263201035_surprise_33211
|
185 |
+
1263201035_happy_5227
|
186 |
+
1263201035_fear_15372
|
187 |
+
1263201035_surprise_32862
|
188 |
+
1263201035_neutral_53264
|
189 |
+
1263201035_fear_66575
|
190 |
+
1263201035_neutral_50966
|
191 |
+
1263201035_angry_39916
|
192 |
+
1263201035_happy_63102
|
193 |
+
1263201035_surprise_51553
|
194 |
+
1263201035_angry_39384
|
195 |
+
1263201035_angry_15549
|
196 |
+
1263201035_angry_33817
|
197 |
+
1263201035_angry_10574
|
198 |
+
1263201035_neutral_52331
|
199 |
+
1263201035_sad_33469
|
200 |
+
1263201035_fear_52564
|
201 |
+
1263201035_fear_8481
|
202 |
+
1263201035_sad_10794
|
203 |
+
1263201035_fear_12090
|
204 |
+
1263201035_happy_31695
|
205 |
+
1263201035_sad_34144
|
206 |
+
1263201035_surprise_75196
|
207 |
+
1263201035_angry_30083
|
208 |
+
1263201035_surprise_22350
|
209 |
+
1263201035_happy_4269
|
210 |
+
1263201035_angry_29368
|
211 |
+
1263201035_happy_48044
|
212 |
+
1263201035_neutral_30394
|
213 |
+
1263201035_sad_74919
|
214 |
+
1263201035_sad_47862
|
215 |
+
1263201035_fear_73319
|
216 |
+
1263201035_sad_50492
|
217 |
+
1263201035_angry_53647
|
218 |
+
1263201035_angry_30492
|
219 |
+
1263201035_fear_51381
|
220 |
+
1263201035_neutral_72947
|
221 |
+
1263201035_sad_75433
|
222 |
+
1263201035_neutral_5895
|
223 |
+
1263201035_surprise_12083
|
224 |
+
1263201035_sad_67908
|
225 |
+
1263201035_surprise_39408
|
226 |
+
1263201035_sad_72934
|
227 |
+
1263201035_happy_66950
|
228 |
+
1263201035_happy_67808
|
229 |
+
1263201035_angry_32407
|
230 |
+
1263201035_sad_49959
|
231 |
+
1263201035_happy_51697
|
232 |
+
1263201035_fear_53931
|
233 |
+
1263201035_angry_67344
|
234 |
+
1263201035_sad_8541
|
235 |
+
1263201035_angry_32480
|
236 |
+
1263201035_happy_66906
|
237 |
+
1263201035_neutral_33447
|
238 |
+
1263201035_happy_32179
|
239 |
+
1263201035_neutral_30333
|
240 |
+
1263201035_fear_30788
|
241 |
+
1263201035_surprise_51693
|
242 |
+
1263201035_sad_51616
|
243 |
+
1263201035_neutral_52096
|
244 |
+
1263201035_angry_33956
|
245 |
+
1263201035_angry_66388
|
246 |
+
1263201035_fear_39108
|
247 |
+
1263201035_surprise_63535
|
248 |
+
1263201035_surprise_50326
|
249 |
+
1263201035_neutral_5142
|
250 |
+
1263201035_neutral_30199
|
251 |
+
1263201035_surprise_75829
|
252 |
+
1263201035_surprise_5900
|
253 |
+
1263201035_neutral_39387
|
254 |
+
1263201035_happy_10858
|
255 |
+
1263201035_fear_52243
|
256 |
+
1263201035_neutral_52010
|
257 |
+
1263201035_angry_63199
|
258 |
+
1263201035_happy_49874
|
259 |
+
1263201035_angry_48000
|
260 |
+
1263201035_sad_8313
|
261 |
+
1263201035_happy_66343
|
262 |
+
1263201035_angry_63130
|
263 |
+
1263201035_neutral_32809
|
264 |
+
1263201035_sad_39396
|
265 |
+
1263201035_angry_22986
|
266 |
+
1263201035_neutral_42307
|
267 |
+
1263201035_angry_72815
|
268 |
+
1263201035_angry_67240
|
269 |
+
1263201035_surprise_47957
|
270 |
+
1263201035_angry_49812
|
271 |
+
1263201035_angry_65040
|
272 |
+
1263201035_neutral_50844
|
273 |
+
1263201035_happy_39561
|
274 |
+
1263201035_neutral_66254
|
275 |
+
1263201035_angry_4584
|
276 |
+
1263201035_fear_75581
|
277 |
+
1263201035_surprise_40034
|
278 |
+
1263201035_sad_32638
|
279 |
+
1263201035_angry_31511
|
280 |
+
1263201035_fear_40023
|
281 |
+
1263201035_angry_66319
|
282 |
+
1263201035_sad_7712
|
283 |
+
1263201035_sad_38422
|
284 |
+
1263201035_fear_49782
|
285 |
+
1263201035_happy_30429
|
286 |
+
1263201035_surprise_66374
|
287 |
+
1263201035_neutral_31308
|
288 |
+
1263201035_surprise_52893
|
289 |
+
1263201035_happy_34030
|
290 |
+
1263201035_sad_31258
|
291 |
+
1263201035_happy_17691
|
292 |
+
1263201035_happy_50449
|
293 |
+
1263201035_surprise_21744
|
294 |
+
1263201035_surprise_51942
|
295 |
+
1263201035_happy_29092
|
296 |
+
1263201035_angry_38434
|
297 |
+
1263201035_happy_30887
|
298 |
+
1263201035_neutral_40141
|
299 |
+
1263201035_neutral_73264
|
300 |
+
1263201035_angry_74880
|
301 |
+
1263201035_surprise_51396
|
302 |
+
1263201035_angry_31619
|
303 |
+
1263201035_neutral_50160
|
304 |
+
1263201035_happy_30843
|
305 |
+
1263201035_angry_66937
|
306 |
+
1263201035_surprise_48633
|
307 |
+
1263201035_neutral_50437
|
308 |
+
1263201035_fear_32622
|
309 |
+
1263201035_sad_33602
|
310 |
+
1263201035_sad_10693
|
311 |
+
1263201035_angry_30010
|
312 |
+
1263201035_sad_37431
|
313 |
+
1263201035_sad_53370
|
314 |
+
1263201035_sad_31638
|
315 |
+
1263201035_sad_5883
|
316 |
+
1263201035_sad_11196
|
317 |
+
1263201035_angry_33837
|
318 |
+
1263201035_neutral_15588
|
319 |
+
1263201035_fear_51092
|
320 |
+
1263201035_angry_12025
|
321 |
+
1263201035_neutral_31454
|
322 |
+
1263201035_surprise_51114
|
323 |
+
1263201035_angry_38674
|
324 |
+
1263201035_surprise_75241
|
325 |
+
1263201035_angry_51729
|
326 |
+
1263201035_surprise_51011
|
327 |
+
1263201035_angry_63670
|
328 |
+
1263201035_happy_4582
|
329 |
+
1263201035_sad_15132
|
330 |
+
1263201035_fear_74586
|
331 |
+
1263201035_neutral_22964
|
332 |
+
1263201035_neutral_66490
|
333 |
+
1263201035_angry_39989
|
334 |
+
1263201035_neutral_30098
|
335 |
+
1263201035_fear_33875
|
336 |
+
1263201035_surprise_73089
|
337 |
+
1263201035_angry_67716
|
338 |
+
1263201035_neutral_63424
|
339 |
+
1263201035_fear_31191
|
340 |
+
1263201035_happy_50178
|
341 |
+
1263201035_neutral_48535
|
342 |
+
1263201035_sad_29939
|
343 |
+
1263201035_surprise_52514
|
344 |
+
1263201035_surprise_14772
|
345 |
+
1263201035_neutral_33820
|
346 |
+
1263201035_neutral_51319
|
347 |
+
1263201035_fear_19112
|
348 |
+
1263201035_sad_30896
|
349 |
+
1263201035_angry_38773
|
350 |
+
1263201035_surprise_49855
|
351 |
+
1263201035_angry_67517
|
352 |
+
1263201035_sad_52937
|
353 |
+
1263201035_sad_34274
|
354 |
+
1263201035_angry_38860
|
355 |
+
1263201035_angry_67267
|
356 |
+
1263201035_fear_39004
|
357 |
+
1263201035_happy_38922
|
358 |
+
1263201035_surprise_32569
|
359 |
+
1263201035_happy_32071
|
360 |
+
1263201035_neutral_52193
|
361 |
+
1263201035_fear_40222
|
362 |
+
1263201035_sad_30995
|
363 |
+
1263201035_neutral_42293
|
364 |
+
1263201035_happy_48597
|
365 |
+
1263201035_fear_74644
|
366 |
+
1263201035_angry_4478
|
367 |
+
1263201035_fear_4473
|
368 |
+
1263201035_happy_52573
|
369 |
+
1263201035_happy_31639
|
370 |
+
1263201035_fear_67880
|
371 |
+
1263201035_fear_63680
|
372 |
+
1263201035_neutral_8662
|
373 |
+
1263201035_neutral_11011
|
374 |
+
1263201035_sad_51190
|
375 |
+
1263201035_angry_67476
|
376 |
+
1263201035_sad_66335
|
377 |
+
1263201035_neutral_38929
|
378 |
+
1263201035_surprise_4976
|
379 |
+
1263201035_surprise_4181
|
380 |
+
1263201035_angry_75223
|
381 |
+
1263201035_fear_51118
|
382 |
+
1263201035_fear_33610
|
383 |
+
1263201035_sad_73105
|
384 |
+
1263201035_sad_75988
|
385 |
+
1263201035_happy_52925
|
386 |
+
1263201035_surprise_73234
|
387 |
+
1263201035_fear_8574
|
388 |
+
1263201035_happy_10865
|
389 |
+
1263201035_neutral_42311
|
390 |
+
1263201035_sad_10413
|
391 |
+
1263201035_happy_30812
|
392 |
+
1263201035_neutral_29997
|
393 |
+
1263201035_neutral_10538
|
394 |
+
1263201035_happy_72962
|
395 |
+
1263201035_fear_32169
|
396 |
+
1263201035_sad_31600
|
397 |
+
1263201035_fear_51048
|
398 |
+
1263201035_happy_67949
|
399 |
+
1263201035_happy_15173
|
400 |
+
1263201035_surprise_39861
|
401 |
+
1263201035_sad_53536
|
402 |
+
1263201035_surprise_67765
|
403 |
+
1263201035_happy_39074
|
404 |
+
1263201035_neutral_50745
|
405 |
+
1263201035_surprise_52274
|
406 |
+
1263201035_angry_38765
|
407 |
+
1263201035_angry_33487
|
408 |
+
1263201035_neutral_73005
|
409 |
+
1263201035_fear_32574
|
410 |
+
1263201035_neutral_50283
|
411 |
+
1263201035_fear_74772
|
412 |
+
1263201035_angry_53856
|
413 |
+
1263201035_angry_53403
|
414 |
+
1263201035_sad_66511
|
415 |
+
1263201035_sad_31329
|
416 |
+
1263201035_surprise_75834
|
417 |
+
1263201035_sad_66349
|
418 |
+
1263201035_angry_38866
|
419 |
+
1263201035_angry_8642
|
420 |
+
1263201035_happy_4672
|
421 |
+
1263201035_neutral_30997
|
422 |
+
1263201035_neutral_51490
|
423 |
+
1263201035_happy_15567
|
424 |
+
1263201035_surprise_75842
|
425 |
+
1263201035_happy_40352
|
426 |
+
1263201035_happy_50029
|
427 |
+
1263201035_surprise_11414
|
428 |
+
1263201035_fear_73349
|
429 |
+
1263201035_neutral_53602
|
430 |
+
1263201035_neutral_72894
|
431 |
+
1263201035_surprise_75663
|
432 |
+
1263201035_surprise_53224
|
433 |
+
1263201035_happy_16039
|
434 |
+
1263201035_happy_30270
|
435 |
+
1263201035_sad_31155
|
436 |
+
1263201035_angry_5917
|
437 |
+
1263201035_angry_11185
|
438 |
+
1263201035_happy_50051
|
439 |
+
1263201035_angry_4802
|
440 |
+
1263201035_neutral_51275
|
441 |
+
1263201035_angry_10726
|
442 |
+
1263201035_angry_50739
|
443 |
+
1263201035_neutral_51548
|
444 |
+
1263201035_neutral_63465
|
445 |
+
1263201035_fear_4140
|
446 |
+
1263201035_happy_17671
|
447 |
+
1263201035_surprise_51062
|
448 |
+
1263201035_neutral_38910
|
449 |
+
1263201035_angry_33486
|
450 |
+
1263201035_surprise_19100
|
451 |
+
1263201035_neutral_67662
|
452 |
+
1263201035_happy_66974
|
453 |
+
1263201035_fear_51238
|
454 |
+
1263201035_angry_52782
|
455 |
+
1263201035_surprise_9292
|
456 |
+
1263201035_happy_51591
|
457 |
+
1263201035_neutral_66318
|
458 |
+
1263201035_sad_29226
|
459 |
+
1263201035_happy_51129
|
460 |
+
1263201035_fear_75378
|
461 |
+
1263201035_happy_39023
|
462 |
+
1263201035_neutral_39436
|
463 |
+
1263201035_fear_10860
|
464 |
+
1263201035_neutral_40155
|
465 |
+
1263201035_angry_32592
|
466 |
+
1263201035_angry_29315
|
467 |
+
1263201035_neutral_51084
|
468 |
+
1263201035_angry_50960
|
469 |
+
1263201035_fear_47808
|
470 |
+
1263201035_happy_8607
|
471 |
+
1263201035_sad_11327
|
472 |
+
1263201035_surprise_52222
|
473 |
+
1263201035_fear_29913
|
474 |
+
1263201035_sad_5146
|
475 |
+
1263201035_neutral_30035
|
476 |
+
1263201035_surprise_30070
|
477 |
+
1263201035_fear_75890
|
478 |
+
1263201035_surprise_73318
|
479 |
+
1263201035_sad_50046
|
480 |
+
1263201035_happy_52952
|
481 |
+
1263201035_surprise_38590
|
482 |
+
1263201035_neutral_53267
|
483 |
+
1263201035_sad_11090
|
484 |
+
1263201035_angry_51738
|
485 |
+
1263201035_surprise_22919
|
486 |
+
1263201035_happy_30616
|
487 |
+
1263201035_fear_29919
|
488 |
+
1263201035_angry_7795
|
489 |
+
1263201035_happy_47740
|
490 |
+
1263201035_surprise_61359
|
491 |
+
1263201035_angry_50154
|
492 |
+
1263201035_sad_38403
|
493 |
+
1263201035_angry_49747
|
494 |
+
1263201035_happy_8980
|
495 |
+
1263201035_neutral_29259
|
496 |
+
1263201035_happy_50894
|
497 |
+
1263201035_neutral_38427
|
498 |
+
1263201035_angry_32762
|
499 |
+
1263201035_fear_32611
|
500 |
+
1263201035_surprise_15625
|
501 |
+
1263201035_angry_5941
|
502 |
+
1263201035_surprise_4634
|
503 |
+
1263201035_happy_29902
|
504 |
+
1263201035_surprise_30956
|
505 |
+
1263201035_angry_29974
|
506 |
+
1263201035_angry_15543
|
507 |
+
1263201035_sad_34067
|
508 |
+
1263201035_angry_38994
|
509 |
+
1263201035_happy_31659
|
510 |
+
1263201035_sad_49751
|
511 |
+
1263201035_neutral_42323
|
512 |
+
1263201035_happy_15179
|
513 |
+
1263201035_neutral_42271
|
514 |
+
1263201035_surprise_33955
|
515 |
+
1263201035_surprise_29371
|
516 |
+
1263201035_happy_40384
|
517 |
+
1263201035_happy_67210
|
518 |
+
1263201035_surprise_50591
|
519 |
+
1263201035_surprise_10695
|
520 |
+
1263201035_fear_52784
|
521 |
+
1263201035_angry_31103
|
522 |
+
1263201035_neutral_33319
|
523 |
+
1263201035_surprise_67540
|
524 |
+
1263201035_sad_33438
|
525 |
+
1263201035_sad_34190
|
526 |
+
1263201035_angry_37389
|
527 |
+
1263201035_angry_67648
|
528 |
+
1263201035_sad_9261
|
529 |
+
1263201035_surprise_51613
|
530 |
+
1263201035_surprise_34010
|
531 |
+
1263201035_fear_52470
|
532 |
+
1263201035_surprise_75791
|
533 |
+
1263201035_sad_50236
|
534 |
+
1263201035_happy_21755
|
535 |
+
1263201035_happy_74631
|
536 |
+
1263201035_sad_10810
|
537 |
+
1263201035_angry_4649
|
538 |
+
1263201035_happy_10626
|
539 |
+
1263201035_angry_32304
|
540 |
+
1263201035_happy_32067
|
541 |
+
1263201035_happy_50837
|
542 |
+
1263201035_sad_75411
|
543 |
+
1263201035_fear_30475
|
544 |
+
1263201035_happy_32041
|
545 |
+
1263201035_happy_52415
|
546 |
+
1263201035_surprise_4047
|
547 |
+
1263201035_surprise_54005
|
548 |
+
1263201035_neutral_49754
|
549 |
+
1263201035_happy_29275
|
550 |
+
1263201035_neutral_50333
|
551 |
+
1263201035_fear_53725
|
552 |
+
1263201035_neutral_52524
|
553 |
+
1263201035_fear_50916
|
554 |
+
1263201035_fear_5315
|
555 |
+
1263201035_happy_52798
|
556 |
+
1263201035_neutral_52196
|
557 |
+
1263201035_happy_33938
|
558 |
+
1263201035_fear_33739
|
559 |
+
1263201035_angry_11462
|
560 |
+
1263201035_sad_51566
|
561 |
+
1263201035_happy_30105
|
562 |
+
1263201035_happy_11070
|
563 |
+
1263201035_sad_9305
|
564 |
+
1263201035_fear_39009
|
565 |
+
1263201035_neutral_39391
|
566 |
+
1263201035_neutral_10809
|
567 |
+
1263201035_angry_10619
|
568 |
+
1263201035_happy_30769
|
569 |
+
1263201035_sad_10930
|
570 |
+
1263201035_sad_39660
|
571 |
+
1263201035_sad_38761
|
572 |
+
1263201035_happy_52390
|
573 |
+
1263201035_happy_33704
|
574 |
+
1263201035_sad_10674
|
575 |
+
1263201035_happy_39114
|
576 |
+
1263201035_sad_63610
|
577 |
+
1263201035_angry_29236
|
578 |
+
1263201035_neutral_75306
|
579 |
+
1263201035_sad_49859
|
580 |
+
1263201035_happy_66954
|
581 |
+
1263201035_sad_4561
|
582 |
+
1263201035_neutral_67885
|
583 |
+
1263201035_surprise_49932
|
584 |
+
1263201035_fear_66572
|
585 |
+
1263201035_fear_40182
|
586 |
+
1263201035_fear_39663
|
587 |
+
1263201035_fear_33880
|
588 |
+
1263201035_happy_67859
|
589 |
+
1263201035_angry_33432
|
590 |
+
1263201035_surprise_38825
|
591 |
+
1263201035_angry_8461
|
592 |
+
1263201035_fear_38655
|
593 |
+
1263201035_neutral_65129
|
594 |
+
1263201035_surprise_30470
|
595 |
+
1263201035_neutral_67230
|
596 |
+
1263201035_surprise_50412
|
597 |
+
1263201035_fear_52299
|
598 |
+
1263201035_angry_47800
|
599 |
+
1263201035_surprise_66201
|
600 |
+
1263201035_surprise_50598
|
601 |
+
1263201035_fear_37415
|
602 |
+
1263201035_fear_38518
|
603 |
+
1263201035_angry_11491
|
604 |
+
1263201035_surprise_32608
|
605 |
+
1263201035_sad_34053
|
606 |
+
1263201035_neutral_51911
|
607 |
+
1263201035_angry_53184
|
608 |
+
1263201035_neutral_51589
|
609 |
+
1263201035_fear_67342
|
610 |
+
1263201035_surprise_52953
|
611 |
+
1263201035_sad_4605
|
612 |
+
1263201035_sad_73258
|
613 |
+
1263201035_neutral_66608
|
614 |
+
1263201035_angry_52674
|
615 |
+
1263201035_angry_67578
|
616 |
+
1263201035_sad_51155
|
617 |
+
1263201035_sad_4606
|
618 |
+
1263201035_angry_29223
|
619 |
+
1263201035_neutral_73013
|
620 |
+
1263201035_fear_52685
|
621 |
+
1263201035_neutral_5283
|
622 |
+
1263201035_sad_32334
|
623 |
+
1263201035_angry_75302
|
624 |
+
1263201035_happy_49920
|
625 |
+
1263201035_happy_54008
|
626 |
+
1263201035_neutral_67061
|
627 |
+
1263201035_sad_49797
|
628 |
+
1263201035_surprise_51156
|
629 |
+
1263201035_angry_8672
|
630 |
+
1263201035_happy_63096
|
631 |
+
1263201035_surprise_53457
|
632 |
+
1263201035_neutral_30327
|
633 |
+
1263201035_surprise_40375
|
634 |
+
1263201035_happy_10936
|
635 |
+
1263201035_surprise_52478
|
636 |
+
1263201035_fear_4357
|
637 |
+
1263201035_surprise_52205
|
638 |
+
1263201035_neutral_31415
|
639 |
+
1263201035_sad_53522
|
640 |
+
1263201035_fear_66924
|
641 |
+
1263201035_happy_47732
|
642 |
+
1263201035_surprise_50467
|
643 |
+
1263201035_surprise_48600
|
644 |
+
1263201035_happy_39388
|
645 |
+
1263201035_surprise_29915
|
646 |
+
1263201035_sad_5050
|
647 |
+
1263201035_surprise_75795
|
648 |
+
1263201035_sad_51383
|
649 |
+
1263201035_happy_4064
|
650 |
+
1263201035_fear_50726
|
651 |
+
1263201035_angry_63173
|
652 |
+
1263201035_happy_32433
|
653 |
+
1263201035_sad_10906
|
654 |
+
1263201035_sad_10473
|
655 |
+
1263201035_angry_4508
|
656 |
+
1263201035_sad_30183
|
657 |
+
1263201035_happy_51659
|
658 |
+
1263201035_fear_53855
|
659 |
+
1263201035_angry_31510
|
660 |
+
1263201035_sad_51020
|
661 |
+
1263201035_angry_53929
|
662 |
+
1263201035_sad_5950
|
663 |
+
1263201035_surprise_38767
|
664 |
+
1263201035_happy_53738
|
665 |
+
1263201035_sad_4135
|
666 |
+
1263201035_sad_49904
|
667 |
+
1263201035_happy_38638
|
668 |
+
1263201035_sad_30370
|
669 |
+
1263201035_surprise_51560
|
670 |
+
1263201035_sad_38692
|
671 |
+
1263201035_happy_74798
|
672 |
+
1263201035_neutral_51647
|
673 |
+
1263201035_surprise_4127
|
674 |
+
1263201035_neutral_10877
|
675 |
+
1263201035_fear_63567
|
676 |
+
1263201035_happy_47925
|
677 |
+
1263201035_neutral_51950
|
678 |
+
1263201035_angry_74630
|
679 |
+
1263201035_neutral_32506
|
680 |
+
1263201035_sad_49731
|
681 |
+
1263201035_neutral_51998
|
682 |
+
1263201035_angry_10616
|
683 |
+
1263201035_angry_30147
|
684 |
+
1263201035_happy_40011
|
685 |
+
1263201035_angry_74777
|
686 |
+
1263201035_happy_10970
|
687 |
+
1263201035_neutral_75328
|
688 |
+
1263201035_fear_75282
|
689 |
+
1263201035_neutral_29926
|
690 |
+
1263201035_surprise_72885
|
691 |
+
1263201035_sad_10480
|
692 |
+
1263201035_happy_50866
|
693 |
+
1263201035_neutral_67096
|
694 |
+
1263201035_happy_39940
|
695 |
+
1263201035_sad_67938
|
696 |
+
1263201035_fear_33987
|
697 |
+
1263201035_neutral_50587
|
698 |
+
1263201035_sad_39223
|
699 |
+
1263201035_sad_33473
|
700 |
+
1263201035_neutral_52616
|
701 |
+
1263201035_fear_52371
|
702 |
+
1263201035_sad_67174
|
703 |
+
1263201035_fear_15385
|
704 |
+
1263201035_fear_4320
|
705 |
+
1263201035_sad_39368
|
706 |
+
1263201035_angry_39609
|
707 |
+
1263201035_neutral_52836
|
708 |
+
1263201035_happy_5200
|
709 |
+
1263201035_angry_51696
|
710 |
+
1263201035_fear_50801
|
711 |
+
1263201035_surprise_53958
|
712 |
+
1263201035_surprise_4593
|
713 |
+
1263201035_surprise_53922
|
714 |
+
1263201035_fear_48016
|
715 |
+
1263201035_angry_38926
|
716 |
+
1263201035_fear_66482
|
717 |
+
1263201035_sad_5092
|
718 |
+
1263201035_fear_32490
|
719 |
+
1263201035_angry_39629
|
720 |
+
1263201035_neutral_52601
|
721 |
+
1263201035_angry_33507
|
722 |
+
1263201035_sad_34127
|
723 |
+
1263201035_surprise_12029
|
724 |
+
1263201035_surprise_42342
|
725 |
+
1263201035_neutral_29846
|
726 |
+
1263201035_fear_39213
|
727 |
+
1263201035_neutral_11120
|
728 |
+
1263201035_happy_39822
|
729 |
+
1263201035_fear_39381
|
730 |
+
1263201035_fear_39017
|
731 |
+
1263201035_happy_73224
|
732 |
+
1263201035_sad_61379
|
733 |
+
1263201035_happy_10957
|
734 |
+
1263201035_angry_51352
|
735 |
+
1263201035_fear_32160
|
736 |
+
1263201035_fear_74891
|
737 |
+
1263201035_surprise_66547
|
738 |
+
1263201035_fear_9627
|
739 |
+
1263201035_sad_22324
|
740 |
+
1263201035_fear_15666
|
741 |
+
1263201035_surprise_10849
|
742 |
+
1263201035_neutral_75450
|
743 |
+
1263201035_angry_15456
|
744 |
+
1263201035_angry_50370
|
745 |
+
1263201035_sad_47926
|
746 |
+
1263201035_surprise_74710
|
747 |
+
1263201035_surprise_37413
|
748 |
+
1263201035_fear_10891
|
749 |
+
1263201035_angry_67451
|
750 |
+
1263201035_angry_39127
|
751 |
+
1263201035_surprise_37430
|
752 |
+
1263201035_happy_75968
|
753 |
+
1263201035_fear_12057
|
754 |
+
1263201035_surprise_8355
|
755 |
+
1263201035_happy_32446
|
756 |
+
1263201035_angry_67687
|
757 |
+
1263201035_happy_11047
|
758 |
+
1263201035_happy_67814
|
759 |
+
1263201035_surprise_39356
|
760 |
+
1263201035_neutral_67629
|
761 |
+
1263201035_surprise_37426
|
762 |
+
1263201035_happy_39470
|
763 |
+
1263201035_neutral_63631
|
764 |
+
1263201035_happy_8625
|
765 |
+
1263201035_happy_4360
|
766 |
+
1263201035_neutral_4748
|
767 |
+
1263201035_neutral_30972
|
768 |
+
1263201035_angry_4056
|
769 |
+
1263201035_happy_75468
|
770 |
+
1263201035_surprise_50870
|
771 |
+
1263201035_sad_72913
|
772 |
+
1263201035_angry_75283
|
773 |
+
1263201035_angry_22399
|
774 |
+
1263201035_happy_11411
|
775 |
+
1263201035_fear_30712
|
776 |
+
1263201035_angry_67734
|
777 |
+
1263201035_fear_53207
|
778 |
+
1263201035_surprise_34014
|
779 |
+
1263201035_sad_32097
|
780 |
+
1263201035_surprise_32499
|
781 |
+
1263201035_angry_51841
|
782 |
+
1263201035_sad_48092
|
783 |
+
1263201035_angry_51604
|
784 |
+
1263201035_surprise_32639
|
785 |
+
1263201035_happy_29322
|
786 |
+
1263201035_angry_50800
|
787 |
+
1263201035_angry_38585
|
788 |
+
1263201035_sad_8663
|
789 |
+
1263201035_neutral_73055
|
790 |
+
1263201035_neutral_30175
|
791 |
+
1263201035_surprise_10746
|
792 |
+
1263201035_fear_67987
|
793 |
+
1263201035_neutral_38696
|
794 |
+
1263201035_happy_4111
|
795 |
+
1263201035_sad_53482
|
796 |
+
1263201035_neutral_67903
|
797 |
+
1263201035_happy_10908
|
798 |
+
1263201035_neutral_39744
|
799 |
+
1263201035_neutral_53926
|
800 |
+
1263201035_neutral_8659
|
801 |
+
1263201035_sad_29120
|
802 |
+
1263201035_surprise_50710
|
803 |
+
1263201035_fear_51120
|
804 |
+
1263201035_happy_4935
|
805 |
+
1263201035_angry_48072
|
806 |
+
1263201035_neutral_22526
|
807 |
+
1263201035_surprise_53727
|
808 |
+
1263201035_neutral_48696
|
809 |
+
1263201035_happy_11025
|
810 |
+
1263201035_fear_32724
|
811 |
+
1263201035_neutral_51717
|
812 |
+
1263201035_fear_67373
|
813 |
+
1263201035_surprise_47816
|
814 |
+
1263201035_surprise_4204
|
815 |
+
1263201035_angry_4557
|
816 |
+
1263201035_surprise_63522
|
817 |
+
1263201035_fear_51763
|
818 |
+
1263201035_angry_51357
|
819 |
+
1263201035_fear_52253
|
820 |
+
1263201035_sad_39630
|
821 |
+
1263201035_angry_67542
|
822 |
+
1263201035_neutral_52922
|
823 |
+
1263201035_sad_50038
|
824 |
+
1263201035_happy_21771
|
825 |
+
1263201035_fear_67007
|
826 |
+
1263201035_sad_52036
|
827 |
+
1263201035_happy_63404
|
828 |
+
1263201035_happy_38856
|
829 |
+
1263201035_happy_53465
|
830 |
+
1263201035_angry_10682
|
831 |
+
1263201035_neutral_38970
|
832 |
+
1263201035_happy_9683
|
833 |
+
1263201035_angry_29335
|
834 |
+
1263201035_neutral_66557
|
835 |
+
1263201035_angry_22385
|
836 |
+
1263201035_surprise_4495
|
837 |
+
1263201035_sad_53679
|
838 |
+
1263201035_sad_30850
|
839 |
+
1263201035_angry_30435
|
840 |
+
1263201035_happy_29127
|
841 |
+
1263201035_sad_39093
|
842 |
+
1263201035_surprise_10658
|
843 |
+
1263201035_fear_30336
|
844 |
+
1263201035_neutral_48079
|
845 |
+
1263201035_happy_50610
|
846 |
+
1263201035_fear_66556
|
847 |
+
1263201035_fear_49637
|
848 |
+
1263201035_sad_51215
|
849 |
+
1263201035_neutral_40024
|
850 |
+
1263201035_happy_52792
|
851 |
+
1263201035_sad_11119
|
852 |
+
1263201035_neutral_8440
|
853 |
+
1263201035_fear_50821
|
854 |
+
1263201035_fear_53650
|
855 |
+
1263201035_sad_53425
|
856 |
+
1263201035_angry_53700
|
857 |
+
1263201035_neutral_52044
|
858 |
+
1263201035_happy_22580
|
859 |
+
1263201035_fear_22364
|
860 |
+
1263201035_happy_8679
|
861 |
+
1263201035_sad_53988
|
862 |
+
1263201035_neutral_31413
|
863 |
+
1263201035_fear_40249
|
864 |
+
1263201035_sad_37440
|
865 |
+
1263201035_neutral_33742
|
866 |
+
1263201035_happy_31053
|
867 |
+
1263201035_neutral_8499
|
868 |
+
1263201035_angry_34247
|
869 |
+
1263201035_angry_11311
|
870 |
+
1263201035_surprise_39003
|
871 |
+
1263201035_neutral_52969
|
872 |
+
1263201035_fear_72869
|
873 |
+
1263201035_fear_7708
|
874 |
+
1263201035_angry_51363
|
875 |
+
1263201035_sad_30397
|
876 |
+
1263201035_surprise_34161
|
877 |
+
1263201035_surprise_53719
|
878 |
+
1263201035_surprise_12099
|
879 |
+
1263201035_fear_10556
|
880 |
+
1263201035_surprise_11037
|
881 |
+
1263201035_happy_39705
|
882 |
+
1263201035_happy_4830
|
883 |
+
1263201035_neutral_4293
|
884 |
+
1263201035_sad_52958
|
885 |
+
1263201035_surprise_29677
|
886 |
+
1263201035_fear_39159
|
887 |
+
1263201035_sad_72860
|
888 |
+
1263201035_angry_29082
|
889 |
+
1263201035_sad_39742
|
890 |
+
1263201035_sad_30599
|
891 |
+
1263201035_neutral_67199
|
892 |
+
1263201035_sad_40113
|
893 |
+
1263201035_neutral_39703
|
894 |
+
1263201035_surprise_34137
|
895 |
+
1263201035_angry_33762
|
896 |
+
1263201035_neutral_73037
|
897 |
+
1263201035_sad_11495
|
898 |
+
1263201035_happy_19082
|
899 |
+
1263201035_neutral_50490
|
900 |
+
1263201035_surprise_29721
|
901 |
+
1263201035_angry_40175
|
902 |
+
1263201035_sad_38404
|
903 |
+
1263201035_neutral_39049
|
904 |
+
1263201035_neutral_75185
|
905 |
+
1263201035_sad_32699
|
906 |
+
1263201035_neutral_53367
|
907 |
+
1263201035_happy_53621
|
908 |
+
1263201035_fear_38412
|
909 |
+
1263201035_sad_52229
|
910 |
+
1263201035_fear_52862
|
911 |
+
1263201035_happy_63544
|
912 |
+
1263201035_neutral_50509
|
913 |
+
1263201035_fear_10623
|
914 |
+
1263201035_surprise_51898
|
915 |
+
1263201035_angry_33174
|
916 |
+
1263201035_fear_67464
|
917 |
+
1263201035_angry_5344
|
918 |
+
1263201035_happy_73012
|
919 |
+
1263201035_fear_53813
|
920 |
+
1263201035_fear_50814
|
921 |
+
1263201035_happy_74686
|
922 |
+
1263201035_neutral_40154
|
923 |
+
1263201035_fear_11105
|
924 |
+
1263201035_surprise_39897
|
925 |
+
1263201035_surprise_53784
|
926 |
+
1263201035_sad_4579
|
927 |
+
1263201035_fear_50040
|
928 |
+
1263201035_angry_39231
|
929 |
+
1263201035_fear_63686
|
930 |
+
1263201035_angry_42327
|
931 |
+
1263201035_sad_75287
|
932 |
+
1263201035_neutral_73073
|
933 |
+
1263201035_surprise_39412
|
934 |
+
1263201035_sad_8361
|
935 |
+
1263201035_surprise_4093
|
936 |
+
1263201035_neutral_51817
|
937 |
+
1263201035_fear_52576
|
938 |
+
1263201035_fear_52801
|
939 |
+
1263201035_angry_73261
|
940 |
+
1263201035_surprise_51022
|
941 |
+
1263201035_surprise_52450
|
942 |
+
1263201035_happy_61374
|
943 |
+
1263201035_sad_15168
|
944 |
+
1263201035_neutral_5281
|
945 |
+
1263201035_sad_50045
|
946 |
+
1263201035_happy_11084
|
947 |
+
1263201035_neutral_15650
|
948 |
+
1263201035_fear_11348
|
949 |
+
1263201035_happy_30681
|
950 |
+
1263201035_surprise_67291
|
951 |
+
1263201035_sad_75590
|
952 |
+
1263201035_sad_22374
|
953 |
+
1263201035_happy_39178
|
954 |
+
1263201035_angry_50170
|
955 |
+
1263201035_neutral_50965
|
956 |
+
1263201035_surprise_30201
|
957 |
+
1263201035_sad_63504
|
958 |
+
1263201035_neutral_63609
|
959 |
+
1263201035_sad_29253
|
960 |
+
1263201035_sad_48656
|
961 |
+
1263201035_fear_30352
|
962 |
+
1263201035_angry_8474
|
963 |
+
1263201035_neutral_31460
|
964 |
+
1263201035_sad_10715
|
965 |
+
1263201035_fear_50105
|
966 |
+
1263201035_surprise_50213
|
967 |
+
1263201035_angry_40299
|
968 |
+
1263201035_surprise_74656
|
969 |
+
1263201035_happy_32652
|
970 |
+
1263201035_fear_32492
|
971 |
+
1263201035_happy_12024
|
972 |
+
1263201035_neutral_29155
|
973 |
+
1263201035_happy_74939
|
974 |
+
1263201035_fear_38953
|
975 |
+
1263201035_happy_8491
|
976 |
+
1263201035_fear_21711
|
977 |
+
1263201035_happy_5324
|
978 |
+
1263201035_angry_10738
|
979 |
+
1263201035_neutral_15651
|
980 |
+
1263201035_neutral_50824
|
981 |
+
1263201035_sad_53079
|
982 |
+
1263201035_surprise_30571
|
983 |
+
1263201035_fear_51556
|
984 |
+
1263201035_happy_52539
|
985 |
+
1263201035_neutral_8922
|
986 |
+
1263201035_fear_53631
|
987 |
+
1263201035_surprise_29318
|
988 |
+
1263201035_fear_15464
|
989 |
+
1263201035_neutral_8471
|
990 |
+
1263201035_sad_53722
|
991 |
+
1263201035_neutral_52716
|
992 |
+
1263201035_fear_39748
|
993 |
+
1263201035_surprise_32056
|
994 |
+
1263201035_sad_75441
|
995 |
+
1263201035_angry_15533
|
996 |
+
1263201035_sad_10515
|
997 |
+
1263201035_happy_5089
|
998 |
+
1263201035_happy_39815
|
999 |
+
1263201035_surprise_30818
|
1000 |
+
1263201035_sad_31068
|
1001 |
+
1263201035_surprise_52029
|
1002 |
+
1263201035_happy_8596
|
1003 |
+
1263201035_surprise_74604
|
1004 |
+
1263201035_angry_53024
|
1005 |
+
1263201035_angry_4343
|
1006 |
+
1263201035_sad_49994
|
1007 |
+
1263201035_neutral_61343
|
1008 |
+
1263201035_happy_52354
|
1009 |
+
1263201035_fear_63597
|
1010 |
+
1263201035_neutral_31698
|
1011 |
+
1263201035_happy_29320
|
1012 |
+
1263201035_neutral_74910
|
1013 |
+
1263201035_neutral_34222
|
1014 |
+
1263201035_fear_4507
|
1015 |
+
1263201035_fear_48560
|
1016 |
+
1263201035_angry_67619
|
1017 |
+
1263201035_sad_66395
|
1018 |
+
1263201035_fear_39996
|
1019 |
+
1263201035_angry_22530
|
1020 |
+
1263201035_surprise_30548
|
1021 |
+
1263201035_neutral_15605
|
1022 |
+
1263201035_surprise_63371
|
1023 |
+
1263201035_surprise_38823
|
1024 |
+
1263201035_surprise_74805
|
1025 |
+
1263201035_angry_67907
|
1026 |
+
1263201035_happy_75280
|
1027 |
+
1263201035_angry_63548
|
1028 |
+
1263201035_surprise_51948
|
1029 |
+
1263201035_angry_73214
|
1030 |
+
1263201035_happy_30300
|
1031 |
+
1263201035_happy_67102
|
1032 |
+
1263201035_neutral_49728
|
1033 |
+
1263201035_fear_72899
|
1034 |
+
1263201035_happy_48069
|
1035 |
+
1263201035_happy_48519
|
1036 |
+
1263201035_happy_61333
|
1037 |
+
1263201035_fear_66977
|
1038 |
+
1263201035_angry_10814
|
1039 |
+
1263201035_happy_48081
|
1040 |
+
1263201035_sad_75563
|
1041 |
+
1263201035_sad_53355
|
1042 |
+
1263201035_neutral_51098
|
1043 |
+
1263201035_neutral_74775
|
1044 |
+
1263201035_happy_67853
|
1045 |
+
1263201035_happy_31527
|
1046 |
+
1263201035_happy_8465
|
1047 |
+
1263201035_angry_66923
|
1048 |
+
1263201035_sad_50352
|
1049 |
+
1263201035_happy_39793
|
1050 |
+
1263201035_angry_66357
|
1051 |
+
1263201035_angry_48646
|
1052 |
+
1263201035_fear_40016
|
1053 |
+
1263201035_neutral_33407
|
1054 |
+
1263201035_angry_33749
|
1055 |
+
1263201035_surprise_53042
|
1056 |
+
1263201035_happy_72808
|
1057 |
+
1263201035_sad_51494
|
1058 |
+
1263201035_happy_50609
|
1059 |
+
1263201035_angry_49643
|
1060 |
+
1263201035_angry_50679
|
1061 |
+
1263201035_angry_50596
|
1062 |
+
1263201035_neutral_33504
|
1063 |
+
1263201035_neutral_31225
|
1064 |
+
1263201035_happy_4894
|
1065 |
+
1263201035_sad_63614
|
1066 |
+
1263201035_fear_75770
|
1067 |
+
1263201035_surprise_74857
|
1068 |
+
1263201035_fear_63685
|
1069 |
+
1263201035_fear_30893
|
1070 |
+
1263201035_happy_40166
|
1071 |
+
1263201035_fear_49690
|
1072 |
+
1263201035_neutral_67588
|
1073 |
+
1263201035_happy_49611
|
1074 |
+
1263201035_happy_32174
|
1075 |
+
1263201035_fear_29229
|
1076 |
+
1263201035_fear_5235
|
1077 |
+
1263201035_neutral_67976
|
1078 |
+
1263201035_angry_73084
|
1079 |
+
1263201035_neutral_75461
|
1080 |
+
1263201035_neutral_50528
|
1081 |
+
1263201035_angry_50770
|
1082 |
+
1263201035_happy_39706
|
1083 |
+
1263201035_surprise_75990
|
1084 |
+
1263201035_sad_51565
|
1085 |
+
1263201035_angry_52842
|
1086 |
+
1263201035_happy_67049
|
1087 |
+
1263201035_angry_32674
|
1088 |
+
1263201035_neutral_51873
|
1089 |
+
1263201035_angry_29853
|
1090 |
+
1263201035_neutral_4354
|
1091 |
+
1263201035_neutral_22436
|
1092 |
+
1263201035_fear_50720
|
1093 |
+
1263201035_surprise_61329
|
1094 |
+
1263201035_surprise_11261
|
1095 |
+
1263201035_sad_75848
|
1096 |
+
1263201035_sad_10699
|
1097 |
+
1263201035_angry_5123
|
1098 |
+
1263201035_fear_30592
|
1099 |
+
1263201035_fear_52675
|
1100 |
+
1263201035_happy_21738
|
1101 |
+
1263201035_sad_32243
|
1102 |
+
1263201035_sad_50072
|
1103 |
+
1263201035_angry_33455
|
1104 |
+
1263201035_neutral_52257
|
1105 |
+
1263201035_happy_31264
|
1106 |
+
1263201035_neutral_47904
|
1107 |
+
1263201035_surprise_53481
|
1108 |
+
1263201035_angry_52513
|
1109 |
+
1263201035_neutral_49974
|
1110 |
+
1263201035_happy_66913
|
1111 |
+
1263201035_surprise_29856
|
1112 |
+
1263201035_sad_52129
|
1113 |
+
1263201035_happy_21719
|
1114 |
+
1263201035_neutral_11030
|
1115 |
+
1263201035_neutral_50456
|
1116 |
+
1263201035_sad_48643
|
1117 |
+
1263201035_angry_9262
|
1118 |
+
1263201035_neutral_66143
|
1119 |
+
1263201035_surprise_75652
|
1120 |
+
1263201035_sad_30698
|
1121 |
+
1263201035_fear_75176
|
1122 |
+
1263201035_neutral_10977
|
1123 |
+
1263201035_neutral_39268
|
1124 |
+
1263201035_neutral_50285
|
1125 |
+
1263201035_neutral_39544
|
1126 |
+
1263201035_happy_32345
|
1127 |
+
1263201035_happy_30835
|
1128 |
+
1263201035_neutral_33950
|
1129 |
+
1263201035_angry_30278
|
1130 |
+
1263201035_happy_30273
|
1131 |
+
1263201035_happy_21756
|
1132 |
+
1263201035_neutral_73031
|
1133 |
+
1263201035_neutral_8546
|
1134 |
+
1263201035_surprise_73017
|
1135 |
+
1263201035_happy_66400
|
1136 |
+
1263201035_sad_31277
|
1137 |
+
1263201035_angry_22963
|
1138 |
+
1263201035_fear_66255
|
1139 |
+
1263201035_sad_29686
|
1140 |
+
1263201035_angry_52242
|
1141 |
+
1263201035_angry_11133
|
1142 |
+
1263201035_neutral_52828
|
1143 |
+
1263201035_surprise_16054
|
1144 |
+
1263201035_surprise_40191
|
1145 |
+
1263201035_sad_8419
|
1146 |
+
1263201035_sad_39968
|
1147 |
+
1263201035_neutral_8483
|
1148 |
+
1263201035_surprise_4264
|
1149 |
+
1263201035_fear_50230
|
1150 |
+
1263201035_angry_74736
|
1151 |
+
1263201035_surprise_32422
|
1152 |
+
1263201035_sad_32772
|
1153 |
+
1263201035_neutral_52947
|
1154 |
+
1263201035_sad_9273
|
1155 |
+
1263201035_happy_19086
|
1156 |
+
1263201035_happy_31004
|
1157 |
+
1263201035_sad_29151
|
1158 |
+
1263201035_angry_52912
|
1159 |
+
1263201035_sad_75398
|
1160 |
+
1263201035_angry_30187
|
1161 |
+
1263201035_surprise_22589
|
1162 |
+
1263201035_happy_30196
|
1163 |
+
1263201035_neutral_50272
|
1164 |
+
1263201035_surprise_67874
|
1165 |
+
1263201035_neutral_53547
|
1166 |
+
1263201035_sad_32095
|
1167 |
+
1263201035_fear_8954
|
1168 |
+
1263201035_surprise_38463
|
1169 |
+
1263201035_angry_4598
|
1170 |
+
1263201035_surprise_49615
|
1171 |
+
1263201035_sad_11282
|
1172 |
+
1263201035_fear_52581
|
1173 |
+
1263201035_surprise_31407
|
1174 |
+
1263201035_happy_31046
|
1175 |
+
1263201035_fear_33910
|
1176 |
+
1263201035_happy_63495
|
1177 |
+
1263201035_happy_30039
|
1178 |
+
1263201035_fear_40273
|
1179 |
+
1263201035_neutral_48080
|
1180 |
+
1263201035_surprise_32547
|
1181 |
+
1263201035_happy_50765
|
1182 |
+
1263201035_angry_50486
|
1183 |
+
1263201035_surprise_49764
|
1184 |
+
1263201035_happy_22920
|
1185 |
+
1263201035_neutral_32123
|
1186 |
+
1263201035_fear_39886
|
1187 |
+
1263201035_angry_10372
|
1188 |
+
1263201035_neutral_32294
|
1189 |
+
1263201035_happy_34162
|
1190 |
+
1263201035_surprise_51598
|
1191 |
+
1263201035_happy_49940
|
1192 |
+
1263201035_surprise_51929
|
1193 |
+
1263201035_happy_11369
|
1194 |
+
1263201035_fear_39832
|
1195 |
+
1263201035_angry_75741
|
1196 |
+
1263201035_sad_33423
|
1197 |
+
1263201035_angry_53479
|
1198 |
+
1263201035_fear_30130
|
1199 |
+
1263201035_neutral_53571
|
1200 |
+
1263201035_angry_49899
|
1201 |
+
1263201035_neutral_53474
|
1202 |
+
1263201035_surprise_75290
|
1203 |
+
1263201035_neutral_34254
|
1204 |
+
1263201035_neutral_51142
|
1205 |
+
1263201035_happy_17679
|
1206 |
+
1263201035_angry_39812
|
1207 |
+
1263201035_neutral_63663
|
1208 |
+
1263201035_fear_38451
|
1209 |
+
1263201035_happy_49941
|
1210 |
+
1263201035_surprise_32966
|
1211 |
+
1263201035_neutral_21763
|
1212 |
+
1263201035_surprise_19121
|
1213 |
+
1263201035_happy_31628
|
1214 |
+
1263201035_sad_29759
|
1215 |
+
1263201035_neutral_42335
|
1216 |
+
1263201035_happy_50507
|
1217 |
+
1263201035_surprise_75387
|
1218 |
+
1263201035_sad_39378
|
1219 |
+
1263201035_neutral_47967
|
1220 |
+
1263201035_fear_67521
|
1221 |
+
1263201035_sad_74885
|
1222 |
+
1263201035_surprise_40289
|
1223 |
+
1263201035_neutral_51735
|
1224 |
+
1263201035_neutral_52392
|
1225 |
+
1263201035_happy_67098
|
1226 |
+
1263201035_sad_11275
|
1227 |
+
1263201035_surprise_52919
|
1228 |
+
1263201035_surprise_52621
|
1229 |
+
1263201035_angry_11315
|
1230 |
+
1263201035_happy_38747
|
1231 |
+
1263201035_surprise_53653
|
1232 |
+
1263201035_happy_12056
|
1233 |
+
1263201035_neutral_11140
|
1234 |
+
1263201035_happy_39451
|
1235 |
+
1263201035_angry_15631
|
1236 |
+
1263201035_happy_29367
|
1237 |
+
1263201035_neutral_39607
|
1238 |
+
1263201035_surprise_63449
|
1239 |
+
1263201035_happy_16064
|
1240 |
+
1263201035_neutral_52837
|
1241 |
+
1263201035_surprise_40139
|
1242 |
+
1263201035_surprise_52982
|
1243 |
+
1263201035_sad_75831
|
1244 |
+
1263201035_surprise_4089
|
1245 |
+
1263201035_happy_33475
|
1246 |
+
1263201035_neutral_63551
|
1247 |
+
1263201035_angry_51373
|
1248 |
+
1263201035_surprise_32218
|
1249 |
+
1263201035_surprise_47731
|
1250 |
+
1263201035_angry_30846
|
1251 |
+
1263201035_happy_4517
|
1252 |
+
1263201035_sad_66406
|
1253 |
+
1263201035_neutral_66245
|
1254 |
+
1263201035_neutral_29757
|
1255 |
+
1263201035_fear_51975
|
1256 |
+
1263201035_neutral_33863
|
1257 |
+
1263201035_happy_32858
|
1258 |
+
1263201035_surprise_49925
|
1259 |
+
1263201035_fear_52563
|
1260 |
+
1263201035_neutral_39479
|
1261 |
+
1263201035_surprise_75967
|
1262 |
+
1263201035_neutral_73029
|
1263 |
+
1263201035_neutral_66247
|
1264 |
+
1263201035_surprise_49870
|
1265 |
+
1263201035_fear_29743
|
1266 |
+
1263201035_sad_32855
|
1267 |
+
1263201035_neutral_73239
|
1268 |
+
1263201035_neutral_42290
|
1269 |
+
1263201035_happy_49630
|
1270 |
+
1263201035_neutral_10406
|
1271 |
+
1263201035_fear_11309
|
1272 |
+
1263201035_sad_75808
|
1273 |
+
1263201035_surprise_50838
|
1274 |
+
1263201035_surprise_5135
|
1275 |
+
1263201035_surprise_38621
|
1276 |
+
1263201035_surprise_53225
|
1277 |
+
1263201035_neutral_31166
|
1278 |
+
1263201035_angry_66328
|
1279 |
+
1263201035_surprise_75594
|
1280 |
+
1263201035_happy_38487
|
1281 |
+
1263201035_surprise_66347
|
1282 |
+
1263201035_sad_49821
|
1283 |
+
1263201035_sad_38608
|
1284 |
+
1263201035_angry_50639
|
1285 |
+
1263201035_angry_72945
|
1286 |
+
1263201035_fear_53431
|
1287 |
+
1263201035_neutral_34239
|
1288 |
+
1263201035_neutral_14770
|
1289 |
+
1263201035_fear_31148
|
1290 |
+
1263201035_fear_66316
|
1291 |
+
1263201035_surprise_39983
|
1292 |
+
1263201035_neutral_73287
|
1293 |
+
1263201035_surprise_5045
|
1294 |
+
1263201035_angry_47908
|
1295 |
+
1263201035_fear_15109
|
1296 |
+
1263201035_neutral_40336
|
1297 |
+
1263201035_neutral_74641
|
1298 |
+
1263201035_surprise_4626
|
1299 |
+
1263201035_happy_38716
|
1300 |
+
1263201035_angry_52295
|
1301 |
+
1263201035_happy_4652
|
1302 |
+
1263201035_angry_34248
|
1303 |
+
1263201035_happy_49627
|
1304 |
+
1263201035_neutral_74738
|
1305 |
+
1263201035_neutral_75641
|
1306 |
+
1263201035_fear_8534
|
1307 |
+
1263201035_surprise_32292
|
1308 |
+
1263201035_surprise_8925
|
1309 |
+
1263201035_sad_30446
|
1310 |
+
1263201035_angry_8683
|
1311 |
+
1263201035_happy_65134
|
1312 |
+
1263201035_sad_75694
|
1313 |
+
1263201035_sad_9612
|
1314 |
+
1263201035_neutral_52400
|
1315 |
+
1263201035_fear_53500
|
1316 |
+
1263201035_surprise_32432
|
1317 |
+
1263201035_angry_33598
|
1318 |
+
1263201035_neutral_8594
|
1319 |
+
1263201035_happy_33634
|
1320 |
+
1263201035_sad_21752
|
1321 |
+
1263201035_fear_39499
|
1322 |
+
1263201035_happy_67085
|
1323 |
+
1263201035_angry_37435
|
1324 |
+
1263201035_neutral_30556
|
1325 |
+
1263201035_neutral_75609
|
1326 |
+
1263201035_surprise_31361
|
1327 |
+
1263201035_surprise_53792
|
1328 |
+
1263201035_sad_53994
|
1329 |
+
1263201035_neutral_75762
|
1330 |
+
1263201035_surprise_47742
|
1331 |
+
1263201035_sad_42334
|
1332 |
+
1263201035_sad_15165
|
1333 |
+
1263201035_fear_53975
|
1334 |
+
1263201035_angry_33597
|
1335 |
+
1263201035_happy_40059
|
1336 |
+
1263201035_angry_39229
|
1337 |
+
1263201035_sad_22405
|
1338 |
+
1263201035_sad_52287
|
1339 |
+
1263201035_surprise_53088
|
1340 |
+
1263201035_sad_33272
|
1341 |
+
1263201035_happy_15401
|
1342 |
+
1263201035_surprise_67149
|
1343 |
+
1263201035_angry_12030
|
1344 |
+
1263201035_fear_4892
|
1345 |
+
1263201035_happy_67525
|
1346 |
+
1263201035_happy_67269
|
1347 |
+
1263201035_sad_30193
|
1348 |
+
1263201035_sad_15695
|
1349 |
+
1263201035_surprise_32726
|
1350 |
+
1263201035_neutral_66239
|
1351 |
+
1263201035_happy_30784
|
1352 |
+
1263201035_angry_30596
|
1353 |
+
1263201035_happy_31525
|
1354 |
+
1263201035_sad_33907
|
1355 |
+
1263201035_angry_5185
|
1356 |
+
1263201035_neutral_47785
|
1357 |
+
1263201035_happy_39177
|
1358 |
+
1263201035_sad_47891
|
1359 |
+
1263201035_neutral_22577
|
1360 |
+
1263201035_neutral_75458
|
1361 |
+
1263201035_happy_40295
|
1362 |
+
1263201035_angry_49946
|
1363 |
+
1263201035_happy_38689
|
1364 |
+
1263201035_neutral_11015
|
1365 |
+
1263201035_neutral_49848
|
1366 |
+
1263201035_neutral_74879
|
1367 |
+
1263201035_sad_75525
|
1368 |
+
1263201035_fear_30439
|
1369 |
+
1263201035_angry_50534
|
1370 |
+
1263201035_neutral_22907
|
1371 |
+
1263201035_neutral_32594
|
1372 |
+
1263201035_sad_75409
|
1373 |
+
1263201035_surprise_33379
|
1374 |
+
1263201035_surprise_30802
|
1375 |
+
1263201035_neutral_30832
|
1376 |
+
1263201035_sad_10787
|
1377 |
+
1263201035_sad_19118
|
1378 |
+
1263201035_fear_32502
|
1379 |
+
1263201035_neutral_73193
|
1380 |
+
1263201035_angry_48064
|
1381 |
+
1263201035_fear_39971
|
1382 |
+
1263201035_neutral_38494
|
1383 |
+
1263201035_sad_16065
|
1384 |
+
1263201035_surprise_50463
|
1385 |
+
1263201035_happy_40235
|
1386 |
+
1263201035_neutral_74830
|
1387 |
+
1263201035_happy_50497
|
1388 |
+
1263201035_fear_40199
|
1389 |
+
1263201035_fear_15437
|
1390 |
+
1263201035_sad_51866
|
1391 |
+
1263201035_fear_51907
|
1392 |
+
1263201035_fear_52002
|
1393 |
+
1263201035_surprise_53699
|
1394 |
+
1263201035_fear_8298
|
1395 |
+
1263201035_fear_30662
|
1396 |
+
1263201035_fear_66463
|
1397 |
+
1263201035_angry_51570
|
1398 |
+
1263201035_surprise_31363
|
1399 |
+
1263201035_sad_63546
|
1400 |
+
1263201035_angry_8535
|
1401 |
+
1263201035_sad_66941
|
1402 |
+
1263201035_angry_40065
|
1403 |
+
1263201035_sad_30138
|
1404 |
+
1263201035_sad_40363
|
1405 |
+
1263201035_angry_29132
|
1406 |
+
1263201035_sad_4233
|
1407 |
+
1263201035_neutral_11263
|
1408 |
+
1263201035_sad_8634
|
1409 |
+
1263201035_surprise_30036
|
1410 |
+
1263201035_happy_30849
|
1411 |
+
1263201035_angry_10458
|
1412 |
+
1263201035_surprise_50205
|
1413 |
+
1263201035_happy_5925
|
1414 |
+
1263201035_neutral_75434
|
1415 |
+
1263201035_neutral_30555
|
1416 |
+
1263201035_angry_29949
|
1417 |
+
1263201035_fear_74642
|
1418 |
+
1263201035_fear_67495
|
1419 |
+
1263201035_sad_39233
|
1420 |
+
1263201035_sad_15136
|
1421 |
+
1263201035_sad_51463
|
1422 |
+
1263201035_angry_29747
|
1423 |
+
1263201035_angry_67176
|
1424 |
+
1263201035_neutral_33905
|
1425 |
+
1263201035_happy_29842
|
1426 |
+
1263201035_angry_66451
|
1427 |
+
1263201035_happy_33323
|
1428 |
+
1263201035_fear_50493
|
1429 |
+
1263201035_sad_51559
|
1430 |
+
1263201035_surprise_53746
|
1431 |
+
1263201035_angry_32509
|
1432 |
+
1263201035_angry_72799
|
1433 |
+
1263201035_sad_52967
|
1434 |
+
1263201035_surprise_32354
|
1435 |
+
1263201035_angry_22984
|
1436 |
+
1263201035_angry_75319
|
1437 |
+
1263201035_sad_31636
|
1438 |
+
1263201035_fear_47837
|
1439 |
+
1263201035_angry_21669
|
1440 |
+
1263201035_neutral_21725
|
1441 |
+
1263201035_sad_50777
|
1442 |
+
1263201035_surprise_17722
|
1443 |
+
1263201035_surprise_9679
|
1444 |
+
1263201035_angry_75278
|
1445 |
+
1263201035_fear_29045
|
1446 |
+
1263201035_neutral_38636
|
1447 |
+
1263201035_happy_30936
|
1448 |
+
1263201035_sad_8975
|
1449 |
+
1263201035_neutral_72984
|
1450 |
+
1263201035_surprise_29121
|
1451 |
+
1263201035_sad_31007
|
1452 |
+
1263201035_surprise_50325
|
1453 |
+
1263201035_neutral_8276
|
1454 |
+
1263201035_happy_53596
|
1455 |
+
1263201035_angry_29719
|
1456 |
+
1263201035_sad_10950
|
1457 |
+
1263201035_neutral_10925
|
1458 |
+
1263201035_fear_50809
|
1459 |
+
1263201035_happy_67625
|
1460 |
+
1263201035_fear_53014
|
1461 |
+
1263201035_neutral_10427
|
1462 |
+
1263201035_neutral_31146
|
1463 |
+
1263201035_neutral_53604
|
1464 |
+
1263201035_happy_51750
|
1465 |
+
1263201035_angry_4136
|
1466 |
+
1263201035_sad_50211
|
1467 |
+
1263201035_fear_49998
|
1468 |
+
1263201035_fear_74646
|
1469 |
+
1263201035_happy_50637
|
1470 |
+
1263201035_neutral_66955
|
1471 |
+
1263201035_neutral_67816
|
1472 |
+
1263201035_surprise_50148
|
1473 |
+
1263201035_fear_15425
|
1474 |
+
1263201035_fear_51563
|
1475 |
+
1263201035_surprise_48055
|
1476 |
+
1263201035_fear_11496
|
1477 |
+
1263201035_fear_4931
|
1478 |
+
1263201035_surprise_30442
|
1479 |
+
1263201035_happy_39465
|
1480 |
+
1263201035_fear_52327
|
1481 |
+
1263201035_happy_29118
|
1482 |
+
1263201035_surprise_30052
|
1483 |
+
1263201035_surprise_31501
|
1484 |
+
1263201035_sad_30962
|
1485 |
+
1263201035_sad_50753
|
1486 |
+
1263201035_surprise_53247
|
1487 |
+
1263201035_happy_67228
|
1488 |
+
1263201035_surprise_39670
|
1489 |
+
1263201035_neutral_33743
|
1490 |
+
1263201035_neutral_30148
|
1491 |
+
1263201035_sad_52140
|
1492 |
+
1263201035_sad_15545
|
1493 |
+
1263201035_surprise_52726
|
1494 |
+
1263201035_neutral_34187
|
1495 |
+
1263201035_happy_50068
|
1496 |
+
1263201035_happy_7787
|
1497 |
+
1263201035_happy_22360
|
1498 |
+
1263201035_neutral_51444
|
1499 |
+
1263201035_sad_47856
|
1500 |
+
1263201035_happy_67717
|
1501 |
+
1263201035_neutral_31494
|
1502 |
+
1263201035_angry_52974
|
1503 |
+
1263201035_sad_40028
|
1504 |
+
1263201035_happy_32949
|
1505 |
+
1263201035_sad_73025
|
1506 |
+
1263201035_sad_75547
|
1507 |
+
1263201035_neutral_37402
|
1508 |
+
1263201035_angry_39221
|
1509 |
+
1263201035_happy_22353
|
1510 |
+
1263201035_fear_33457
|
1511 |
+
1263201035_surprise_39582
|
1512 |
+
1263201035_happy_39796
|
1513 |
+
1263201035_angry_31679
|
1514 |
+
1263201035_surprise_38690
|
1515 |
+
1263201035_happy_38486
|
1516 |
+
1263201035_surprise_48682
|
1517 |
+
1263201035_surprise_53326
|
1518 |
+
1263201035_happy_52683
|
1519 |
+
1263201035_happy_15155
|
1520 |
+
1263201035_fear_38991
|
1521 |
+
1263201035_sad_11136
|
1522 |
+
1263201035_fear_4899
|
1523 |
+
1263201035_angry_29131
|
1524 |
+
1263201035_surprise_32403
|
1525 |
+
1263201035_surprise_39789
|
1526 |
+
1263201035_sad_33493
|
1527 |
+
1263201035_happy_31444
|
1528 |
+
1263201035_fear_15099
|
1529 |
+
1263201035_surprise_63711
|
1530 |
+
1263201035_fear_29954
|
1531 |
+
1263201035_angry_51225
|
1532 |
+
1263201035_happy_32396
|
1533 |
+
1263201035_happy_63255
|
1534 |
+
1263201035_happy_52343
|
1535 |
+
1263201035_fear_50385
|
1536 |
+
1263201035_sad_15188
|
1537 |
+
1263201035_happy_11314
|
1538 |
+
1263201035_surprise_30250
|
1539 |
+
1263201035_angry_5068
|
1540 |
+
1263201035_fear_16047
|
1541 |
+
1263201035_angry_53992
|
1542 |
+
1263201035_angry_51230
|
1543 |
+
1263201035_neutral_47844
|
1544 |
+
1263201035_neutral_51857
|
1545 |
+
1263201035_fear_11301
|
1546 |
+
1263201035_angry_73047
|
1547 |
+
1263201035_surprise_52813
|
1548 |
+
1263201035_angry_38888
|
1549 |
+
1263201035_fear_67850
|
1550 |
+
1263201035_surprise_52686
|
1551 |
+
1263201035_happy_73172
|
1552 |
+
1263201035_surprise_48507
|
1553 |
+
1263201035_angry_11009
|
1554 |
+
1263201035_angry_72928
|
1555 |
+
1263201035_neutral_22957
|
1556 |
+
1263201035_happy_9596
|
1557 |
+
1263201035_sad_38634
|
1558 |
+
1263201035_neutral_4752
|
1559 |
+
1263201035_surprise_17705
|
1560 |
+
1263201035_fear_32444
|
1561 |
+
1263201035_sad_63543
|
1562 |
+
1263201035_angry_11435
|
1563 |
+
1263201035_neutral_39724
|
1564 |
+
1263201035_sad_31255
|
1565 |
+
1263201035_sad_67185
|
1566 |
+
1263201035_happy_48649
|
1567 |
+
1263201035_happy_67035
|
1568 |
+
1263201035_neutral_10972
|
1569 |
+
1263201035_angry_50243
|
1570 |
+
1263201035_angry_39596
|
1571 |
+
1263201035_surprise_39782
|
1572 |
+
1263201035_neutral_10912
|
1573 |
+
1263201035_neutral_63286
|
1574 |
+
1263201035_sad_32040
|
1575 |
+
1263201035_angry_75388
|
1576 |
+
1263201035_surprise_53393
|
1577 |
+
1263201035_fear_32919
|
1578 |
+
1263201035_happy_10937
|
1579 |
+
1263201035_neutral_5022
|
1580 |
+
1263201035_neutral_50339
|
1581 |
+
1263201035_fear_38619
|
1582 |
+
1263201035_surprise_4880
|
1583 |
+
1263201035_neutral_51756
|
1584 |
+
1263201035_surprise_22917
|
1585 |
+
1263201035_angry_22444
|
1586 |
+
1263201035_neutral_40183
|
1587 |
+
1263201035_sad_53448
|
1588 |
+
1263201035_sad_34016
|
1589 |
+
1263201035_angry_50025
|
1590 |
+
1263201035_happy_31648
|
1591 |
+
1263201035_sad_63638
|
1592 |
+
1263201035_neutral_15674
|
1593 |
+
1263201035_happy_34278
|
1594 |
+
1263201035_surprise_38615
|
1595 |
+
1263201035_happy_67156
|
1596 |
+
1263201035_angry_32512
|
1597 |
+
1263201035_neutral_67005
|
1598 |
+
1263201035_fear_53534
|
1599 |
+
1263201035_fear_7796
|
1600 |
+
1263201035_neutral_37423
|
1601 |
+
1263201035_angry_51300
|
1602 |
+
1263201035_neutral_33853
|
1603 |
+
1263201035_sad_67241
|
1604 |
+
1263201035_happy_33310
|
1605 |
+
1263201035_angry_33421
|
1606 |
+
1263201035_surprise_52863
|
1607 |
+
1263201035_sad_11325
|
1608 |
+
1263201035_fear_10391
|
1609 |
+
1263201035_angry_63162
|
1610 |
+
1263201035_happy_29976
|
1611 |
+
1263201035_angry_37386
|
1612 |
+
1263201035_fear_74728
|
1613 |
+
1263201035_neutral_30552
|
1614 |
+
1263201035_angry_67461
|
1615 |
+
1263201035_happy_53967
|
1616 |
+
1263201035_fear_38672
|
1617 |
+
1263201035_happy_39237
|
1618 |
+
1263201035_surprise_51769
|
1619 |
+
1263201035_neutral_50987
|
1620 |
+
1263201035_angry_30494
|
1621 |
+
1263201035_sad_53352
|
1622 |
+
1263201035_happy_67582
|
1623 |
+
1263201035_happy_53572
|
1624 |
+
1263201035_neutral_32151
|
1625 |
+
1263201035_angry_29274
|
1626 |
+
1263201035_fear_52319
|
1627 |
+
1263201035_sad_51481
|
1628 |
+
1263201035_surprise_15779
|
1629 |
+
1263201035_surprise_32105
|
1630 |
+
1263201035_surprise_32967
|
1631 |
+
1263201035_neutral_30949
|
1632 |
+
1263201035_angry_34062
|
1633 |
+
1263201035_angry_50057
|
1634 |
+
1263201035_happy_4502
|
1635 |
+
1263201035_angry_11318
|
1636 |
+
1263201035_angry_73146
|
1637 |
+
1263201035_neutral_73275
|
1638 |
+
1263201035_fear_47776
|
1639 |
+
1263201035_neutral_39625
|
1640 |
+
1263201035_surprise_66337
|
1641 |
+
1263201035_fear_48617
|
1642 |
+
1263201035_fear_65128
|
1643 |
+
1263201035_neutral_33851
|
1644 |
+
1263201035_fear_29675
|
1645 |
+
1263201035_fear_66334
|
1646 |
+
1263201035_fear_37398
|
1647 |
+
1263201035_surprise_15198
|
1648 |
+
1263201035_happy_42333
|
1649 |
+
1263201035_neutral_4978
|
1650 |
+
1263201035_happy_21734
|
1651 |
+
1263201035_sad_53614
|
1652 |
+
1263201035_happy_52905
|
1653 |
+
1263201035_fear_73245
|
1654 |
+
1263201035_sad_52611
|
1655 |
+
1263201035_angry_74731
|
1656 |
+
1263201035_surprise_10694
|
1657 |
+
1263201035_surprise_10797
|
1658 |
+
1263201035_fear_75325
|
1659 |
+
1263201035_fear_31351
|
1660 |
+
1263201035_sad_53289
|
1661 |
+
1263201035_happy_29072
|
1662 |
+
1263201035_happy_53603
|
1663 |
+
1263201035_neutral_39605
|
1664 |
+
1263201035_happy_52739
|
1665 |
+
1263201035_surprise_29680
|
1666 |
+
1263201035_neutral_74608
|
1667 |
+
1263201035_fear_38423
|
1668 |
+
1263201035_fear_8557
|
1669 |
+
1263201035_angry_73179
|
1670 |
+
1263201035_surprise_33461
|
1671 |
+
1263201035_happy_4786
|
1672 |
+
1263201035_happy_10550
|
1673 |
+
1263201035_fear_10728
|
1674 |
+
1263201035_sad_50116
|
1675 |
+
1263201035_neutral_51442
|
1676 |
+
1263201035_angry_34263
|
1677 |
+
1263201035_sad_66207
|
1678 |
+
1263201035_happy_52471
|
1679 |
+
1263201035_neutral_73190
|
1680 |
+
1263201035_happy_10931
|
1681 |
+
1263201035_happy_50881
|
1682 |
+
1263201035_sad_74819
|
1683 |
+
1263201035_surprise_53552
|
1684 |
+
1263201035_surprise_5152
|
1685 |
+
1263201035_neutral_29288
|
1686 |
+
1263201035_sad_32220
|
1687 |
+
1263201035_angry_30348
|
1688 |
+
1263201035_happy_31684
|
1689 |
+
1263201035_neutral_33734
|
1690 |
+
1263201035_neutral_30577
|
1691 |
+
1263201035_angry_4763
|
1692 |
+
1263201035_angry_66994
|
1693 |
+
1263201035_happy_22536
|
1694 |
+
1263201035_surprise_67624
|
1695 |
+
1263201035_neutral_52700
|
1696 |
+
1263201035_surprise_38798
|
1697 |
+
1263201035_sad_75953
|
1698 |
+
1263201035_surprise_53210
|
1699 |
+
1263201035_sad_17997
|
1700 |
+
1263201035_surprise_51026
|
1701 |
+
1263201035_sad_39392
|
1702 |
+
1263201035_surprise_32463
|
1703 |
+
1263201035_sad_10665
|
1704 |
+
1263201035_sad_67411
|
1705 |
+
1263201035_surprise_50911
|
1706 |
+
1263201035_neutral_10705
|
1707 |
+
1263201035_sad_33826
|
1708 |
+
1263201035_neutral_49980
|
1709 |
+
1263201035_angry_50513
|
1710 |
+
1263201035_angry_17681
|
1711 |
+
1263201035_angry_50095
|
1712 |
+
1263201035_neutral_53825
|
1713 |
+
1263201035_surprise_15521
|
1714 |
+
1263201035_fear_73288
|
1715 |
+
1263201035_fear_38600
|
1716 |
+
1263201035_neutral_67558
|
1717 |
+
1263201035_happy_19085
|
1718 |
+
1263201035_angry_32184
|
1719 |
+
1263201035_fear_53329
|
1720 |
+
1263201035_happy_47847
|
1721 |
+
1263201035_happy_52108
|
1722 |
+
1263201035_happy_30451
|
1723 |
+
1263201035_fear_51744
|
1724 |
+
1263201035_sad_32414
|
1725 |
+
1263201035_sad_63383
|
1726 |
+
1263201035_happy_32060
|
1727 |
+
1263201035_sad_29790
|
1728 |
+
1263201035_happy_4874
|
1729 |
+
1263201035_fear_33449
|
1730 |
+
1263201035_surprise_31536
|
1731 |
+
1263201035_angry_66230
|
1732 |
+
1263201035_sad_32373
|
1733 |
+
1263201035_angry_67738
|
1734 |
+
1263201035_angry_31125
|
1735 |
+
1263201035_happy_11422
|
1736 |
+
1263201035_neutral_67134
|
1737 |
+
1263201035_angry_12120
|
1738 |
+
1263201035_angry_66973
|
1739 |
+
1263201035_surprise_32389
|
1740 |
+
1263201035_sad_51372
|
1741 |
+
1263201035_sad_16033
|
1742 |
+
1263201035_sad_50083
|
1743 |
+
1263201035_happy_38512
|
1744 |
+
1263201035_sad_51714
|
1745 |
+
1263201035_happy_4105
|
1746 |
+
1263201035_angry_47821
|
1747 |
+
1263201035_surprise_40133
|
1748 |
+
1263201035_angry_5903
|
1749 |
+
1263201035_surprise_29932
|
1750 |
+
1263201035_fear_50647
|
1751 |
+
1263201035_happy_67026
|
1752 |
+
1263201035_happy_52128
|
1753 |
+
1263201035_surprise_30234
|
1754 |
+
1263201035_neutral_50066
|
1755 |
+
1263201035_happy_66173
|
1756 |
+
1263201035_neutral_42287
|
1757 |
+
1263201035_neutral_75367
|
1758 |
+
1263201035_angry_39737
|
1759 |
+
1263201035_sad_53093
|
1760 |
+
1263201035_fear_38945
|
1761 |
+
1263201035_sad_50118
|
1762 |
+
1263201035_sad_31060
|
1763 |
+
1263201035_happy_4610
|
1764 |
+
1263201035_surprise_50075
|
1765 |
+
1263201035_angry_38429
|
1766 |
+
1263201035_surprise_31065
|
1767 |
+
1263201035_fear_66940
|
1768 |
+
1263201035_sad_31477
|
1769 |
+
1263201035_happy_47758
|
1770 |
+
1263201035_happy_11347
|
1771 |
+
1263201035_surprise_32602
|
1772 |
+
1263201035_angry_10766
|
1773 |
+
1263201035_neutral_10657
|
1774 |
+
1263201035_neutral_30911
|
1775 |
+
1263201035_happy_32306
|
1776 |
+
1263201035_surprise_30237
|
1777 |
+
1263201035_angry_53915
|
1778 |
+
1263201035_happy_4700
|
1779 |
+
1263201035_happy_67227
|
1780 |
+
1263201035_neutral_67644
|
1781 |
+
1263201035_happy_29733
|
1782 |
+
1263201035_neutral_31161
|
1783 |
+
1263201035_fear_67963
|
1784 |
+
1263201035_neutral_53259
|
1785 |
+
1263201035_fear_10419
|
1786 |
+
1263201035_sad_75141
|
1787 |
+
1263201035_surprise_38784
|
1788 |
+
1263201035_fear_63231
|
1789 |
+
1263201035_surprise_32747
|
1790 |
+
1263201035_happy_29760
|
1791 |
+
1263201035_fear_8599
|
1792 |
+
1263201035_fear_38858
|
1793 |
+
1263201035_happy_47792
|
1794 |
+
1263201035_angry_53676
|
1795 |
+
1263201035_angry_39283
|
1796 |
+
1263201035_sad_30117
|
1797 |
+
1263201035_fear_53640
|
1798 |
+
1263201035_neutral_67057
|
1799 |
+
1263201035_happy_4171
|
1800 |
+
1263201035_surprise_31318
|
1801 |
+
1263201035_surprise_63260
|
1802 |
+
1263201035_happy_50504
|
1803 |
+
1263201035_happy_31343
|
1804 |
+
1263201035_neutral_11072
|
1805 |
+
1263201035_neutral_53831
|
1806 |
+
1263201035_neutral_67047
|
1807 |
+
1263201035_neutral_66435
|
1808 |
+
1263201035_surprise_30079
|
1809 |
+
1263201035_fear_38508
|
1810 |
+
1263201035_neutral_8310
|
1811 |
+
1263201035_sad_4119
|
1812 |
+
1263201035_happy_50368
|
1813 |
+
1263201035_neutral_10445
|
1814 |
+
1263201035_sad_5144
|
1815 |
+
1263201035_neutral_53875
|
1816 |
+
1263201035_sad_10502
|
1817 |
+
1263201035_angry_51409
|
1818 |
+
1263201035_surprise_32553
|
1819 |
+
1263201035_angry_39628
|
1820 |
+
1263201035_fear_53141
|
1821 |
+
1263201035_sad_51147
|
1822 |
+
1263201035_neutral_51540
|
1823 |
+
1263201035_happy_39095
|
1824 |
+
1263201035_fear_16115
|
1825 |
+
1263201035_happy_38927
|
1826 |
+
1263201035_happy_48674
|
1827 |
+
1263201035_fear_48581
|
1828 |
+
1263201035_neutral_21713
|
1829 |
+
1263201035_happy_53694
|
1830 |
+
1263201035_fear_29119
|
1831 |
+
1263201035_neutral_52886
|
1832 |
+
1263201035_sad_51888
|
1833 |
+
1263201035_surprise_29753
|
1834 |
+
1263201035_sad_73362
|
1835 |
+
1263201035_sad_30916
|
1836 |
+
1263201035_surprise_66353
|
1837 |
+
1263201035_fear_33558
|
1838 |
+
1263201035_sad_8966
|
1839 |
+
1263201035_fear_72931
|
1840 |
+
1263201035_angry_15143
|
1841 |
+
1263201035_fear_53844
|
1842 |
+
1263201035_sad_4336
|
1843 |
+
1263201035_fear_4338
|
1844 |
+
1263201035_angry_22571
|
1845 |
+
1263201035_surprise_39277
|
1846 |
+
1263201035_neutral_74767
|
1847 |
+
1263201035_neutral_4782
|
1848 |
+
1263201035_neutral_4819
|
1849 |
+
1263201035_neutral_38808
|
1850 |
+
1263201035_happy_75490
|
1851 |
+
1263201035_happy_30624
|
1852 |
+
1263201035_angry_40055
|
1853 |
+
1263201035_surprise_33787
|
1854 |
+
1263201035_surprise_8553
|
1855 |
+
1263201035_sad_30808
|
1856 |
+
1263201035_sad_63063
|
1857 |
+
1263201035_angry_15781
|
1858 |
+
1263201035_neutral_4871
|
1859 |
+
1263201035_angry_29359
|
1860 |
+
1263201035_sad_50518
|
1861 |
+
1263201035_sad_38652
|
1862 |
+
1263201035_neutral_31313
|
1863 |
+
1263201035_surprise_49662
|
1864 |
+
1263201035_happy_32965
|
1865 |
+
1263201035_angry_54009
|
1866 |
+
1263201035_neutral_33694
|
1867 |
+
1263201035_neutral_32687
|
1868 |
+
1263201035_fear_75802
|
1869 |
+
1263201035_sad_34155
|
1870 |
+
1263201035_angry_66231
|
1871 |
+
1263201035_neutral_63197
|
1872 |
+
1263201035_happy_51291
|
1873 |
+
1263201035_angry_30901
|
1874 |
+
1263201035_surprise_22594
|
1875 |
+
1263201035_happy_50367
|
1876 |
+
1263201035_neutral_4551
|
1877 |
+
1263201035_happy_30444
|
1878 |
+
1263201035_sad_53731
|
1879 |
+
1263201035_fear_33893
|
1880 |
+
1263201035_fear_5074
|
1881 |
+
1263201035_neutral_66593
|
1882 |
+
1263201035_sad_67216
|
1883 |
+
1263201035_fear_29349
|
1884 |
+
1263201035_sad_4948
|
1885 |
+
1263201035_happy_67633
|
1886 |
+
1263201035_surprise_50361
|
1887 |
+
1263201035_happy_29674
|
1888 |
+
1263201035_neutral_52080
|
1889 |
+
1263201035_angry_48666
|
1890 |
+
1263201035_angry_33712
|
1891 |
+
1263201035_angry_75389
|
1892 |
+
1263201035_angry_50734
|
1893 |
+
1263201035_happy_52473
|
1894 |
+
1263201035_angry_50277
|
1895 |
+
1263201035_neutral_32094
|
1896 |
+
1263201035_fear_5165
|
1897 |
+
1263201035_fear_50217
|
1898 |
+
1263201035_angry_75595
|
1899 |
+
1263201035_angry_34257
|
1900 |
+
1263201035_sad_50938
|
1901 |
+
1263201035_fear_49748
|
1902 |
+
1263201035_happy_49685
|
1903 |
+
1263201035_neutral_50428
|
1904 |
+
1263201035_sad_15176
|
1905 |
+
1263201035_sad_9284
|
1906 |
+
1263201035_neutral_47760
|
1907 |
+
1263201035_neutral_29755
|
1908 |
+
1263201035_neutral_22570
|
1909 |
+
1263201035_neutral_53036
|
1910 |
+
1263201035_fear_22938
|
1911 |
+
1263201035_angry_75935
|
1912 |
+
1263201035_angry_52254
|
1913 |
+
1263201035_sad_38982
|
1914 |
+
1263201035_sad_21687
|
1915 |
+
1263201035_happy_52708
|
1916 |
+
1263201035_sad_30111
|
1917 |
+
1263201035_surprise_66431
|
1918 |
+
1263201035_fear_11494
|
1919 |
+
1263201035_neutral_32582
|
1920 |
+
1263201035_surprise_67486
|
1921 |
+
1263201035_happy_10524
|
1922 |
+
1263201035_sad_8362
|
1923 |
+
1263201035_neutral_39973
|
1924 |
+
1263201035_surprise_66250
|
1925 |
+
1263201035_angry_52839
|
1926 |
+
1263201035_angry_53851
|
1927 |
+
1263201035_surprise_67982
|
1928 |
+
1263201035_neutral_32647
|
1929 |
+
1263201035_neutral_10991
|
1930 |
+
1263201035_sad_52313
|
1931 |
+
1263201035_neutral_39445
|
1932 |
+
1263201035_neutral_52951
|
1933 |
+
1263201035_neutral_51007
|
1934 |
+
1263201035_surprise_51367
|
1935 |
+
1263201035_surprise_39040
|
1936 |
+
1263201035_angry_48564
|
1937 |
+
1263201035_angry_73305
|
1938 |
+
1263201035_happy_66156
|
1939 |
+
1263201035_happy_63541
|
1940 |
+
1263201035_fear_74795
|
1941 |
+
1263201035_fear_30854
|
1942 |
+
1263201035_fear_48694
|
1943 |
+
1263201035_happy_9660
|
1944 |
+
1263201035_surprise_51740
|
1945 |
+
1263201035_neutral_49658
|
1946 |
+
1263201035_neutral_17693
|
1947 |
+
1263201035_sad_47969
|
1948 |
+
1263201035_sad_30008
|
1949 |
+
1263201035_angry_31345
|
1950 |
+
1263201035_happy_15601
|
1951 |
+
1263201035_sad_66301
|
1952 |
+
1263201035_surprise_53157
|
1953 |
+
1263201035_neutral_30953
|
1954 |
+
1263201035_fear_50634
|
1955 |
+
1263201035_neutral_8449
|
1956 |
+
1263201035_neutral_15191
|
1957 |
+
1263201035_angry_32771
|
1958 |
+
1263201035_surprise_67012
|
1959 |
+
1263201035_sad_52543
|
1960 |
+
1263201035_neutral_39082
|
1961 |
+
1263201035_happy_50078
|
1962 |
+
1263201035_sad_51103
|
1963 |
+
1263201035_happy_40316
|
1964 |
+
1263201035_happy_32291
|
1965 |
+
1263201035_neutral_33192
|
1966 |
+
1263201035_sad_76012
|
1967 |
+
1263201035_sad_52759
|
1968 |
+
1263201035_sad_53548
|
1969 |
+
1263201035_fear_39715
|
1970 |
+
1263201035_sad_72851
|
1971 |
+
1263201035_angry_53743
|
1972 |
+
1263201035_happy_39837
|
1973 |
+
1263201035_neutral_63348
|
1974 |
+
1263201035_sad_74668
|
1975 |
+
1263201035_surprise_75251
|
1976 |
+
1263201035_fear_15376
|
1977 |
+
1263201035_neutral_4234
|
1978 |
+
1263201035_neutral_42270
|
1979 |
+
1263201035_happy_52805
|
1980 |
+
1263201035_happy_52704
|
1981 |
+
1263201035_sad_75964
|
1982 |
+
805570882_angry_64699
|
1983 |
+
805570882_surprise_55222
|
1984 |
+
805570882_sad_31916
|
1985 |
+
805570882_angry_36288
|
1986 |
+
805570882_sad_62932
|
1987 |
+
805570882_happy_27027
|
1988 |
+
805570882_surprise_56882
|
1989 |
+
805570882_angry_43473
|
1990 |
+
805570882_fear_41114
|
1991 |
+
805570882_neutral_40497
|
1992 |
+
805570882_neutral_29390
|
1993 |
+
805570882_happy_36822
|
1994 |
+
805570882_neutral_31819
|
1995 |
+
805570882_fear_65887
|
1996 |
+
805570882_fear_23962
|
1997 |
+
805570882_neutral_33025
|
1998 |
+
805570882_surprise_37205
|
1999 |
+
805570882_angry_29593
|
2000 |
+
805570882_sad_70731
|
2001 |
+
805570882_fear_20336
|
2002 |
+
805570882_neutral_18525
|
2003 |
+
805570882_happy_42021
|
2004 |
+
805570882_sad_41786
|
2005 |
+
805570882_happy_24961
|
2006 |
+
805570882_neutral_36905
|
2007 |
+
805570882_surprise_17791
|
2008 |
+
805570882_surprise_27648
|
2009 |
+
805570882_neutral_55697
|
2010 |
+
805570882_neutral_65787
|
2011 |
+
805570882_sad_63958
|
2012 |
+
805570882_surprise_20204
|
2013 |
+
805570882_sad_46632
|
2014 |
+
805570882_happy_47411
|
2015 |
+
805570882_angry_41859
|
2016 |
+
805570882_surprise_27006
|
2017 |
+
805570882_angry_42264
|
2018 |
+
805570882_happy_20262
|
2019 |
+
805570882_fear_44561
|
2020 |
+
805570882_fear_46593
|
2021 |
+
805570882_surprise_15909
|
2022 |
+
805570882_neutral_61258
|
2023 |
+
805570882_angry_43263
|
2024 |
+
805570882_surprise_16708
|
2025 |
+
805570882_angry_14931
|
2026 |
+
805570882_angry_55734
|
2027 |
+
805570882_happy_24919
|
2028 |
+
805570882_fear_24236
|
2029 |
+
805570882_sad_24361
|
2030 |
+
805570882_neutral_19960
|
2031 |
+
805570882_angry_65833
|
2032 |
+
805570882_fear_49107
|
2033 |
+
805570882_sad_27839
|
2034 |
+
805570882_angry_41828
|
2035 |
+
805570882_angry_27139
|
2036 |
+
805570882_fear_63159
|
2037 |
+
805570882_surprise_57740
|
2038 |
+
805570882_surprise_18601
|
2039 |
+
805570882_fear_61196
|
2040 |
+
805570882_angry_40655
|
2041 |
+
805570882_fear_19942
|
2042 |
+
805570882_sad_63223
|
2043 |
+
805570882_angry_63849
|
2044 |
+
805570882_fear_75004
|
2045 |
+
805570882_surprise_73987
|
2046 |
+
805570882_surprise_41853
|
2047 |
+
805570882_sad_46180
|
2048 |
+
805570882_happy_18233
|
2049 |
+
805570882_happy_26890
|
2050 |
+
805570882_angry_64789
|
2051 |
+
805570882_surprise_57794
|
2052 |
+
805570882_sad_27306
|
2053 |
+
805570882_fear_27730
|
2054 |
+
805570882_angry_15582
|
2055 |
+
805570882_happy_46355
|
2056 |
+
805570882_surprise_17772
|
2057 |
+
805570882_surprise_41567
|
2058 |
+
805570882_fear_14604
|
2059 |
+
805570882_sad_37932
|
2060 |
+
805570882_surprise_70881
|
2061 |
+
805570882_neutral_70911
|
2062 |
+
805570882_neutral_22809
|
2063 |
+
805570882_surprise_27161
|
2064 |
+
805570882_neutral_44714
|
2065 |
+
805570882_happy_54208
|
2066 |
+
805570882_happy_46372
|
2067 |
+
805570882_happy_27414
|
2068 |
+
805570882_neutral_61286
|
2069 |
+
805570882_neutral_57172
|
2070 |
+
805570882_surprise_61607
|
2071 |
+
805570882_surprise_18960
|
2072 |
+
805570882_happy_14985
|
2073 |
+
805570882_surprise_57706
|
2074 |
+
805570882_angry_57594
|
2075 |
+
805570882_happy_74541
|
2076 |
+
805570882_neutral_64744
|
2077 |
+
805570882_fear_15330
|
2078 |
+
805570882_surprise_46847
|
2079 |
+
805570882_surprise_37014
|
2080 |
+
805570882_happy_36985
|
2081 |
+
805570882_sad_45958
|
2082 |
+
805570882_angry_46626
|
2083 |
+
805570882_sad_64996
|
2084 |
+
805570882_sad_45903
|
2085 |
+
805570882_sad_36718
|
2086 |
+
805570882_angry_35151
|
2087 |
+
805570882_angry_56645
|
2088 |
+
805570882_fear_20375
|
2089 |
+
805570882_happy_24277
|
2090 |
+
805570882_happy_37473
|
2091 |
+
805570882_surprise_17290
|
2092 |
+
805570882_happy_18814
|
2093 |
+
805570882_sad_14339
|
2094 |
+
805570882_neutral_44810
|
2095 |
+
805570882_happy_70952
|
2096 |
+
805570882_neutral_34648
|
2097 |
+
805570882_neutral_26369
|
2098 |
+
805570882_happy_22644
|
2099 |
+
805570882_neutral_46656
|
2100 |
+
805570882_angry_14690
|
2101 |
+
805570882_happy_24477
|
2102 |
+
805570882_surprise_35688
|
2103 |
+
805570882_sad_46545
|
2104 |
+
805570882_angry_55111
|
2105 |
+
805570882_surprise_21310
|
2106 |
+
805570882_happy_43058
|
2107 |
+
805570882_sad_42251
|
2108 |
+
805570882_happy_40883
|
2109 |
+
805570882_angry_18098
|
2110 |
+
805570882_sad_41664
|
2111 |
+
805570882_happy_35949
|
2112 |
+
805570882_fear_35543
|
2113 |
+
805570882_fear_61437
|
2114 |
+
805570882_sad_15272
|
2115 |
+
805570882_sad_48170
|
2116 |
+
805570882_fear_23241
|
2117 |
+
805570882_fear_64098
|
2118 |
+
805570882_surprise_64104
|
2119 |
+
805570882_sad_41350
|
2120 |
+
805570882_neutral_65988
|
2121 |
+
805570882_neutral_74084
|
2122 |
+
805570882_neutral_17813
|
2123 |
+
805570882_happy_33131
|
2124 |
+
805570882_happy_55365
|
2125 |
+
805570882_sad_35841
|
2126 |
+
805570882_surprise_44404
|
2127 |
+
805570882_fear_34376
|
2128 |
+
805570882_fear_44685
|
2129 |
+
805570882_surprise_44820
|
2130 |
+
805570882_happy_44584
|
2131 |
+
805570882_sad_16512
|
2132 |
+
805570882_fear_34771
|
2133 |
+
805570882_surprise_61744
|
2134 |
+
805570882_neutral_48277
|
2135 |
+
805570882_angry_41572
|
2136 |
+
805570882_sad_24911
|
2137 |
+
805570882_surprise_70680
|
2138 |
+
805570882_angry_26986
|
2139 |
+
805570882_neutral_34628
|
2140 |
+
805570882_surprise_28416
|
2141 |
+
805570882_surprise_46130
|
2142 |
+
805570882_surprise_61625
|
2143 |
+
805570882_fear_36741
|
2144 |
+
805570882_surprise_37170
|
2145 |
+
805570882_angry_61095
|
2146 |
+
805570882_fear_40673
|
2147 |
+
805570882_surprise_74044
|
2148 |
+
805570882_angry_61014
|
2149 |
+
805570882_sad_27084
|
2150 |
+
805570882_neutral_27669
|
2151 |
+
805570882_fear_31903
|
2152 |
+
805570882_sad_19276
|
2153 |
+
805570882_sad_21274
|
2154 |
+
805570882_fear_41205
|
2155 |
+
805570882_fear_19325
|
2156 |
+
805570882_fear_24560
|
2157 |
+
805570882_happy_73913
|
2158 |
+
805570882_happy_55913
|
2159 |
+
805570882_neutral_27069
|
2160 |
+
805570882_fear_64901
|
2161 |
+
805570882_fear_20120
|
2162 |
+
805570882_sad_60947
|
2163 |
+
805570882_neutral_60957
|
2164 |
+
805570882_fear_16265
|
2165 |
+
805570882_fear_74123
|
2166 |
+
805570882_happy_14416
|
2167 |
+
805570882_happy_15471
|
2168 |
+
805570882_surprise_55764
|
2169 |
+
805570882_angry_20097
|
2170 |
+
805570882_happy_37767
|
2171 |
+
805570882_happy_27203
|
2172 |
+
805570882_happy_23190
|
2173 |
+
805570882_fear_18275
|
2174 |
+
805570882_neutral_46402
|
2175 |
+
805570882_fear_37313
|
2176 |
+
805570882_surprise_73888
|
2177 |
+
805570882_fear_35828
|
2178 |
+
805570882_neutral_15230
|
2179 |
+
805570882_fear_36558
|
2180 |
+
805570882_angry_38076
|
2181 |
+
805570882_surprise_48138
|
2182 |
+
805570882_happy_29586
|
2183 |
+
805570882_neutral_44205
|
2184 |
+
805570882_surprise_24405
|
2185 |
+
805570882_fear_28787
|
2186 |
+
805570882_happy_43294
|
2187 |
+
805570882_sad_40517
|
2188 |
+
805570882_neutral_58436
|
2189 |
+
805570882_neutral_37748
|
2190 |
+
805570882_sad_41625
|
2191 |
+
805570882_happy_61664
|
2192 |
+
805570882_fear_15969
|
2193 |
+
805570882_fear_29443
|
2194 |
+
805570882_angry_16602
|
2195 |
+
805570882_angry_70760
|
2196 |
+
805570882_surprise_40797
|
2197 |
+
805570882_angry_55791
|
2198 |
+
805570882_surprise_47016
|
2199 |
+
805570882_fear_26306
|
2200 |
+
805570882_surprise_31875
|
2201 |
+
805570882_surprise_15356
|
2202 |
+
805570882_happy_40592
|
2203 |
+
805570882_sad_61577
|
2204 |
+
805570882_happy_61061
|
2205 |
+
805570882_happy_64949
|
2206 |
+
805570882_angry_74038
|
2207 |
+
805570882_surprise_65733
|
2208 |
+
805570882_surprise_64997
|
2209 |
+
805570882_sad_28395
|
2210 |
+
805570882_sad_35556
|
2211 |
+
805570882_sad_24483
|
2212 |
+
805570882_neutral_49065
|
2213 |
+
805570882_happy_63099
|
2214 |
+
805570882_angry_46129
|
2215 |
+
805570882_happy_15869
|
2216 |
+
805570882_neutral_36074
|
2217 |
+
805570882_angry_24818
|
2218 |
+
805570882_angry_42984
|
2219 |
+
805570882_happy_24219
|
2220 |
+
805570882_happy_21206
|
2221 |
+
805570882_sad_18028
|
2222 |
+
805570882_surprise_54204
|
2223 |
+
805570882_sad_31902
|
2224 |
+
805570882_sad_28549
|
2225 |
+
805570882_happy_33149
|
2226 |
+
805570882_surprise_46437
|
2227 |
+
805570882_sad_18444
|
2228 |
+
805570882_happy_28690
|
2229 |
+
805570882_happy_46905
|
2230 |
+
805570882_happy_74102
|
2231 |
+
805570882_happy_26882
|
2232 |
+
805570882_surprise_74993
|
2233 |
+
805570882_angry_37837
|
2234 |
+
805570882_happy_27631
|
2235 |
+
805570882_surprise_46336
|
2236 |
+
805570882_surprise_36198
|
2237 |
+
805570882_happy_28669
|
2238 |
+
805570882_surprise_19416
|
2239 |
+
805570882_sad_63826
|
2240 |
+
805570882_angry_20442
|
2241 |
+
805570882_happy_34397
|
2242 |
+
805570882_angry_33163
|
2243 |
+
805570882_sad_27380
|
2244 |
+
805570882_angry_23856
|
2245 |
+
805570882_surprise_27461
|
2246 |
+
805570882_sad_74154
|
2247 |
+
805570882_neutral_64943
|
2248 |
+
805570882_fear_46191
|
2249 |
+
805570882_sad_74101
|
2250 |
+
805570882_neutral_70794
|
2251 |
+
805570882_angry_24173
|
2252 |
+
805570882_sad_18449
|
2253 |
+
805570882_fear_18543
|
2254 |
+
805570882_surprise_56647
|
2255 |
+
805570882_happy_74243
|
2256 |
+
805570882_angry_48497
|
2257 |
+
805570882_happy_45619
|
2258 |
+
805570882_angry_47424
|
2259 |
+
805570882_fear_63862
|
2260 |
+
805570882_sad_70827
|
2261 |
+
805570882_neutral_18169
|
2262 |
+
805570882_sad_54924
|
2263 |
+
805570882_neutral_43894
|
2264 |
+
805570882_happy_48453
|
2265 |
+
805570882_angry_36682
|
2266 |
+
805570882_fear_24568
|
2267 |
+
805570882_angry_36577
|
2268 |
+
805570882_neutral_24459
|
2269 |
+
805570882_sad_43832
|
2270 |
+
805570882_neutral_26317
|
2271 |
+
805570882_happy_36871
|
2272 |
+
805570882_angry_49074
|
2273 |
+
805570882_happy_23096
|
2274 |
+
805570882_angry_55175
|
2275 |
+
805570882_angry_73981
|
2276 |
+
805570882_fear_22862
|
2277 |
+
805570882_angry_44402
|
2278 |
+
805570882_happy_18715
|
2279 |
+
805570882_angry_42878
|
2280 |
+
805570882_happy_55801
|
2281 |
+
805570882_neutral_56565
|
2282 |
+
805570882_sad_45589
|
2283 |
+
805570882_neutral_18884
|
2284 |
+
805570882_sad_36451
|
2285 |
+
805570882_fear_15908
|
2286 |
+
805570882_angry_35058
|
2287 |
+
805570882_sad_55326
|
2288 |
+
805570882_fear_24537
|
2289 |
+
805570882_happy_37715
|
2290 |
+
805570882_fear_44362
|
2291 |
+
805570882_sad_46960
|
2292 |
+
805570882_neutral_64722
|
2293 |
+
805570882_fear_58429
|
2294 |
+
805570882_surprise_63728
|
2295 |
+
805570882_happy_74136
|
2296 |
+
805570882_angry_74383
|
2297 |
+
805570882_angry_27691
|
2298 |
+
805570882_sad_40904
|
2299 |
+
805570882_happy_43095
|
2300 |
+
805570882_surprise_27308
|
2301 |
+
805570882_surprise_22743
|
2302 |
+
805570882_surprise_74375
|
2303 |
+
805570882_angry_24263
|
2304 |
+
805570882_sad_55654
|
2305 |
+
805570882_surprise_44621
|
2306 |
+
805570882_surprise_17265
|
2307 |
+
805570882_fear_18235
|
2308 |
+
805570882_happy_61687
|
2309 |
+
805570882_happy_17122
|
2310 |
+
805570882_surprise_49091
|
2311 |
+
805570882_sad_45019
|
2312 |
+
805570882_angry_55698
|
2313 |
+
805570882_happy_38239
|
2314 |
+
805570882_angry_63750
|
2315 |
+
805570882_surprise_21282
|
2316 |
+
805570882_neutral_61308
|
2317 |
+
805570882_angry_56842
|
2318 |
+
805570882_fear_61004
|
2319 |
+
805570882_angry_64113
|
2320 |
+
805570882_surprise_40636
|
2321 |
+
805570882_surprise_64012
|
2322 |
+
805570882_sad_17165
|
2323 |
+
805570882_angry_70801
|
2324 |
+
805570882_surprise_17987
|
2325 |
+
805570882_sad_41760
|
2326 |
+
805570882_fear_26385
|
2327 |
+
805570882_surprise_47489
|
2328 |
+
805570882_neutral_42826
|
2329 |
+
805570882_sad_70797
|
2330 |
+
805570882_neutral_20461
|
2331 |
+
805570882_fear_18032
|
2332 |
+
805570882_fear_26553
|
2333 |
+
805570882_neutral_20083
|
2334 |
+
805570882_fear_18354
|
2335 |
+
805570882_sad_29457
|
2336 |
+
805570882_happy_35579
|
2337 |
+
805570882_angry_34344
|
2338 |
+
805570882_sad_43777
|
2339 |
+
805570882_sad_40970
|
2340 |
+
805570882_fear_54028
|
2341 |
+
805570882_angry_27067
|
2342 |
+
805570882_angry_44897
|
2343 |
+
805570882_surprise_46445
|
2344 |
+
805570882_sad_47428
|
2345 |
+
805570882_fear_70622
|
2346 |
+
805570882_angry_23129
|
2347 |
+
805570882_sad_17972
|
2348 |
+
805570882_fear_46616
|
2349 |
+
805570882_sad_44773
|
2350 |
+
805570882_fear_28542
|
2351 |
+
805570882_happy_48800
|
2352 |
+
805570882_angry_35127
|
2353 |
+
805570882_sad_61500
|
2354 |
+
805570882_neutral_75016
|
2355 |
+
805570882_neutral_36072
|
2356 |
+
805570882_neutral_61615
|
2357 |
+
805570882_fear_16295
|
2358 |
+
805570882_surprise_58382
|
2359 |
+
805570882_happy_34531
|
2360 |
+
805570882_surprise_19406
|
2361 |
+
805570882_surprise_36006
|
2362 |
+
805570882_fear_55294
|
2363 |
+
805570882_fear_24074
|
2364 |
+
805570882_neutral_31962
|
2365 |
+
805570882_surprise_27176
|
2366 |
+
805570882_happy_14980
|
2367 |
+
805570882_fear_63939
|
2368 |
+
805570882_fear_43260
|
2369 |
+
805570882_angry_44575
|
2370 |
+
805570882_neutral_70862
|
2371 |
+
805570882_angry_17250
|
2372 |
+
805570882_neutral_18988
|
2373 |
+
805570882_sad_61235
|
2374 |
+
805570882_neutral_27618
|
2375 |
+
805570882_surprise_38034
|
2376 |
+
805570882_fear_46208
|
2377 |
+
805570882_fear_36014
|
2378 |
+
805570882_happy_18309
|
2379 |
+
805570882_angry_15891
|
2380 |
+
805570882_neutral_16257
|
2381 |
+
805570882_happy_40582
|
2382 |
+
805570882_happy_74185
|
2383 |
+
805570882_angry_70956
|
2384 |
+
805570882_angry_20488
|
2385 |
+
805570882_happy_16480
|
2386 |
+
805570882_fear_42760
|
2387 |
+
805570882_fear_20226
|
2388 |
+
805570882_fear_74326
|
2389 |
+
805570882_angry_25008
|
2390 |
+
805570882_surprise_55020
|
2391 |
+
805570882_fear_56802
|
2392 |
+
805570882_happy_55554
|
2393 |
+
805570882_neutral_26881
|
2394 |
+
805570882_fear_46976
|
2395 |
+
805570882_surprise_40822
|
2396 |
+
805570882_sad_55763
|
2397 |
+
805570882_surprise_40481
|
2398 |
+
805570882_sad_35576
|
2399 |
+
805570882_fear_40612
|
2400 |
+
805570882_happy_37463
|
2401 |
+
805570882_surprise_57210
|
2402 |
+
805570882_sad_24488
|
2403 |
+
805570882_fear_34383
|
2404 |
+
805570882_happy_21246
|
2405 |
+
805570882_happy_20300
|
2406 |
+
805570882_angry_61639
|
2407 |
+
805570882_angry_54906
|
2408 |
+
805570882_sad_46145
|
2409 |
+
805570882_fear_28671
|
2410 |
+
805570882_happy_14569
|
2411 |
+
805570882_fear_41554
|
2412 |
+
805570882_sad_42932
|
2413 |
+
805570882_surprise_74053
|
2414 |
+
805570882_fear_35686
|
2415 |
+
805570882_fear_46787
|
2416 |
+
805570882_neutral_40669
|
2417 |
+
805570882_sad_43341
|
2418 |
+
805570882_neutral_41952
|
2419 |
+
805570882_happy_18079
|
2420 |
+
805570882_fear_54026
|
2421 |
+
805570882_neutral_65851
|
2422 |
+
805570882_angry_19997
|
2423 |
+
805570882_angry_45722
|
2424 |
+
805570882_neutral_46518
|
2425 |
+
805570882_happy_38326
|
2426 |
+
805570882_fear_64767
|
2427 |
+
805570882_happy_28428
|
2428 |
+
805570882_surprise_43871
|
2429 |
+
805570882_angry_54114
|
2430 |
+
805570882_surprise_73982
|
2431 |
+
805570882_fear_34900
|
2432 |
+
805570882_neutral_41406
|
2433 |
+
805570882_angry_18540
|
2434 |
+
805570882_fear_46728
|
2435 |
+
805570882_angry_26954
|
2436 |
+
805570882_angry_41320
|
2437 |
+
805570882_happy_20431
|
2438 |
+
805570882_neutral_63185
|
2439 |
+
805570882_happy_44966
|
2440 |
+
805570882_fear_23249
|
2441 |
+
805570882_sad_36607
|
2442 |
+
805570882_happy_55715
|
2443 |
+
805570882_neutral_38130
|
2444 |
+
805570882_surprise_36411
|
2445 |
+
805570882_surprise_17810
|
2446 |
+
805570882_neutral_14344
|
2447 |
+
805570882_happy_14687
|
2448 |
+
805570882_happy_27187
|
2449 |
+
805570882_neutral_43794
|
2450 |
+
805570882_happy_27276
|
2451 |
+
805570882_fear_48221
|
2452 |
+
805570882_fear_58438
|
2453 |
+
805570882_neutral_65788
|
2454 |
+
805570882_surprise_37650
|
2455 |
+
805570882_neutral_18744
|
2456 |
+
805570882_surprise_16349
|
2457 |
+
805570882_neutral_74410
|
2458 |
+
805570882_surprise_41676
|
2459 |
+
805570882_angry_54015
|
2460 |
+
805570882_fear_31898
|
2461 |
+
805570882_fear_19238
|
2462 |
+
805570882_surprise_21486
|
2463 |
+
805570882_angry_36096
|
2464 |
+
805570882_neutral_17049
|
2465 |
+
805570882_fear_61181
|
2466 |
+
805570882_neutral_74260
|
2467 |
+
805570882_fear_35850
|
2468 |
+
805570882_surprise_23130
|
2469 |
+
805570882_sad_27575
|
2470 |
+
805570882_fear_17982
|
2471 |
+
805570882_surprise_28426
|
2472 |
+
805570882_sad_37028
|
2473 |
+
805570882_neutral_20474
|
2474 |
+
805570882_sad_31765
|
2475 |
+
805570882_surprise_64080
|
2476 |
+
805570882_neutral_35727
|
2477 |
+
805570882_sad_40411
|
2478 |
+
805570882_surprise_63077
|
2479 |
+
805570882_happy_18196
|
2480 |
+
805570882_fear_38332
|
2481 |
+
805570882_neutral_21311
|
2482 |
+
805570882_fear_35121
|
2483 |
+
805570882_fear_61302
|
2484 |
+
805570882_neutral_46283
|
2485 |
+
805570882_surprise_26325
|
2486 |
+
805570882_neutral_75024
|
2487 |
+
805570882_sad_44153
|
2488 |
+
805570882_neutral_43290
|
2489 |
+
805570882_surprise_40796
|
2490 |
+
805570882_surprise_56677
|
2491 |
+
805570882_neutral_44278
|
2492 |
+
805570882_sad_64847
|
2493 |
+
805570882_neutral_40950
|
2494 |
+
805570882_neutral_24725
|
2495 |
+
805570882_happy_45933
|
2496 |
+
805570882_neutral_41093
|
2497 |
+
805570882_sad_74537
|
2498 |
+
805570882_fear_36291
|
2499 |
+
805570882_neutral_28684
|
2500 |
+
805570882_sad_27840
|
2501 |
+
805570882_sad_47406
|
2502 |
+
805570882_fear_18248
|
2503 |
+
805570882_angry_18475
|
2504 |
+
805570882_surprise_17186
|
2505 |
+
805570882_sad_34715
|
2506 |
+
805570882_neutral_57434
|
2507 |
+
805570882_surprise_34634
|
2508 |
+
805570882_sad_66049
|
2509 |
+
805570882_sad_47029
|
2510 |
+
805570882_sad_34696
|
2511 |
+
805570882_surprise_44367
|
2512 |
+
805570882_angry_70972
|
2513 |
+
805570882_sad_24382
|
2514 |
+
805570882_surprise_16570
|
2515 |
+
805570882_neutral_16319
|
2516 |
+
805570882_fear_74318
|
2517 |
+
805570882_sad_61412
|
2518 |
+
805570882_happy_42898
|
2519 |
+
805570882_angry_24143
|
2520 |
+
805570882_fear_45850
|
2521 |
+
805570882_sad_21236
|
2522 |
+
805570882_sad_19333
|
2523 |
+
805570882_fear_74962
|
2524 |
+
805570882_happy_44744
|
2525 |
+
805570882_fear_26294
|
2526 |
+
805570882_happy_42103
|
2527 |
+
805570882_angry_23228
|
2528 |
+
805570882_fear_54228
|
2529 |
+
805570882_surprise_19944
|
2530 |
+
805570882_neutral_31896
|
2531 |
+
805570882_happy_35561
|
2532 |
+
805570882_fear_36307
|
2533 |
+
805570882_neutral_14814
|
2534 |
+
805570882_surprise_54374
|
2535 |
+
805570882_surprise_18887
|
2536 |
+
805570882_fear_74412
|
2537 |
+
805570882_angry_29425
|
2538 |
+
805570882_sad_37525
|
2539 |
+
805570882_angry_45047
|
2540 |
+
805570882_neutral_36942
|
2541 |
+
805570882_neutral_26340
|
2542 |
+
805570882_sad_36115
|
2543 |
+
805570882_neutral_17074
|
2544 |
+
805570882_angry_16314
|
2545 |
+
805570882_fear_41781
|
2546 |
+
805570882_neutral_44648
|
2547 |
+
805570882_angry_46176
|
2548 |
+
805570882_sad_36877
|
2549 |
+
805570882_happy_28402
|
2550 |
+
805570882_fear_70908
|
2551 |
+
805570882_angry_19353
|
2552 |
+
805570882_happy_48758
|
2553 |
+
805570882_angry_24907
|
2554 |
+
805570882_happy_23983
|
2555 |
+
805570882_surprise_46574
|
2556 |
+
805570882_angry_48184
|
2557 |
+
805570882_happy_43337
|
2558 |
+
805570882_surprise_28225
|
2559 |
+
805570882_fear_58360
|
2560 |
+
805570882_neutral_70768
|
2561 |
+
805570882_angry_54359
|
2562 |
+
805570882_surprise_17886
|
2563 |
+
805570882_sad_14928
|
2564 |
+
805570882_angry_47461
|
2565 |
+
805570882_happy_57612
|
2566 |
+
805570882_fear_47400
|
2567 |
+
805570882_fear_43115
|
2568 |
+
805570882_sad_38294
|
2569 |
+
805570882_fear_37066
|
2570 |
+
805570882_sad_41239
|
2571 |
+
805570882_sad_26998
|
2572 |
+
805570882_sad_36878
|
2573 |
+
805570882_surprise_15990
|
2574 |
+
805570882_neutral_64022
|
2575 |
+
805570882_neutral_74311
|
2576 |
+
805570882_fear_40969
|
2577 |
+
805570882_sad_54073
|
2578 |
+
805570882_happy_20096
|
2579 |
+
805570882_happy_44269
|
2580 |
+
805570882_sad_16227
|
2581 |
+
805570882_happy_56811
|
2582 |
+
805570882_surprise_44739
|
2583 |
+
805570882_neutral_22838
|
2584 |
+
805570882_fear_24750
|
2585 |
+
805570882_sad_61317
|
2586 |
+
805570882_happy_18770
|
2587 |
+
805570882_fear_65079
|
2588 |
+
805570882_neutral_45632
|
2589 |
+
805570882_fear_27093
|
2590 |
+
805570882_happy_43363
|
2591 |
+
805570882_sad_18582
|
2592 |
+
805570882_angry_73941
|
2593 |
+
805570882_neutral_64987
|
2594 |
+
805570882_angry_58485
|
2595 |
+
805570882_happy_44763
|
2596 |
+
805570882_sad_35527
|
2597 |
+
805570882_neutral_17277
|
2598 |
+
805570882_angry_45954
|
2599 |
+
805570882_fear_47127
|
2600 |
+
805570882_sad_18546
|
2601 |
+
805570882_happy_20105
|
2602 |
+
805570882_neutral_43782
|
2603 |
+
805570882_neutral_27722
|
2604 |
+
805570882_sad_47028
|
2605 |
+
805570882_fear_43078
|
2606 |
+
805570882_fear_57715
|
2607 |
+
805570882_neutral_19982
|
2608 |
+
805570882_neutral_23188
|
2609 |
+
805570882_sad_19319
|
2610 |
+
805570882_surprise_34458
|
2611 |
+
805570882_fear_54038
|
2612 |
+
805570882_happy_27621
|
2613 |
+
805570882_neutral_37377
|
2614 |
+
805570882_surprise_38056
|
2615 |
+
805570882_angry_15321
|
2616 |
+
805570882_fear_54115
|
2617 |
+
805570882_fear_44867
|
2618 |
+
805570882_angry_62965
|
2619 |
+
805570882_angry_18574
|
2620 |
+
805570882_fear_26440
|
2621 |
+
805570882_angry_27808
|
2622 |
+
805570882_neutral_42058
|
2623 |
+
805570882_neutral_18811
|
2624 |
+
805570882_fear_45840
|
2625 |
+
805570882_sad_56528
|
2626 |
+
805570882_surprise_44515
|
2627 |
+
805570882_sad_28365
|
2628 |
+
805570882_happy_47439
|
2629 |
+
805570882_angry_63870
|
2630 |
+
805570882_surprise_17828
|
2631 |
+
805570882_fear_41527
|
2632 |
+
805570882_fear_14986
|
2633 |
+
805570882_fear_42079
|
2634 |
+
805570882_angry_44423
|
2635 |
+
805570882_angry_34303
|
2636 |
+
805570882_neutral_64079
|
2637 |
+
805570882_angry_15508
|
2638 |
+
805570882_neutral_22681
|
2639 |
+
805570882_angry_43393
|
2640 |
+
805570882_fear_18620
|
2641 |
+
805570882_surprise_29606
|
2642 |
+
805570882_sad_56914
|
2643 |
+
805570882_sad_22628
|
2644 |
+
805570882_angry_28322
|
2645 |
+
805570882_neutral_45780
|
2646 |
+
805570882_happy_45865
|
2647 |
+
805570882_happy_14725
|
2648 |
+
805570882_fear_19054
|
2649 |
+
805570882_sad_28682
|
2650 |
+
805570882_sad_24821
|
2651 |
+
805570882_neutral_20447
|
2652 |
+
805570882_neutral_54139
|
2653 |
+
805570882_fear_43053
|
2654 |
+
805570882_sad_45853
|
2655 |
+
805570882_surprise_42146
|
2656 |
+
805570882_angry_22837
|
2657 |
+
805570882_angry_28818
|
2658 |
+
805570882_happy_35757
|
2659 |
+
805570882_happy_17169
|
2660 |
+
805570882_angry_63191
|
2661 |
+
805570882_sad_14681
|
2662 |
+
805570882_fear_18623
|
2663 |
+
805570882_neutral_56893
|
2664 |
+
805570882_neutral_36339
|
2665 |
+
805570882_neutral_64793
|
2666 |
+
805570882_fear_61020
|
2667 |
+
805570882_fear_61760
|
2668 |
+
805570882_neutral_57374
|
2669 |
+
805570882_fear_27793
|
2670 |
+
805570882_neutral_20215
|
2671 |
+
805570882_surprise_34473
|
2672 |
+
805570882_neutral_70777
|
2673 |
+
805570882_happy_61045
|
2674 |
+
805570882_neutral_55405
|
2675 |
+
805570882_angry_14669
|
2676 |
+
805570882_fear_28673
|
2677 |
+
805570882_surprise_45736
|
2678 |
+
805570882_neutral_24169
|
2679 |
+
805570882_angry_24206
|
2680 |
+
805570882_angry_21250
|
2681 |
+
805570882_sad_23097
|
2682 |
+
805570882_neutral_41383
|
2683 |
+
805570882_neutral_46968
|
2684 |
+
805570882_fear_37989
|
2685 |
+
805570882_sad_26499
|
2686 |
+
805570882_neutral_45863
|
2687 |
+
805570882_sad_74386
|
2688 |
+
805570882_angry_61514
|
2689 |
+
805570882_surprise_61528
|
2690 |
+
805570882_fear_24521
|
2691 |
+
805570882_fear_66097
|
2692 |
+
805570882_surprise_26387
|
2693 |
+
805570882_sad_74310
|
2694 |
+
805570882_angry_43884
|
2695 |
+
805570882_neutral_47429
|
2696 |
+
805570882_angry_37887
|
2697 |
+
805570882_sad_28582
|
2698 |
+
805570882_surprise_36087
|
2699 |
+
805570882_sad_20287
|
2700 |
+
805570882_neutral_14946
|
2701 |
+
805570882_happy_18257
|
2702 |
+
805570882_happy_46488
|
2703 |
+
805570882_angry_49151
|
2704 |
+
805570882_sad_40927
|
2705 |
+
805570882_fear_43801
|
2706 |
+
805570882_angry_75113
|
2707 |
+
805570882_sad_29402
|
2708 |
+
805570882_surprise_70883
|
2709 |
+
805570882_happy_65968
|
2710 |
+
805570882_happy_35616
|
2711 |
+
805570882_neutral_35560
|
2712 |
+
805570882_surprise_46668
|
2713 |
+
805570882_fear_24301
|
2714 |
+
805570882_surprise_46642
|
2715 |
+
805570882_sad_49262
|
2716 |
+
805570882_surprise_16006
|
2717 |
+
805570882_angry_43905
|
2718 |
+
805570882_happy_46758
|
2719 |
+
805570882_neutral_18957
|
2720 |
+
805570882_sad_34427
|
2721 |
+
805570882_neutral_56527
|
2722 |
+
805570882_neutral_43849
|
2723 |
+
805570882_fear_38269
|
2724 |
+
805570882_surprise_38234
|
2725 |
+
805570882_angry_18674
|
2726 |
+
805570882_angry_24205
|
2727 |
+
805570882_angry_57557
|
2728 |
+
805570882_angry_57265
|
2729 |
+
805570882_happy_27231
|
2730 |
+
805570882_angry_48102
|
2731 |
+
805570882_surprise_48317
|
2732 |
+
805570882_angry_26432
|
2733 |
+
805570882_angry_15332
|
2734 |
+
805570882_sad_36847
|
2735 |
+
805570882_happy_61571
|
2736 |
+
805570882_neutral_21408
|
2737 |
+
805570882_surprise_43376
|
2738 |
+
805570882_neutral_34939
|
2739 |
+
805570882_fear_28328
|
2740 |
+
805570882_angry_40588
|
2741 |
+
805570882_surprise_21262
|
2742 |
+
805570882_surprise_34709
|
2743 |
+
805570882_surprise_14493
|
2744 |
+
805570882_happy_19012
|
2745 |
+
805570882_neutral_26938
|
2746 |
+
805570882_happy_35972
|
2747 |
+
805570882_happy_28844
|
2748 |
+
805570882_sad_40390
|
2749 |
+
805570882_surprise_58370
|
2750 |
+
805570882_angry_46759
|
2751 |
+
805570882_neutral_22871
|
2752 |
+
805570882_fear_16729
|
2753 |
+
805570882_happy_43948
|
2754 |
+
805570882_angry_63843
|
2755 |
+
805570882_surprise_49334
|
2756 |
+
805570882_fear_64750
|
2757 |
+
805570882_sad_37043
|
2758 |
+
805570882_fear_57443
|
2759 |
+
805570882_happy_33344
|
2760 |
+
805570882_neutral_34782
|
2761 |
+
805570882_sad_37673
|
2762 |
+
805570882_neutral_24112
|
2763 |
+
805570882_angry_43630
|
2764 |
+
805570882_angry_24436
|
2765 |
+
805570882_surprise_27318
|
2766 |
+
805570882_angry_16578
|
2767 |
+
805570882_neutral_36009
|
2768 |
+
805570882_angry_64706
|
2769 |
+
805570882_happy_20095
|
2770 |
+
805570882_sad_64918
|
2771 |
+
805570882_happy_37318
|
2772 |
+
805570882_happy_34485
|
2773 |
+
805570882_neutral_65807
|
2774 |
+
805570882_sad_44803
|
2775 |
+
805570882_angry_38351
|
2776 |
+
805570882_neutral_36490
|
2777 |
+
805570882_sad_46804
|
2778 |
+
805570882_sad_74519
|
2779 |
+
805570882_sad_46479
|
2780 |
+
805570882_surprise_20144
|
2781 |
+
805570882_surprise_40814
|
2782 |
+
805570882_fear_37260
|
2783 |
+
805570882_fear_18549
|
2784 |
+
805570882_surprise_35120
|
2785 |
+
805570882_neutral_46261
|
2786 |
+
805570882_angry_70976
|
2787 |
+
805570882_sad_46962
|
2788 |
+
805570882_angry_35605
|
2789 |
+
805570882_surprise_24890
|
2790 |
+
805570882_neutral_35021
|
2791 |
+
805570882_surprise_46660
|
2792 |
+
805570882_sad_41349
|
2793 |
+
805570882_angry_48755
|
2794 |
+
805570882_sad_27704
|
2795 |
+
805570882_angry_36791
|
2796 |
+
805570882_happy_14849
|
2797 |
+
805570882_neutral_44437
|
2798 |
+
805570882_neutral_70643
|
2799 |
+
805570882_angry_37323
|
2800 |
+
805570882_neutral_74089
|
2801 |
+
805570882_happy_45920
|
2802 |
+
805570882_surprise_27592
|
2803 |
+
805570882_sad_43514
|
2804 |
+
805570882_fear_37306
|
2805 |
+
805570882_happy_36235
|
2806 |
+
805570882_neutral_45657
|
2807 |
+
805570882_neutral_43590
|
2808 |
+
805570882_surprise_27124
|
2809 |
+
805570882_surprise_18223
|
2810 |
+
805570882_neutral_55261
|
2811 |
+
805570882_sad_70675
|
2812 |
+
805570882_angry_31729
|
2813 |
+
805570882_sad_40847
|
2814 |
+
805570882_fear_42203
|
2815 |
+
805570882_surprise_27298
|
2816 |
+
805570882_fear_23292
|
2817 |
+
805570882_fear_47447
|
2818 |
+
805570882_angry_48365
|
2819 |
+
805570882_happy_27624
|
2820 |
+
805570882_neutral_18190
|
2821 |
+
805570882_surprise_49088
|
2822 |
+
805570882_sad_44559
|
2823 |
+
805570882_happy_28226
|
2824 |
+
805570882_fear_46916
|
2825 |
+
805570882_angry_36922
|
2826 |
+
805570882_sad_62892
|
2827 |
+
805570882_surprise_47131
|
2828 |
+
805570882_fear_46547
|
2829 |
+
805570882_angry_48893
|
2830 |
+
805570882_neutral_44394
|
2831 |
+
805570882_happy_18904
|
2832 |
+
805570882_neutral_64899
|
2833 |
+
805570882_angry_19417
|
2834 |
+
805570882_angry_18698
|
2835 |
+
805570882_happy_33218
|
2836 |
+
805570882_angry_44343
|
2837 |
+
805570882_surprise_16236
|
2838 |
+
805570882_fear_17760
|
2839 |
+
805570882_happy_18576
|
2840 |
+
805570882_fear_36518
|
2841 |
+
805570882_fear_28736
|
2842 |
+
805570882_sad_45585
|
2843 |
+
805570882_fear_17969
|
2844 |
+
805570882_happy_56715
|
2845 |
+
805570882_surprise_46414
|
2846 |
+
805570882_neutral_64910
|
2847 |
+
805570882_sad_17043
|
2848 |
+
805570882_happy_23904
|
2849 |
+
805570882_sad_74539
|
2850 |
+
805570882_happy_49089
|
2851 |
+
805570882_happy_55289
|
2852 |
+
805570882_happy_74141
|
2853 |
+
805570882_happy_38212
|
2854 |
+
805570882_surprise_61185
|
2855 |
+
805570882_neutral_74079
|
2856 |
+
805570882_surprise_14911
|
2857 |
+
805570882_happy_43445
|
2858 |
+
805570882_sad_24312
|
2859 |
+
805570882_fear_42821
|
2860 |
+
805570882_fear_16134
|
2861 |
+
805570882_happy_36433
|
2862 |
+
805570882_surprise_63989
|
2863 |
+
805570882_sad_33398
|
2864 |
+
805570882_surprise_55438
|
2865 |
+
805570882_angry_55229
|
2866 |
+
805570882_surprise_36972
|
2867 |
+
805570882_fear_55610
|
2868 |
+
805570882_angry_66011
|
2869 |
+
805570882_angry_61056
|
2870 |
+
805570882_happy_54161
|
2871 |
+
805570882_angry_46856
|
2872 |
+
805570882_surprise_73883
|
2873 |
+
805570882_neutral_65086
|
2874 |
+
805570882_sad_44218
|
2875 |
+
805570882_neutral_23036
|
2876 |
+
805570882_surprise_37596
|
2877 |
+
805570882_happy_16205
|
2878 |
+
805570882_angry_55711
|
2879 |
+
805570882_sad_35891
|
2880 |
+
805570882_fear_49161
|
2881 |
+
805570882_surprise_74043
|
2882 |
+
805570882_angry_41026
|
2883 |
+
805570882_sad_21372
|
2884 |
+
805570882_angry_48428
|
2885 |
+
805570882_angry_65008
|
2886 |
+
805570882_happy_56627
|
2887 |
+
805570882_angry_56682
|
2888 |
+
805570882_surprise_41343
|
2889 |
+
805570882_neutral_35752
|
2890 |
+
805570882_angry_21416
|
2891 |
+
805570882_fear_15232
|
2892 |
+
805570882_fear_18329
|
2893 |
+
805570882_surprise_34852
|
2894 |
+
805570882_angry_75029
|
2895 |
+
805570882_surprise_37853
|
2896 |
+
805570882_happy_29492
|
2897 |
+
805570882_angry_37338
|
2898 |
+
805570882_surprise_74333
|
2899 |
+
805570882_fear_42912
|
2900 |
+
805570882_fear_23077
|
2901 |
+
805570882_fear_29652
|
2902 |
+
805570882_fear_44313
|
2903 |
+
805570882_neutral_74210
|
2904 |
+
805570882_angry_46183
|
2905 |
+
805570882_angry_34822
|
2906 |
+
805570882_surprise_41500
|
2907 |
+
805570882_sad_43356
|
2908 |
+
805570882_happy_43524
|
2909 |
+
805570882_neutral_44151
|
2910 |
+
805570882_sad_54921
|
2911 |
+
805570882_neutral_23191
|
2912 |
+
805570882_fear_26895
|
2913 |
+
805570882_happy_42836
|
2914 |
+
805570882_angry_33244
|
2915 |
+
805570882_surprise_55169
|
2916 |
+
805570882_angry_74535
|
2917 |
+
805570882_happy_65904
|
2918 |
+
805570882_happy_61098
|
2919 |
+
805570882_sad_43537
|
2920 |
+
805570882_angry_20270
|
2921 |
+
805570882_angry_29645
|
2922 |
+
805570882_fear_57474
|
2923 |
+
805570882_neutral_24535
|
2924 |
+
805570882_fear_54218
|
2925 |
+
805570882_happy_24996
|
2926 |
+
805570882_happy_48313
|
2927 |
+
805570882_surprise_44357
|
2928 |
+
805570882_surprise_45547
|
2929 |
+
805570882_neutral_44223
|
2930 |
+
805570882_sad_36924
|
2931 |
+
805570882_angry_63212
|
2932 |
+
805570882_happy_34551
|
2933 |
+
805570882_happy_24002
|
2934 |
+
805570882_fear_63804
|
2935 |
+
805570882_happy_46403
|
2936 |
+
805570882_surprise_31755
|
2937 |
+
805570882_neutral_41566
|
2938 |
+
805570882_neutral_44401
|
2939 |
+
805570882_neutral_55269
|
2940 |
+
805570882_sad_43432
|
2941 |
+
805570882_neutral_26459
|
2942 |
+
805570882_fear_15910
|
2943 |
+
805570882_sad_34699
|
2944 |
+
805570882_neutral_48805
|
2945 |
+
805570882_surprise_15003
|
2946 |
+
805570882_sad_66030
|
2947 |
+
805570882_angry_31742
|
2948 |
+
805570882_neutral_54239
|
2949 |
+
805570882_surprise_45007
|
2950 |
+
805570882_surprise_44400
|
2951 |
+
805570882_angry_31748
|
2952 |
+
805570882_neutral_14732
|
2953 |
+
805570882_neutral_29601
|
2954 |
+
805570882_happy_43634
|
2955 |
+
805570882_angry_55744
|
2956 |
+
805570882_fear_34835
|
2957 |
+
805570882_happy_24280
|
2958 |
+
805570882_fear_15881
|
2959 |
+
805570882_sad_15829
|
2960 |
+
805570882_surprise_36403
|
2961 |
+
805570882_angry_16341
|
2962 |
+
805570882_angry_70658
|
2963 |
+
805570882_neutral_57355
|
2964 |
+
805570882_neutral_23973
|
2965 |
+
805570882_angry_22996
|
2966 |
+
805570882_angry_42843
|
2967 |
+
805570882_fear_16641
|
2968 |
+
805570882_sad_54889
|
2969 |
+
805570882_surprise_57291
|
2970 |
+
805570882_surprise_28900
|
2971 |
+
805570882_happy_37635
|
2972 |
+
805570882_fear_46304
|
2973 |
+
805570882_surprise_19466
|
2974 |
+
805570882_angry_73857
|
2975 |
+
805570882_surprise_46611
|
2976 |
+
805570882_surprise_56538
|
2977 |
+
805570882_neutral_21202
|
2978 |
+
805570882_angry_27445
|
2979 |
+
805570882_happy_29613
|
2980 |
+
805570882_angry_19294
|
2981 |
+
805570882_angry_18344
|
2982 |
+
805570882_angry_35037
|
2983 |
+
805570882_surprise_36661
|
2984 |
+
805570882_happy_56537
|
2985 |
+
805570882_surprise_40461
|
2986 |
+
805570882_happy_46608
|
2987 |
+
805570882_happy_18218
|
2988 |
+
805570882_angry_34937
|
2989 |
+
805570882_sad_38101
|
2990 |
+
805570882_surprise_45796
|
2991 |
+
805570882_angry_65886
|
2992 |
+
805570882_fear_55795
|
2993 |
+
805570882_fear_57597
|
2994 |
+
805570882_happy_33126
|
2995 |
+
805570882_angry_24308
|
2996 |
+
805570882_angry_27183
|
2997 |
+
805570882_sad_37126
|
2998 |
+
805570882_sad_44661
|
2999 |
+
805570882_angry_31784
|
3000 |
+
805570882_happy_35084
|
3001 |
+
805570882_fear_61001
|
3002 |
+
805570882_sad_57482
|
3003 |
+
805570882_angry_41932
|
3004 |
+
805570882_angry_34867
|
3005 |
+
805570882_neutral_44677
|
3006 |
+
805570882_neutral_27202
|
3007 |
+
805570882_angry_33349
|
3008 |
+
805570882_angry_37831
|
3009 |
+
805570882_neutral_14872
|
3010 |
+
805570882_surprise_41884
|
3011 |
+
805570882_neutral_41604
|
3012 |
+
805570882_neutral_36220
|
3013 |
+
805570882_neutral_64840
|
3014 |
+
805570882_neutral_15484
|
3015 |
+
805570882_happy_41543
|
3016 |
+
805570882_neutral_57352
|
3017 |
+
805570882_happy_28619
|
3018 |
+
805570882_neutral_21264
|
3019 |
+
805570882_angry_37528
|
3020 |
+
805570882_surprise_36441
|
3021 |
+
805570882_fear_64032
|
3022 |
+
805570882_angry_36195
|
3023 |
+
805570882_surprise_44933
|
3024 |
+
805570882_neutral_58399
|
3025 |
+
805570882_angry_71018
|
3026 |
+
805570882_fear_44279
|
3027 |
+
805570882_neutral_17777
|
3028 |
+
805570882_sad_46527
|
3029 |
+
805570882_neutral_42989
|
3030 |
+
805570882_angry_26289
|
3031 |
+
805570882_neutral_24748
|
3032 |
+
805570882_surprise_57708
|
3033 |
+
805570882_angry_23914
|
3034 |
+
805570882_angry_31722
|
3035 |
+
805570882_sad_41586
|
3036 |
+
805570882_happy_38086
|
3037 |
+
805570882_neutral_15482
|
3038 |
+
805570882_surprise_37567
|
3039 |
+
805570882_angry_27571
|
3040 |
+
805570882_sad_55283
|
3041 |
+
805570882_angry_65859
|
3042 |
+
805570882_fear_36102
|
3043 |
+
805570882_angry_18575
|
3044 |
+
805570882_fear_57386
|
3045 |
+
805570882_surprise_23110
|
3046 |
+
805570882_happy_48919
|
3047 |
+
805570882_angry_34847
|
3048 |
+
805570882_neutral_18816
|
3049 |
+
805570882_fear_44028
|
3050 |
+
805570882_surprise_21450
|
3051 |
+
805570882_sad_63198
|
3052 |
+
805570882_sad_43168
|
3053 |
+
805570882_surprise_45029
|
3054 |
+
805570882_fear_37279
|
3055 |
+
805570882_angry_58484
|
3056 |
+
805570882_surprise_34390
|
3057 |
+
805570882_neutral_46615
|
3058 |
+
805570882_neutral_36721
|
3059 |
+
805570882_angry_21224
|
3060 |
+
805570882_surprise_38309
|
3061 |
+
805570882_happy_22725
|
3062 |
+
805570882_angry_33085
|
3063 |
+
805570882_sad_38002
|
3064 |
+
805570882_neutral_65777
|
3065 |
+
805570882_neutral_44761
|
3066 |
+
805570882_angry_16361
|
3067 |
+
805570882_fear_14419
|
3068 |
+
805570882_angry_63751
|
3069 |
+
805570882_neutral_28417
|
3070 |
+
805570882_surprise_17733
|
3071 |
+
805570882_sad_61230
|
3072 |
+
805570882_fear_14667
|
3073 |
+
805570882_fear_61475
|
3074 |
+
805570882_fear_35042
|
3075 |
+
805570882_surprise_46657
|
3076 |
+
805570882_surprise_23909
|
3077 |
+
805570882_happy_64883
|
3078 |
+
805570882_fear_48163
|
3079 |
+
805570882_sad_37067
|
3080 |
+
805570882_angry_17874
|
3081 |
+
805570882_sad_45773
|
3082 |
+
805570882_happy_37534
|
3083 |
+
805570882_surprise_46548
|
3084 |
+
805570882_fear_20357
|
3085 |
+
805570882_sad_34756
|
3086 |
+
805570882_sad_56618
|
3087 |
+
805570882_neutral_54393
|
3088 |
+
805570882_fear_41922
|
3089 |
+
805570882_neutral_24475
|
3090 |
+
805570882_neutral_17968
|
3091 |
+
805570882_angry_24430
|
3092 |
+
805570882_angry_31865
|
3093 |
+
805570882_fear_57559
|
3094 |
+
805570882_angry_73889
|
3095 |
+
805570882_surprise_48905
|
3096 |
+
805570882_surprise_42945
|
3097 |
+
805570882_neutral_23222
|
3098 |
+
805570882_surprise_14994
|
3099 |
+
805570882_surprise_35761
|
3100 |
+
805570882_angry_36555
|
3101 |
+
805570882_sad_46816
|
3102 |
+
805570882_angry_46201
|
3103 |
+
805570882_neutral_43220
|
3104 |
+
805570882_surprise_22791
|
3105 |
+
805570882_neutral_46613
|
3106 |
+
805570882_neutral_15514
|
3107 |
+
805570882_fear_40961
|
3108 |
+
805570882_sad_54391
|
3109 |
+
805570882_angry_55678
|
3110 |
+
805570882_surprise_58499
|
3111 |
+
805570882_angry_36830
|
3112 |
+
805570882_sad_63285
|
3113 |
+
805570882_sad_70919
|
3114 |
+
805570882_neutral_20281
|
3115 |
+
805570882_sad_16273
|
3116 |
+
805570882_angry_36468
|
3117 |
+
805570882_fear_36052
|
3118 |
+
805570882_sad_34726
|
3119 |
+
805570882_neutral_16286
|
3120 |
+
805570882_angry_61534
|
3121 |
+
805570882_angry_37370
|
3122 |
+
805570882_fear_54201
|
3123 |
+
805570882_surprise_34766
|
3124 |
+
805570882_surprise_14520
|
3125 |
+
805570882_neutral_19001
|
3126 |
+
805570882_neutral_41029
|
3127 |
+
805570882_fear_63216
|
3128 |
+
805570882_sad_54923
|
3129 |
+
805570882_fear_19386
|
3130 |
+
805570882_surprise_70901
|
3131 |
+
805570882_sad_31854
|
3132 |
+
805570882_neutral_46944
|
3133 |
+
805570882_neutral_56605
|
3134 |
+
805570882_surprise_24261
|
3135 |
+
805570882_surprise_43416
|
3136 |
+
805570882_happy_45947
|
3137 |
+
805570882_angry_70792
|
3138 |
+
805570882_neutral_24454
|
3139 |
+
805570882_fear_44478
|
3140 |
+
805570882_happy_63103
|
3141 |
+
805570882_sad_23234
|
3142 |
+
805570882_fear_37072
|
3143 |
+
805570882_neutral_45795
|
3144 |
+
805570882_surprise_14840
|
3145 |
+
805570882_sad_36831
|
3146 |
+
805570882_fear_19237
|
3147 |
+
805570882_neutral_17300
|
3148 |
+
805570882_angry_34850
|
3149 |
+
805570882_happy_31917
|
3150 |
+
805570882_neutral_29629
|
3151 |
+
805570882_surprise_42085
|
3152 |
+
805570882_sad_70640
|
3153 |
+
805570882_sad_37579
|
3154 |
+
805570882_angry_41944
|
3155 |
+
805570882_sad_23976
|
3156 |
+
805570882_happy_55242
|
3157 |
+
805570882_fear_14737
|
3158 |
+
805570882_happy_42941
|
3159 |
+
805570882_surprise_55054
|
3160 |
+
805570882_angry_19978
|
3161 |
+
805570882_angry_74198
|
3162 |
+
805570882_fear_40589
|
3163 |
+
805570882_neutral_70750
|
3164 |
+
805570882_happy_40868
|
3165 |
+
805570882_happy_38233
|
3166 |
+
805570882_angry_41263
|
3167 |
+
805570882_angry_14716
|
3168 |
+
805570882_angry_28329
|
3169 |
+
805570882_angry_20465
|
3170 |
+
805570882_angry_34734
|
3171 |
+
805570882_neutral_64860
|
3172 |
+
805570882_angry_63956
|
3173 |
+
805570882_happy_48241
|
3174 |
+
805570882_surprise_26994
|
3175 |
+
805570882_fear_37057
|
3176 |
+
805570882_fear_17743
|
3177 |
+
805570882_angry_24985
|
3178 |
+
805570882_fear_29556
|
3179 |
+
805570882_surprise_46957
|
3180 |
+
805570882_surprise_57833
|
3181 |
+
805570882_neutral_19305
|
3182 |
+
805570882_angry_35169
|
3183 |
+
805570882_fear_57811
|
3184 |
+
805570882_happy_26985
|
3185 |
+
805570882_fear_29427
|
3186 |
+
805570882_fear_64017
|
3187 |
+
805570882_neutral_35156
|
3188 |
+
805570882_happy_34826
|
3189 |
+
805570882_neutral_43228
|
3190 |
+
805570882_surprise_36526
|
3191 |
+
805570882_sad_27636
|
3192 |
+
805570882_neutral_61766
|
3193 |
+
805570882_surprise_16371
|
3194 |
+
805570882_neutral_26414
|
3195 |
+
805570882_neutral_37225
|
3196 |
+
805570882_sad_19864
|
3197 |
+
805570882_surprise_63820
|
3198 |
+
805570882_angry_23922
|
3199 |
+
805570882_surprise_75124
|
3200 |
+
805570882_sad_54268
|
3201 |
+
805570882_neutral_24572
|
3202 |
+
805570882_happy_37331
|
3203 |
+
805570882_neutral_27325
|
3204 |
+
805570882_neutral_61596
|
3205 |
+
805570882_sad_19371
|
3206 |
+
805570882_neutral_28440
|
3207 |
+
805570882_neutral_58398
|
3208 |
+
805570882_angry_17845
|
3209 |
+
805570882_angry_38054
|
3210 |
+
805570882_sad_64756
|
3211 |
+
805570882_angry_27606
|
3212 |
+
805570882_fear_64785
|
3213 |
+
805570882_angry_17876
|
3214 |
+
805570882_angry_40775
|
3215 |
+
399172782_happy_73593
|
3216 |
+
399172782_sad_65138
|
3217 |
+
399172782_surprise_36154
|
3218 |
+
399172782_angry_26197
|
3219 |
+
399172782_angry_26851
|
3220 |
+
399172782_surprise_69860
|
3221 |
+
399172782_fear_45465
|
3222 |
+
399172782_sad_61916
|
3223 |
+
399172782_angry_57855
|
3224 |
+
399172782_sad_64636
|
3225 |
+
399172782_neutral_19617
|
3226 |
+
399172782_surprise_23787
|
3227 |
+
399172782_happy_64346
|
3228 |
+
399172782_sad_19777
|
3229 |
+
399172782_surprise_73551
|
3230 |
+
399172782_neutral_70247
|
3231 |
+
399172782_surprise_54644
|
3232 |
+
399172782_neutral_58107
|
3233 |
+
399172782_angry_61939
|
3234 |
+
399172782_angry_64651
|
3235 |
+
399172782_fear_61898
|
3236 |
+
399172782_surprise_58296
|
3237 |
+
399172782_angry_69702
|
3238 |
+
399172782_surprise_26223
|
3239 |
+
399172782_fear_49197
|
3240 |
+
399172782_surprise_62017
|
3241 |
+
399172782_neutral_65346
|
3242 |
+
399172782_sad_25408
|
3243 |
+
399172782_angry_55097
|
3244 |
+
399172782_sad_69732
|
3245 |
+
399172782_angry_72399
|
3246 |
+
399172782_neutral_68243
|
3247 |
+
399172782_happy_20516
|
3248 |
+
399172782_fear_57709
|
3249 |
+
399172782_fear_21586
|
3250 |
+
399172782_angry_56016
|
3251 |
+
399172782_angry_26699
|
3252 |
+
399172782_fear_49581
|
3253 |
+
399172782_angry_61956
|
3254 |
+
399172782_neutral_26843
|
3255 |
+
399172782_surprise_21652
|
3256 |
+
399172782_fear_55502
|
3257 |
+
399172782_surprise_56362
|
3258 |
+
399172782_sad_61865
|
3259 |
+
399172782_angry_70319
|
3260 |
+
399172782_happy_72504
|
3261 |
+
399172782_angry_61831
|
3262 |
+
399172782_surprise_45284
|
3263 |
+
399172782_sad_69893
|
3264 |
+
399172782_neutral_57605
|
3265 |
+
399172782_fear_69365
|
3266 |
+
399172782_angry_61977
|
3267 |
+
399172782_surprise_65525
|
3268 |
+
399172782_neutral_61966
|
3269 |
+
399172782_neutral_70302
|
3270 |
+
399172782_sad_62656
|
3271 |
+
399172782_fear_23803
|
3272 |
+
399172782_neutral_69630
|
3273 |
+
399172782_sad_57222
|
3274 |
+
399172782_neutral_70094
|
3275 |
+
399172782_fear_19666
|
3276 |
+
399172782_fear_45311
|
3277 |
+
399172782_angry_49086
|
3278 |
+
399172782_surprise_45091
|
3279 |
+
399172782_angry_72356
|
3280 |
+
399172782_sad_57654
|
3281 |
+
399172782_surprise_58135
|
3282 |
+
399172782_surprise_20873
|
3283 |
+
399172782_happy_21508
|
3284 |
+
399172782_sad_70375
|
3285 |
+
399172782_fear_20849
|
3286 |
+
399172782_happy_70008
|
3287 |
+
399172782_happy_62668
|
3288 |
+
399172782_angry_62562
|
3289 |
+
399172782_fear_65254
|
3290 |
+
399172782_sad_45494
|
3291 |
+
399172782_angry_49376
|
3292 |
+
399172782_sad_61995
|
3293 |
+
399172782_fear_57961
|
3294 |
+
399172782_angry_55973
|
3295 |
+
399172782_happy_21648
|
3296 |
+
399172782_fear_45233
|
3297 |
+
399172782_angry_54654
|
3298 |
+
399172782_surprise_45298
|
3299 |
+
399172782_neutral_45106
|
3300 |
+
399172782_angry_19718
|
3301 |
+
399172782_fear_64261
|
3302 |
+
399172782_surprise_49604
|
3303 |
+
399172782_happy_54795
|
3304 |
+
399172782_sad_58128
|
3305 |
+
399172782_surprise_20700
|
3306 |
+
399172782_sad_57085
|
3307 |
+
399172782_angry_49554
|
3308 |
+
399172782_happy_55984
|
3309 |
+
399172782_neutral_72596
|
3310 |
+
399172782_surprise_69452
|
3311 |
+
399172782_neutral_54493
|
3312 |
+
399172782_angry_73534
|
3313 |
+
399172782_angry_35202
|
3314 |
+
399172782_angry_69823
|
3315 |
+
399172782_sad_69738
|
3316 |
+
399172782_happy_58136
|
3317 |
+
399172782_angry_57797
|
3318 |
+
399172782_neutral_19623
|
3319 |
+
399172782_neutral_20687
|
3320 |
+
399172782_happy_70406
|
3321 |
+
399172782_sad_55955
|
3322 |
+
399172782_surprise_49485
|
3323 |
+
399172782_sad_45117
|
3324 |
+
399172782_neutral_54738
|
3325 |
+
399172782_sad_61948
|
3326 |
+
399172782_neutral_43709
|
3327 |
+
399172782_fear_20788
|
3328 |
+
399172782_fear_62229
|
3329 |
+
399172782_happy_45297
|
3330 |
+
399172782_neutral_70567
|
3331 |
+
399172782_angry_20717
|
3332 |
+
399172782_neutral_54562
|
3333 |
+
399172782_surprise_57301
|
3334 |
+
399172782_happy_62596
|
3335 |
+
399172782_angry_65222
|
3336 |
+
399172782_neutral_58183
|
3337 |
+
399172782_happy_65511
|
3338 |
+
399172782_fear_58200
|
3339 |
+
399172782_surprise_72340
|
3340 |
+
399172782_angry_70450
|
3341 |
+
399172782_neutral_64284
|
3342 |
+
399172782_neutral_55276
|
3343 |
+
399172782_sad_65483
|
3344 |
+
399172782_surprise_45995
|
3345 |
+
399172782_happy_26805
|
3346 |
+
399172782_angry_54767
|
3347 |
+
399172782_happy_57841
|
3348 |
+
399172782_happy_65471
|
3349 |
+
399172782_surprise_26205
|
3350 |
+
399172782_fear_23989
|
3351 |
+
399172782_fear_64125
|
3352 |
+
399172782_surprise_64387
|
3353 |
+
399172782_angry_25699
|
3354 |
+
399172782_sad_56032
|
3355 |
+
399172782_fear_72685
|
3356 |
+
399172782_fear_56136
|
3357 |
+
399172782_angry_23745
|
3358 |
+
399172782_sad_19672
|
3359 |
+
399172782_neutral_43702
|
3360 |
+
399172782_happy_56984
|
3361 |
+
399172782_sad_64441
|
3362 |
+
399172782_neutral_57984
|
3363 |
+
399172782_angry_72647
|
3364 |
+
399172782_happy_69716
|
3365 |
+
399172782_happy_61798
|
3366 |
+
399172782_neutral_21611
|
3367 |
+
399172782_fear_64444
|
3368 |
+
399172782_sad_73707
|
3369 |
+
399172782_surprise_56501
|
3370 |
+
399172782_sad_70316
|
3371 |
+
399172782_neutral_54814
|
3372 |
+
399172782_angry_57019
|
3373 |
+
399172782_sad_49516
|
3374 |
+
399172782_neutral_57730
|
3375 |
+
399172782_surprise_70545
|
3376 |
+
399172782_angry_70337
|
3377 |
+
399172782_neutral_24117
|
3378 |
+
399172782_surprise_64492
|
3379 |
+
399172782_surprise_62687
|
3380 |
+
399172782_surprise_25680
|
3381 |
+
399172782_neutral_23862
|
3382 |
+
399172782_sad_23730
|
3383 |
+
399172782_angry_58262
|
3384 |
+
399172782_fear_36136
|
3385 |
+
399172782_neutral_57827
|
3386 |
+
399172782_surprise_70106
|
3387 |
+
399172782_sad_36132
|
3388 |
+
399172782_fear_48850
|
3389 |
+
399172782_sad_49523
|
3390 |
+
399172782_neutral_26841
|
3391 |
+
399172782_sad_25325
|
3392 |
+
399172782_angry_19781
|
3393 |
+
399172782_surprise_64191
|
3394 |
+
399172782_angry_19701
|
3395 |
+
399172782_neutral_49496
|
3396 |
+
399172782_surprise_65506
|
3397 |
+
399172782_sad_19749
|
3398 |
+
399172782_fear_62114
|
3399 |
+
399172782_surprise_54692
|
3400 |
+
399172782_angry_22164
|
3401 |
+
399172782_neutral_19825
|
3402 |
+
399172782_surprise_62009
|
3403 |
+
399172782_fear_64619
|
3404 |
+
399172782_surprise_26867
|
3405 |
+
399172782_fear_57983
|
3406 |
+
399172782_sad_73823
|
3407 |
+
399172782_fear_61942
|
3408 |
+
399172782_neutral_25697
|
3409 |
+
399172782_happy_57743
|
3410 |
+
399172782_angry_72544
|
3411 |
+
399172782_surprise_20674
|
3412 |
+
399172782_neutral_54770
|
3413 |
+
399172782_angry_21543
|
3414 |
+
399172782_neutral_23794
|
3415 |
+
399172782_fear_56067
|
3416 |
+
399172782_surprise_55373
|
3417 |
+
399172782_fear_70120
|
3418 |
+
399172782_surprise_57773
|
3419 |
+
399172782_fear_58091
|
3420 |
+
399172782_angry_65282
|
3421 |
+
399172782_sad_57150
|
3422 |
+
399172782_angry_25047
|
3423 |
+
399172782_fear_69676
|
3424 |
+
399172782_surprise_57687
|
3425 |
+
399172782_happy_19679
|
3426 |
+
399172782_happy_45073
|
3427 |
+
399172782_neutral_26758
|
3428 |
+
399172782_surprise_56147
|
3429 |
+
399172782_angry_70544
|
3430 |
+
399172782_angry_19757
|
3431 |
+
399172782_sad_62200
|
3432 |
+
399172782_sad_64687
|
3433 |
+
399172782_happy_57582
|
3434 |
+
399172782_neutral_73465
|
3435 |
+
399172782_sad_26216
|
3436 |
+
399172782_happy_65332
|
3437 |
+
399172782_happy_20590
|
3438 |
+
399172782_neutral_23699
|
3439 |
+
399172782_happy_54656
|
3440 |
+
399172782_sad_62267
|
3441 |
+
399172782_sad_19808
|
3442 |
+
399172782_fear_65481
|
3443 |
+
399172782_happy_65541
|
3444 |
+
399172782_angry_69551
|
3445 |
+
399172782_surprise_69638
|
3446 |
+
399172782_sad_70529
|
3447 |
+
399172782_angry_60840
|
3448 |
+
399172782_happy_64415
|
3449 |
+
399172782_happy_49477
|
3450 |
+
399172782_surprise_61858
|
3451 |
+
399172782_happy_60845
|
3452 |
+
399172782_surprise_20809
|
3453 |
+
399172782_angry_19756
|
3454 |
+
399172782_fear_73716
|
3455 |
+
399172782_sad_72252
|
3456 |
+
399172782_angry_70250
|
3457 |
+
399172782_surprise_23749
|
3458 |
+
399172782_sad_73591
|
3459 |
+
399172782_fear_64128
|
3460 |
+
399172782_angry_55360
|
3461 |
+
399172782_sad_55378
|
3462 |
+
399172782_sad_45279
|
3463 |
+
399172782_angry_68043
|
3464 |
+
399172782_surprise_20671
|
3465 |
+
399172782_sad_14234
|
3466 |
+
399172782_fear_56291
|
3467 |
+
399172782_surprise_70334
|
3468 |
+
399172782_happy_24003
|
3469 |
+
399172782_sad_35213
|
3470 |
+
399172782_surprise_54533
|
3471 |
+
399172782_happy_68115
|
3472 |
+
399172782_angry_69890
|
3473 |
+
399172782_neutral_69332
|
3474 |
+
399172782_angry_61832
|
3475 |
+
399172782_sad_26752
|
3476 |
+
399172782_fear_26731
|
3477 |
+
399172782_sad_54667
|
3478 |
+
399172782_sad_64313
|
3479 |
+
399172782_sad_54448
|
3480 |
+
399172782_angry_25358
|
3481 |
+
399172782_sad_56109
|
3482 |
+
399172782_neutral_62536
|
3483 |
+
399172782_surprise_61971
|
3484 |
+
399172782_neutral_72282
|
3485 |
+
399172782_sad_49469
|
3486 |
+
399172782_happy_65243
|
3487 |
+
399172782_sad_14264
|
3488 |
+
399172782_neutral_54621
|
3489 |
+
399172782_surprise_19836
|
3490 |
+
399172782_fear_62150
|
3491 |
+
399172782_surprise_54616
|
3492 |
+
399172782_surprise_48863
|
3493 |
+
399172782_angry_56047
|
3494 |
+
399172782_neutral_64420
|
3495 |
+
399172782_surprise_26744
|
3496 |
+
399172782_neutral_21549
|
3497 |
+
399172782_happy_60853
|
3498 |
+
399172782_angry_45156
|
3499 |
+
399172782_fear_62658
|
3500 |
+
399172782_happy_70574
|
3501 |
+
399172782_surprise_56450
|
3502 |
+
399172782_happy_69540
|
3503 |
+
399172782_surprise_61946
|
3504 |
+
399172782_fear_73547
|
3505 |
+
399172782_happy_62465
|
3506 |
+
399172782_neutral_70362
|
3507 |
+
399172782_fear_70611
|
3508 |
+
399172782_sad_57871
|
3509 |
+
399172782_neutral_62432
|
3510 |
+
399172782_angry_70569
|
3511 |
+
399172782_fear_20799
|
3512 |
+
399172782_happy_49600
|
3513 |
+
399172782_neutral_23784
|
3514 |
+
399172782_neutral_25689
|
3515 |
+
399172782_angry_56197
|
3516 |
+
399172782_sad_72379
|
3517 |
+
399172782_neutral_56364
|
3518 |
+
399172782_angry_14251
|
3519 |
+
399172782_happy_55490
|
3520 |
+
399172782_sad_70257
|
3521 |
+
399172782_fear_56282
|
3522 |
+
399172782_neutral_25062
|
3523 |
+
399172782_fear_73679
|
3524 |
+
399172782_fear_58105
|
3525 |
+
399172782_happy_62431
|
3526 |
+
399172782_happy_65329
|
3527 |
+
399172782_happy_54573
|
3528 |
+
399172782_angry_58223
|
3529 |
+
399172782_fear_56074
|
3530 |
+
399172782_neutral_72468
|
3531 |
+
399172782_fear_65432
|
3532 |
+
399172782_happy_57903
|
3533 |
+
399172782_fear_64632
|
3534 |
+
399172782_happy_19762
|
3535 |
+
399172782_happy_45098
|
3536 |
+
399172782_sad_65542
|
3537 |
+
399172782_sad_56286
|
3538 |
+
399172782_surprise_72346
|
3539 |
+
399172782_angry_23788
|
3540 |
+
399172782_angry_45490
|
3541 |
+
399172782_sad_58019
|
3542 |
+
399172782_neutral_45249
|
3543 |
+
399172782_happy_64342
|
3544 |
+
399172782_surprise_72519
|
3545 |
+
399172782_surprise_21576
|
3546 |
+
399172782_happy_54648
|
3547 |
+
399172782_fear_45092
|
3548 |
+
399172782_angry_45210
|
3549 |
+
399172782_angry_62195
|
3550 |
+
399172782_sad_25350
|
3551 |
+
399172782_neutral_68298
|
3552 |
+
399172782_angry_68016
|
3553 |
+
399172782_fear_45341
|
3554 |
+
399172782_sad_20519
|
3555 |
+
399172782_surprise_60852
|
3556 |
+
399172782_sad_57219
|
3557 |
+
399172782_surprise_45128
|
3558 |
+
399172782_surprise_62509
|
3559 |
+
399172782_happy_64396
|
3560 |
+
399172782_happy_68160
|
3561 |
+
399172782_fear_72320
|
3562 |
+
399172782_neutral_35203
|
3563 |
+
399172782_neutral_43719
|
3564 |
+
399172782_neutral_65545
|
3565 |
+
399172782_happy_62254
|
3566 |
+
399172782_happy_23816
|
3567 |
+
399172782_neutral_54657
|
3568 |
+
399172782_fear_56049
|
3569 |
+
399172782_fear_25028
|
3570 |
+
399172782_sad_64246
|
3571 |
+
399172782_angry_26682
|
3572 |
+
399172782_angry_69563
|
3573 |
+
399172782_happy_20800
|
3574 |
+
399172782_sad_70057
|
3575 |
+
399172782_surprise_19726
|
3576 |
+
399172782_happy_58143
|
3577 |
+
399172782_sad_56205
|
3578 |
+
399172782_sad_57024
|
3579 |
+
399172782_neutral_69857
|
3580 |
+
399172782_fear_56108
|
3581 |
+
399172782_happy_20555
|
3582 |
+
399172782_fear_20874
|
3583 |
+
399172782_surprise_58203
|
3584 |
+
399172782_fear_73643
|
3585 |
+
399172782_sad_57919
|
3586 |
+
399172782_angry_70563
|
3587 |
+
399172782_happy_70329
|
3588 |
+
399172782_angry_64162
|
3589 |
+
399172782_fear_70385
|
3590 |
+
399172782_neutral_61856
|
3591 |
+
399172782_surprise_65458
|
3592 |
+
399172782_angry_54709
|
3593 |
+
399172782_angry_69462
|
3594 |
+
399172782_sad_73548
|
3595 |
+
399172782_angry_64540
|
3596 |
+
399172782_happy_45309
|
3597 |
+
399172782_neutral_68215
|
3598 |
+
399172782_angry_19753
|
3599 |
+
399172782_fear_73472
|
3600 |
+
399172782_angry_57962
|
3601 |
+
399172782_angry_55458
|
3602 |
+
399172782_neutral_70528
|
3603 |
+
399172782_angry_26692
|
3604 |
+
399172782_sad_45348
|
3605 |
+
399172782_surprise_72308
|
3606 |
+
399172782_surprise_58150
|
3607 |
+
399172782_sad_64616
|
3608 |
+
399172782_fear_25035
|
3609 |
+
399172782_fear_61905
|
3610 |
+
399172782_surprise_45324
|
3611 |
+
399172782_surprise_57293
|
3612 |
+
399172782_angry_58022
|
3613 |
+
399172782_neutral_73785
|
3614 |
+
399172782_sad_57152
|
3615 |
+
399172782_happy_25023
|
3616 |
+
399172782_neutral_64157
|
3617 |
+
399172782_neutral_73526
|
3618 |
+
399172782_fear_25285
|
3619 |
+
399172782_fear_70277
|
3620 |
+
399172782_happy_69573
|
3621 |
+
399172782_happy_54471
|
3622 |
+
399172782_angry_55032
|
3623 |
+
399172782_angry_23731
|
3624 |
+
399172782_happy_70515
|
3625 |
+
399172782_fear_22110
|
3626 |
+
399172782_happy_55181
|
3627 |
+
399172782_fear_58175
|
3628 |
+
399172782_neutral_43668
|
3629 |
+
399172782_happy_45470
|
3630 |
+
399172782_fear_69814
|
3631 |
+
399172782_neutral_43690
|
3632 |
+
399172782_fear_26789
|
3633 |
+
399172782_fear_56457
|
3634 |
+
399172782_neutral_25294
|
3635 |
+
399172782_happy_49468
|
3636 |
+
399172782_surprise_68075
|
3637 |
+
399172782_surprise_61930
|
3638 |
+
399172782_surprise_26735
|
3639 |
+
399172782_angry_57071
|
3640 |
+
399172782_surprise_62039
|
3641 |
+
399172782_neutral_21633
|
3642 |
+
399172782_sad_58147
|
3643 |
+
399172782_sad_21510
|
3644 |
+
399172782_fear_72348
|
3645 |
+
399172782_angry_62032
|
3646 |
+
399172782_sad_62138
|
3647 |
+
399172782_surprise_70193
|
3648 |
+
399172782_neutral_25163
|
3649 |
+
399172782_surprise_25194
|
3650 |
+
399172782_happy_55314
|
3651 |
+
399172782_fear_65318
|
3652 |
+
399172782_angry_70615
|
3653 |
+
399172782_neutral_73586
|
3654 |
+
399172782_surprise_19791
|
3655 |
+
399172782_neutral_45528
|
3656 |
+
399172782_fear_45099
|
3657 |
+
399172782_angry_60851
|
3658 |
+
399172782_angry_62474
|
3659 |
+
399172782_happy_62258
|
3660 |
+
399172782_neutral_62214
|
3661 |
+
399172782_angry_64608
|
3662 |
+
399172782_fear_54558
|
3663 |
+
399172782_fear_69839
|
3664 |
+
399172782_happy_69915
|
3665 |
+
399172782_happy_69804
|
3666 |
+
399172782_angry_69507
|
3667 |
+
399172782_fear_61825
|
3668 |
+
399172782_neutral_56175
|
3669 |
+
399172782_fear_68100
|
3670 |
+
399172782_surprise_55510
|
3671 |
+
399172782_happy_25459
|
3672 |
+
399172782_happy_14235
|
3673 |
+
399172782_fear_61833
|
3674 |
+
399172782_neutral_62464
|
3675 |
+
399172782_sad_64354
|
3676 |
+
399172782_happy_46007
|
3677 |
+
399172782_angry_73710
|
3678 |
+
399172782_neutral_73605
|
3679 |
+
399172782_fear_19759
|
3680 |
+
399172782_angry_19761
|
3681 |
+
399172782_fear_61923
|
3682 |
+
399172782_fear_69677
|
3683 |
+
399172782_fear_20812
|
3684 |
+
399172782_angry_43732
|
3685 |
+
399172782_sad_65451
|
3686 |
+
399172782_surprise_64546
|
3687 |
+
399172782_happy_57145
|
3688 |
+
399172782_fear_26727
|
3689 |
+
399172782_angry_45545
|
3690 |
+
399172782_surprise_61852
|
3691 |
+
399172782_surprise_56123
|
3692 |
+
399172782_surprise_26742
|
3693 |
+
399172782_surprise_69557
|
3694 |
+
399172782_neutral_62411
|
3695 |
+
399172782_neutral_20567
|
3696 |
+
399172782_neutral_56266
|
3697 |
+
399172782_happy_43712
|
3698 |
+
399172782_sad_70463
|
3699 |
+
399172782_neutral_70050
|
3700 |
+
399172782_neutral_48922
|
3701 |
+
399172782_neutral_54561
|
3702 |
+
399172782_neutral_64273
|
3703 |
+
399172782_sad_45256
|
3704 |
+
399172782_neutral_21535
|
3705 |
+
399172782_neutral_20834
|
3706 |
+
399172782_neutral_72611
|
3707 |
+
399172782_happy_46022
|
3708 |
+
399172782_fear_22058
|
3709 |
+
399172782_happy_26768
|
3710 |
+
399172782_angry_60864
|
3711 |
+
399172782_neutral_60901
|
3712 |
+
399172782_angry_69363
|
3713 |
+
399172782_neutral_57108
|
3714 |
+
399172782_sad_26770
|
3715 |
+
399172782_neutral_69867
|
3716 |
+
399172782_fear_61801
|
3717 |
+
399172782_happy_62557
|
3718 |
+
399172782_sad_64168
|
3719 |
+
399172782_angry_57380
|
3720 |
+
399172782_angry_60874
|
3721 |
+
399172782_fear_56488
|
3722 |
+
399172782_happy_58011
|
3723 |
+
399172782_angry_18425
|
3724 |
+
399172782_neutral_68188
|
3725 |
+
399172782_sad_45267
|
3726 |
+
399172782_sad_64506
|
3727 |
+
399172782_happy_72711
|
3728 |
+
399172782_happy_69516
|
3729 |
+
399172782_fear_62293
|
3730 |
+
399172782_fear_69979
|
filelists/all_spks/feats.ark
ADDED
Binary file (449 kB). View file
|
|
filelists/all_spks/feats.scp
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
utt1 /Users/Desktop/code/GradTTS-emo/filelists/example/feats.ark:5
|
2 |
+
utt2 /Users/Desktop/code/GradTTS-emo/filelists/example/feats.ark:78745
|
3 |
+
utt3 /Users/Desktop/code/GradTTS-emo/filelists/example/feats.ark:370605
|
filelists/all_spks/text
ADDED
The diff for this file is too large to render.
See raw diff
|
|
filelists/all_spks/train_utts.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
filelists/all_spks/utt2emo.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
filelists/all_spks/utt2spk.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
filelists/inference_generated.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Августың аяқ жағына мүсінші тәңірия Венераның баласы Амур бейнесін орналастырған.|0|0
|
2 |
+
Қарғыс айтқалы жатыр ғой, өз балаларына!– десіп үркіп үн салды.|1|1
|
g_01720000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa0a76a49573909b968708717138849d68d9627cdf03307d00c7bd49278dc573
|
3 |
+
size 55824433
|
grad_uncond.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:228736e3807fcd84030ec03daf1124094e6388e7a08ccabd87354d93a2e7fe0c
|
3 |
+
size 69784515
|
grad_uncond_10k_conf.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbc5ffac171e269fd08bb0313022cb2c3c35e9a9cc4620ef4992fd79cf6e61a8
|
3 |
+
size 69787322
|
grad_uncond_cnn_001.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bc2ba56e0be17fa5d95c55b1c9bedfcd45a45edf865d1cb3f30a1405e645f67
|
3 |
+
size 69787003
|
inference_EMA.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import datetime as dt
|
4 |
+
import numpy as np
|
5 |
+
from scipy.io.wavfile import write
|
6 |
+
import IPython.display as ipd
|
7 |
+
import glob
|
8 |
+
import torch
|
9 |
+
from pydub import AudioSegment
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from text import text_to_sequence, cmudict
|
12 |
+
from text.symbols import symbols
|
13 |
+
import utils_data
|
14 |
+
import re
|
15 |
+
from num2words import num2words
|
16 |
+
from kaldiio import WriteHelper
|
17 |
+
import os
|
18 |
+
from tqdm import tqdm
|
19 |
+
from text import text_to_sequence, convert_text
|
20 |
+
from model import GradTTSWithEmo
|
21 |
+
import utils_data as utils
|
22 |
+
from attrdict import AttrDict
|
23 |
+
from models import Generator as HiFiGAN
|
24 |
+
|
25 |
+
|
26 |
+
HIFIGAN_CONFIG = './configs/hifigan-config.json'
|
27 |
+
HIFIGAN_CHECKPT = './checkpts/hifigan.pt'
|
28 |
+
|
29 |
+
|
30 |
+
if __name__ == '__main__':
|
31 |
+
hps, args = utils.get_hparams_decode()
|
32 |
+
device = torch.device('cpu' if not torch.cuda.is_available() else "cuda")
|
33 |
+
ckpt = utils_data.latest_checkpoint_path(hps.model_dir, "EMA_grad_*.pt")
|
34 |
+
print(ckpt)
|
35 |
+
model = GradTTSWithEmo(**hps.model).to(device)
|
36 |
+
logger = utils_data.get_logger(hps.model_dir, "inference.log")
|
37 |
+
utils_data.load_checkpoint(ckpt, model, None)
|
38 |
+
_ = model.cuda().eval()
|
39 |
+
|
40 |
+
print('Initializing HiFi-GAN...')
|
41 |
+
with open(HIFIGAN_CONFIG) as f:
|
42 |
+
h = AttrDict(json.load(f))
|
43 |
+
vocoder = HiFiGAN(h)
|
44 |
+
vocoder.load_state_dict(torch.load(HIFIGAN_CHECKPT, map_location=lambda loc, storage: loc)['generator'])
|
45 |
+
_ = vocoder.cuda().eval()
|
46 |
+
vocoder.remove_weight_norm()
|
47 |
+
|
48 |
+
emos = sorted(["angry", "surprise", "fear", "happy", "neutral", "sad"])
|
49 |
+
speakers = ['M1', 'F1', 'M2']
|
50 |
+
|
51 |
+
with open(args.file, 'r', encoding='utf-8') as f:
|
52 |
+
texts = [line.strip() for line in f.readlines()]
|
53 |
+
|
54 |
+
replace_nums = []
|
55 |
+
for i in texts:
|
56 |
+
replace_nums.append(i.split('|', 1))
|
57 |
+
|
58 |
+
nums2word = [re.sub('(\d+)', lambda m: num2words(m.group(), lang='kz'), sentence) for sentence in np.array(replace_nums)[:, 0]]
|
59 |
+
# Speakers id.
|
60 |
+
# M1 = 0
|
61 |
+
# F1 = 1
|
62 |
+
# M2 = 2
|
63 |
+
text2speech = []
|
64 |
+
for i, j in zip(nums2word, np.array(replace_nums)[:, 1]):
|
65 |
+
text2speech.append(f'{i}|{j}')
|
66 |
+
|
67 |
+
for i, line in enumerate(text2speech):
|
68 |
+
emo_i = int(line.split('|')[1])
|
69 |
+
control_spk_id = int(line.split('|')[2])
|
70 |
+
control_emo_id = emos.index(emos[emo_i])
|
71 |
+
text = line.split('|')[0]
|
72 |
+
with torch.no_grad():
|
73 |
+
### define emotion
|
74 |
+
emo = torch.LongTensor([control_emo_id]).to(device)
|
75 |
+
sid = torch.LongTensor([control_spk_id]).to(device)
|
76 |
+
text_padded, text_len = convert_text(text)
|
77 |
+
y_enc, y_dec, attn = model.forward(text_padded, text_len,
|
78 |
+
n_timesteps=args.timesteps,
|
79 |
+
temperature=args.noise,
|
80 |
+
stoc=args.stoc, spk=sid,emo=emo, length_scale=1.,
|
81 |
+
classifier_free_guidance=args.guidance)
|
82 |
+
res = y_dec.squeeze().cpu().numpy()
|
83 |
+
x = torch.from_numpy(res).cuda().unsqueeze(0)
|
84 |
+
y_g_hat = vocoder(x)
|
85 |
+
audio = y_g_hat.squeeze()
|
86 |
+
audio = audio * 32768.0
|
87 |
+
audio = audio.detach().cpu().numpy().astype('int16')
|
88 |
+
audio = AudioSegment(audio.data, frame_rate=22050, sample_width=2, channels=1)
|
89 |
+
audio.export(f'{args.generated_path}/{emos[emo_i]}_{speakers[int(line.split("|")[2])]}.wav', format="wav")
|
inference_intensity_control.ipynb
ADDED
File without changes
|
melspec.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import librosa
|
4 |
+
|
5 |
+
mel_basis = {}
|
6 |
+
hann_window = {}
|
7 |
+
|
8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
9 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
10 |
+
|
11 |
+
def spectral_normalize_torch(magnitudes):
|
12 |
+
output = dynamic_range_compression_torch(magnitudes)
|
13 |
+
return output
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
18 |
+
if torch.min(y) < -1.:
|
19 |
+
print('min value is ', torch.min(y))
|
20 |
+
if torch.max(y) > 1.:
|
21 |
+
print('max value is ', torch.max(y))
|
22 |
+
|
23 |
+
global mel_basis, hann_window
|
24 |
+
if fmax not in mel_basis:
|
25 |
+
mel = librosa.filters.mel(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
26 |
+
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
27 |
+
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
28 |
+
|
29 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
30 |
+
y = y.squeeze(1)
|
31 |
+
|
32 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
33 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
34 |
+
|
35 |
+
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
36 |
+
|
37 |
+
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
38 |
+
spec = spectral_normalize_torch(spec)
|
39 |
+
|
40 |
+
return spec.numpy()
|
model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .tts import GradTTSWithEmo, GradTTSXvector
|
model/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (240 Bytes). View file
|
|
model/__pycache__/tts.cpython-39.pyc
ADDED
Binary file (16.7 kB). View file
|
|
model/base.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class BaseModule(torch.nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(BaseModule, self).__init__()
|
8 |
+
|
9 |
+
@property
|
10 |
+
def nparams(self):
|
11 |
+
"""
|
12 |
+
Returns number of trainable parameters of the module.
|
13 |
+
"""
|
14 |
+
num_params = 0
|
15 |
+
for name, param in self.named_parameters():
|
16 |
+
if param.requires_grad:
|
17 |
+
num_params += np.prod(param.detach().cpu().numpy().shape)
|
18 |
+
return num_params
|
19 |
+
|
20 |
+
def relocate_input(self, x: list):
|
21 |
+
"""
|
22 |
+
Relocates provided tensors to the same device set for the module.
|
23 |
+
"""
|
24 |
+
device = next(self.parameters()).device
|
25 |
+
for i in range(len(x)):
|
26 |
+
if isinstance(x[i], torch.Tensor) and x[i].device != device:
|
27 |
+
x[i] = x[i].to(device)
|
28 |
+
return x
|
model/classifier.py
ADDED
@@ -0,0 +1,690 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch import Tensor, BoolTensor
|
4 |
+
|
5 |
+
from typing import Optional, Tuple, Iterable
|
6 |
+
from model.diffusion import SinusoidalPosEmb
|
7 |
+
from torch.nn.functional import pad
|
8 |
+
|
9 |
+
|
10 |
+
import math
|
11 |
+
|
12 |
+
def silu(input):
|
13 |
+
'''
|
14 |
+
Applies the Sigmoid Linear Unit (SiLU) function element-wise:
|
15 |
+
SiLU(x) = x * sigmoid(x)
|
16 |
+
'''
|
17 |
+
return input * torch.sigmoid(input) # use torch.sigmoid to make sure that we created the most efficient implemetation based on builtin PyTorch functions
|
18 |
+
|
19 |
+
|
20 |
+
class RelPositionMultiHeadedAttention(nn.Module):
|
21 |
+
"""Multi-Head Self-Attention layer with relative position encoding.
|
22 |
+
Paper: https://arxiv.org/abs/1901.02860
|
23 |
+
Args:
|
24 |
+
n_head: The number of heads.
|
25 |
+
d: The number of features.
|
26 |
+
dropout: Dropout rate.
|
27 |
+
zero_triu: Whether to zero the upper triangular part of attention matrix.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self, d: int, n_head: int, dropout: float
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
assert d % n_head == 0
|
35 |
+
self.c = d // n_head
|
36 |
+
self.h = n_head
|
37 |
+
|
38 |
+
self.linear_q = nn.Linear(d, d)
|
39 |
+
self.linear_k = nn.Linear(d, d)
|
40 |
+
self.linear_v = nn.Linear(d, d)
|
41 |
+
self.linear_out = nn.Linear(d, d)
|
42 |
+
|
43 |
+
self.p_attn = None
|
44 |
+
self.dropout = nn.Dropout(p=dropout)
|
45 |
+
|
46 |
+
# linear transformation for positional encoding
|
47 |
+
self.linear_pos = nn.Linear(d, d, bias=False)
|
48 |
+
|
49 |
+
# these two learnable bias are used in matrix c and matrix d
|
50 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
51 |
+
self.u = nn.Parameter(torch.Tensor(self.h, self.c))
|
52 |
+
self.v = nn.Parameter(torch.Tensor(self.h, self.c))
|
53 |
+
# [H, C]
|
54 |
+
torch.nn.init.xavier_uniform_(self.u)
|
55 |
+
torch.nn.init.xavier_uniform_(self.v)
|
56 |
+
|
57 |
+
def forward_qkv(self, query, key, value) -> Tuple[Tensor, ...]:
|
58 |
+
"""Transform query, key and value.
|
59 |
+
Args:
|
60 |
+
query (Tensor): [B, S, D].
|
61 |
+
key (Tensor): [B, T, D].
|
62 |
+
value (Tensor): [B, T, D].
|
63 |
+
Returns:
|
64 |
+
q (Tensor): [B, H, S, C].
|
65 |
+
k (Tensor): [B, H, T, C].
|
66 |
+
v (Tensor): [B, H, T, C].
|
67 |
+
"""
|
68 |
+
n_batch = query.size(0)
|
69 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.c)
|
70 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.c)
|
71 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.c)
|
72 |
+
q = q.transpose(1, 2)
|
73 |
+
k = k.transpose(1, 2)
|
74 |
+
v = v.transpose(1, 2)
|
75 |
+
return q, k, v
|
76 |
+
|
77 |
+
def forward_attention(self, v, scores, mask, causal=False) -> Tensor:
|
78 |
+
"""Compute attention context vector.
|
79 |
+
Args:
|
80 |
+
v (Tensor): [B, H, T, C].
|
81 |
+
scores (Tensor): [B, H, S, T].
|
82 |
+
mask (BoolTensor): [B, T], True values are masked from scores.
|
83 |
+
Returns:
|
84 |
+
result (Tensor): [B, S, D]. Attention result weighted by the score.
|
85 |
+
"""
|
86 |
+
n_batch, H, S, T = scores.shape
|
87 |
+
if mask is not None:
|
88 |
+
scores = scores.masked_fill(
|
89 |
+
mask.unsqueeze(1).unsqueeze(2).to(bool),
|
90 |
+
float("-inf"), # [B, H, S, T]
|
91 |
+
)
|
92 |
+
if causal:
|
93 |
+
k_grid = torch.arange(0, S, dtype=torch.int32, device=scores.device)
|
94 |
+
v_grid = torch.arange(0, T, dtype=torch.int32, device=scores.device)
|
95 |
+
kk, vv = torch.meshgrid(k_grid, v_grid, indexing="ij")
|
96 |
+
causal_mask = vv > kk
|
97 |
+
scores = scores.masked_fill(
|
98 |
+
causal_mask.view(1, 1, S, T), float("-inf")
|
99 |
+
)
|
100 |
+
|
101 |
+
p_attn = self.p_attn = torch.softmax(scores, dim=-1) # [B, H, S, T]
|
102 |
+
p_attn = self.dropout(p_attn) # [B, H, S, T]
|
103 |
+
|
104 |
+
x = torch.matmul(p_attn, v) # [B, H, S, C]
|
105 |
+
x = (
|
106 |
+
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.c)
|
107 |
+
) # [B, S, D]
|
108 |
+
|
109 |
+
return self.linear_out(x) # [B, S, D]
|
110 |
+
|
111 |
+
def rel_shift(self, x):
|
112 |
+
"""Converting (..., i, i - j) matrix into (..., i, j) matrix.
|
113 |
+
Args:
|
114 |
+
x (Tensor): [B, H, S, 2S-1].
|
115 |
+
Returns:
|
116 |
+
x (Tensor): [B, H, S, S].
|
117 |
+
Example: Take S = 2 for example, larger values work similarly.
|
118 |
+
x = [
|
119 |
+
[(0, -1), (0, 0), (0, 1)],
|
120 |
+
[(1, 0), (1, 1), (1, 2)]
|
121 |
+
]
|
122 |
+
x_padded = [
|
123 |
+
[(x, x), (0, -1), (0, 0), (0, 1)],
|
124 |
+
[(x, x), (1, 0), (1, 1), (1, 2)]]
|
125 |
+
]
|
126 |
+
x_padded = [
|
127 |
+
[(x, x), (0, -1)],
|
128 |
+
[(0, 0), (0, 1)],
|
129 |
+
[(x, x), (1, 0)],
|
130 |
+
[(1, 1), (1, 2)]
|
131 |
+
]
|
132 |
+
x = [
|
133 |
+
[(0, 0), (0, 1)],
|
134 |
+
[(1, 0), (1, 1)]
|
135 |
+
]
|
136 |
+
"""
|
137 |
+
B, H, S, _ = x.shape
|
138 |
+
zero_pad = torch.zeros((B, H, S, 1), device=x.device, dtype=x.dtype)
|
139 |
+
# [B, H, S, 1]
|
140 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
141 |
+
# [B, H, S, 2S]
|
142 |
+
x_padded = x_padded.view(B, H, 2 * S, S)
|
143 |
+
# [B, H, 2S, S]
|
144 |
+
x = x_padded[:, :, 1:].view_as(x)[:, :, :, :S]
|
145 |
+
# only keep the positions from 0 to S
|
146 |
+
# [B, H, 2S-1, S] <view> [B, H, S, 2S - 1] <truncate in dim -1> [B, H, S, S]
|
147 |
+
return x
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self, query, key, value, pos_emb, mask=None, causal=False):
|
151 |
+
"""Compute self-attention with relative positional embedding.
|
152 |
+
Args:
|
153 |
+
query (Tensor): [B, S, D].
|
154 |
+
key (Tensor): [B, S, D].
|
155 |
+
value (Tensor): [B, S, D].
|
156 |
+
pos_emb (Tensor): [1/B, 2S-1, D]. Positional embedding.
|
157 |
+
mask (BoolTensor): [B, S], True for masked.
|
158 |
+
causal (bool): True for applying causal mask.
|
159 |
+
Returns:
|
160 |
+
output (Tensor): [B, S, D].
|
161 |
+
"""
|
162 |
+
# Splitting Q, K, V:
|
163 |
+
q, k, v = self.forward_qkv(query, key, value)
|
164 |
+
# [B, H, S, C], [B, H, S, C], [B, H, S, C]
|
165 |
+
|
166 |
+
# Adding per head & channel biases to the query vectors:
|
167 |
+
q_u = q + self.u.unsqueeze(1)
|
168 |
+
q_v = q + self.v.unsqueeze(1)
|
169 |
+
# [B, H, S, C]
|
170 |
+
|
171 |
+
# Splitting relative positional coding:
|
172 |
+
n_batch_pos = pos_emb.size(0) # [1/B, 2S-1, D]
|
173 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.c)
|
174 |
+
# [1/B, 2S-1, H, C]
|
175 |
+
p = p.transpose(1, 2) # [1/B, H, 2S-1, C].
|
176 |
+
|
177 |
+
# Compute query, key similarity:
|
178 |
+
matrix_ac = torch.matmul(q_u, k.transpose(-2, -1))
|
179 |
+
# [B, H, S, C] x [B, H, C, S] -> [B, H, S, S]
|
180 |
+
|
181 |
+
matrix_bd = torch.matmul(q_v, p.transpose(-2, -1))
|
182 |
+
# [B, H, S, C] x [1/B, H, C, 2S-1] -> [B, H, S, 2S-1]
|
183 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
184 |
+
|
185 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(self.c)
|
186 |
+
# [B, H, S, S]
|
187 |
+
|
188 |
+
return self.forward_attention(v, scores, mask, causal) # [B, S, D]
|
189 |
+
|
190 |
+
|
191 |
+
class ConditionalBiasScale(nn.Module):
|
192 |
+
def __init__(self, channels: int, cond_channels: int):
|
193 |
+
super().__init__()
|
194 |
+
self.scale_transform = nn.Linear(
|
195 |
+
cond_channels, channels, bias=True
|
196 |
+
)
|
197 |
+
self.bias_transform = nn.Linear(
|
198 |
+
cond_channels, channels, bias=True
|
199 |
+
)
|
200 |
+
self.init_parameters()
|
201 |
+
|
202 |
+
def init_parameters(self):
|
203 |
+
torch.nn.init.constant_(self.scale_transform.weight, 0.0)
|
204 |
+
torch.nn.init.constant_(self.scale_transform.bias, 1.0)
|
205 |
+
torch.nn.init.constant_(self.bias_transform.weight, 0.0)
|
206 |
+
torch.nn.init.constant_(self.bias_transform.bias, 0.0)
|
207 |
+
|
208 |
+
def forward(self, x: Tensor, cond: Tensor) -> Tensor:
|
209 |
+
"""Applying conditional bias and scale.
|
210 |
+
Args:
|
211 |
+
x (Tensor): [..., channels].
|
212 |
+
cond (Tensor): [..., cond_channels].
|
213 |
+
Returns:
|
214 |
+
y (Tensor): [..., channels].
|
215 |
+
"""
|
216 |
+
a = self.scale_transform.forward(cond)
|
217 |
+
b = self.bias_transform.forward(cond)
|
218 |
+
return x * a + b
|
219 |
+
|
220 |
+
|
221 |
+
class FeedForwardModule(torch.nn.Module):
|
222 |
+
"""Positionwise feed forward layer used in conformer"""
|
223 |
+
|
224 |
+
def __init__(
|
225 |
+
self, d_in: int, d_hidden: int,
|
226 |
+
dropout: float, bias: bool = True, d_cond: int = 0
|
227 |
+
):
|
228 |
+
"""
|
229 |
+
Args:
|
230 |
+
d_in (int): Input feature dimension.
|
231 |
+
d_hidden (int): Hidden unit dimension.
|
232 |
+
dropout (float): dropout value for first Linear Layer.
|
233 |
+
bias (bool): If linear layers should have bias.
|
234 |
+
d_cond (int, optional): The channels of conditional tensor.
|
235 |
+
"""
|
236 |
+
super(FeedForwardModule, self).__init__()
|
237 |
+
self.layer_norm = torch.nn.LayerNorm(d_in)
|
238 |
+
|
239 |
+
if d_cond > 0:
|
240 |
+
self.cond_layer = ConditionalBiasScale(d_in, d_cond)
|
241 |
+
|
242 |
+
self.w_1 = torch.nn.Linear(d_in, d_hidden, bias=bias)
|
243 |
+
self.w_2 = torch.nn.Linear(d_hidden, d_in, bias=bias)
|
244 |
+
self.dropout = torch.nn.Dropout(dropout)
|
245 |
+
|
246 |
+
def forward(self, x: Tensor, cond: Optional[Tensor] = None) -> Tensor:
|
247 |
+
"""
|
248 |
+
Args:
|
249 |
+
x (Tensor): [..., D].
|
250 |
+
Returns:
|
251 |
+
y (Tensor): [..., D].
|
252 |
+
cond (Tensor): [..., D_cond]
|
253 |
+
"""
|
254 |
+
x = self.layer_norm(x)
|
255 |
+
|
256 |
+
if cond is not None:
|
257 |
+
x = self.cond_layer.forward(x, cond)
|
258 |
+
|
259 |
+
x = self.w_1(x)
|
260 |
+
x = silu(x)
|
261 |
+
x = self.dropout(x)
|
262 |
+
x = self.w_2(x)
|
263 |
+
return self.dropout(x)
|
264 |
+
|
265 |
+
|
266 |
+
class RelPositionalEncoding(nn.Module):
|
267 |
+
"""Relative positional encoding cache.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
d_model: Embedding dimension.
|
271 |
+
dropout_rate: Dropout rate.
|
272 |
+
max_len: Default maximum input length.
|
273 |
+
"""
|
274 |
+
|
275 |
+
def __init__(self, max_len: int, d_model: int):
|
276 |
+
super().__init__()
|
277 |
+
self.d_model = d_model
|
278 |
+
self.cached_code = None
|
279 |
+
self.l = 0
|
280 |
+
self.gen_code(torch.tensor(0.0).expand(1, max_len))
|
281 |
+
|
282 |
+
def gen_code(self, x: Tensor):
|
283 |
+
"""Generate positional encoding with a reference tensor x.
|
284 |
+
Args:
|
285 |
+
x (Tensor): [B, L, ...], we extract the device, length, and dtype from it.
|
286 |
+
Effects:
|
287 |
+
self.cached_code (Tensor): [1, >=(2L-1), D].
|
288 |
+
"""
|
289 |
+
l = x.size(1)
|
290 |
+
if self.l >= l:
|
291 |
+
if self.cached_code.dtype != x.dtype or self.cached_code.device != x.device:
|
292 |
+
self.cached_code = self.cached_code.to(dtype=x.dtype, device=x.device)
|
293 |
+
return
|
294 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
295 |
+
# position of key vector. We use position relative positions when keys
|
296 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
297 |
+
code_pos = torch.zeros(l, self.d_model) # [L, D]
|
298 |
+
code_neg = torch.zeros(l, self.d_model) # [L, D]
|
299 |
+
pos = torch.arange(0, l, dtype=torch.float32).unsqueeze(1) # [L, 1]
|
300 |
+
decay = torch.exp(
|
301 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
302 |
+
* -(math.log(10000.0) / self.d_model)
|
303 |
+
) # [D // 2]
|
304 |
+
code_pos[:, 0::2] = torch.sin(pos * decay)
|
305 |
+
code_pos[:, 1::2] = torch.cos(pos * decay)
|
306 |
+
code_neg[:, 0::2] = torch.sin(-1 * pos * decay)
|
307 |
+
code_neg[:, 1::2] = torch.cos(-1 * pos * decay)
|
308 |
+
|
309 |
+
# Reserve the order of positive indices and concat both positive and
|
310 |
+
# negative indices. This is used to support the shifting trick
|
311 |
+
# as in https://arxiv.org/abs/1901.02860
|
312 |
+
code_pos = torch.flip(code_pos, [0]).unsqueeze(0) # [1, L, D]
|
313 |
+
code_neg = code_neg[1:].unsqueeze(0) # [1, L - 1, D]
|
314 |
+
code = torch.cat([code_pos, code_neg], dim=1) # [1, 2L - 1, D]
|
315 |
+
self.cached_code = code.to(device=x.device, dtype=x.dtype)
|
316 |
+
self.l = l
|
317 |
+
|
318 |
+
def forward(self, x: Tensor) -> Tensor:
|
319 |
+
"""Get positional encoding of appropriate shape given a reference Tensor.
|
320 |
+
Args:
|
321 |
+
x (Tensor): [B, L, ...].
|
322 |
+
Returns:
|
323 |
+
y (Tensor): [1, 2L-1, D].
|
324 |
+
"""
|
325 |
+
self.gen_code(x)
|
326 |
+
l = x.size(1)
|
327 |
+
pos_emb = self.cached_code[
|
328 |
+
:, self.l - l: self.l + l - 1,
|
329 |
+
]
|
330 |
+
return pos_emb
|
331 |
+
|
332 |
+
|
333 |
+
class ConformerBlock(torch.nn.Module):
|
334 |
+
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
|
335 |
+
|
336 |
+
def __init__(
|
337 |
+
self, d: int, d_hidden: int,
|
338 |
+
attention_heads: int, dropout: float,
|
339 |
+
depthwise_conv_kernel_size: int = 7,
|
340 |
+
causal: bool = False, d_cond: int = 0
|
341 |
+
):
|
342 |
+
"""
|
343 |
+
Args:
|
344 |
+
d (int): Block input output channel number.
|
345 |
+
d_hidden (int): FFN layer dimension.
|
346 |
+
attention_heads (int): Number of attention heads.
|
347 |
+
dropout (float): dropout value.
|
348 |
+
depthwise_conv_kernel_size (int): Size of kernel in depthwise conv.
|
349 |
+
d_cond (int, optional): The channels of conditional tensor.
|
350 |
+
"""
|
351 |
+
super(ConformerBlock, self).__init__()
|
352 |
+
self.causal = causal
|
353 |
+
self.ffn1 = FeedForwardModule(
|
354 |
+
d, d_hidden, dropout, bias=True, d_cond=d_cond
|
355 |
+
)
|
356 |
+
|
357 |
+
self.self_attn_layer_norm = torch.nn.LayerNorm(d)
|
358 |
+
|
359 |
+
if d_cond > 0:
|
360 |
+
self.cond_layer = ConditionalBiasScale(d, d_cond)
|
361 |
+
|
362 |
+
self.self_attn = RelPositionMultiHeadedAttention(
|
363 |
+
d, attention_heads, dropout=dropout
|
364 |
+
)
|
365 |
+
self.self_attn_dropout = torch.nn.Dropout(dropout)
|
366 |
+
|
367 |
+
self.conv_module = ConvolutionModule(
|
368 |
+
d_in=d, d_hidden=d,
|
369 |
+
depthwise_kernel_size=depthwise_conv_kernel_size,
|
370 |
+
dropout=dropout, d_cond=d_cond
|
371 |
+
)
|
372 |
+
|
373 |
+
self.ffn2 = FeedForwardModule(
|
374 |
+
d, d_hidden, dropout, bias=True, d_cond=d_cond
|
375 |
+
)
|
376 |
+
|
377 |
+
self.final_layer_norm = torch.nn.LayerNorm(d)
|
378 |
+
|
379 |
+
def forward(
|
380 |
+
self, x: Tensor, mask: BoolTensor, pos_emb: Tensor,
|
381 |
+
cond: Optional[Tensor] = None
|
382 |
+
) -> Tensor:
|
383 |
+
"""
|
384 |
+
Args:
|
385 |
+
x (Tensor): [B, T, D_in].
|
386 |
+
mask (BoolTensor): [B, T], True for masked.
|
387 |
+
pos_emb (Tensor): [1 or B, 2T-1, D].
|
388 |
+
cond (Tensor, optional): [B, ?, D_cond].
|
389 |
+
Returns:
|
390 |
+
y (Tensor): [B, T, D_in].
|
391 |
+
"""
|
392 |
+
y = x
|
393 |
+
|
394 |
+
x = self.ffn1(x) * 0.5 + y
|
395 |
+
y = x
|
396 |
+
# [B, T, D_in]
|
397 |
+
|
398 |
+
x = self.self_attn_layer_norm(x)
|
399 |
+
|
400 |
+
if cond is not None:
|
401 |
+
x = self.cond_layer.forward(x, cond)
|
402 |
+
|
403 |
+
x = self.self_attn.forward(
|
404 |
+
query=x, key=x, value=x,
|
405 |
+
pos_emb=pos_emb,
|
406 |
+
mask=mask, causal=self.causal
|
407 |
+
)
|
408 |
+
x = self.self_attn_dropout(x) + y
|
409 |
+
y = x
|
410 |
+
# [B, T, D_in]
|
411 |
+
|
412 |
+
x = self.conv_module.forward(x, mask) + y
|
413 |
+
y = x
|
414 |
+
# [B, T, D_in]
|
415 |
+
|
416 |
+
x = self.ffn2(x) * 0.5 + y
|
417 |
+
|
418 |
+
x = self.final_layer_norm(x)
|
419 |
+
|
420 |
+
x.masked_fill(mask.unsqueeze(-1), 0.0)
|
421 |
+
|
422 |
+
return x
|
423 |
+
|
424 |
+
|
425 |
+
class ConvolutionModule(torch.nn.Module):
|
426 |
+
"""Convolution Block inside a Conformer Block."""
|
427 |
+
|
428 |
+
def __init__(
|
429 |
+
self, d_in: int, d_hidden: int,
|
430 |
+
depthwise_kernel_size: int,
|
431 |
+
dropout: float, bias: bool = False,
|
432 |
+
causal: bool = False, d_cond: int = 0
|
433 |
+
):
|
434 |
+
"""
|
435 |
+
Args:
|
436 |
+
d_in (int): Embedding dimension.
|
437 |
+
d_hidden (int): Number of channels in depthwise conv layers.
|
438 |
+
depthwise_kernel_size (int): Depthwise conv layer kernel size.
|
439 |
+
dropout (float): dropout value.
|
440 |
+
bias (bool): If bias should be added to conv layers.
|
441 |
+
conditional (bool): Whether to use conditional LayerNorm.
|
442 |
+
"""
|
443 |
+
super(ConvolutionModule, self).__init__()
|
444 |
+
assert (depthwise_kernel_size - 1) % 2 == 0, "kernel_size should be odd"
|
445 |
+
self.causal = causal
|
446 |
+
self.causal_padding = (depthwise_kernel_size - 1, 0)
|
447 |
+
self.layer_norm = torch.nn.LayerNorm(d_in)
|
448 |
+
|
449 |
+
# Optional conditional LayerNorm:
|
450 |
+
self.d_cond = d_cond
|
451 |
+
if d_cond > 0:
|
452 |
+
self.cond_layer = ConditionalBiasScale(d_in, d_cond)
|
453 |
+
|
454 |
+
self.pointwise_conv1 = torch.nn.Conv1d(
|
455 |
+
d_in, 2 * d_hidden,
|
456 |
+
kernel_size=1,
|
457 |
+
stride=1, padding=0,
|
458 |
+
bias=bias
|
459 |
+
)
|
460 |
+
self.glu = torch.nn.GLU(dim=1)
|
461 |
+
self.depthwise_conv = torch.nn.Conv1d(
|
462 |
+
d_hidden, d_hidden,
|
463 |
+
kernel_size=depthwise_kernel_size,
|
464 |
+
stride=1,
|
465 |
+
padding=(depthwise_kernel_size - 1) // 2 if not causal else 0,
|
466 |
+
groups=d_hidden, bias=bias
|
467 |
+
)
|
468 |
+
self.pointwise_conv2 = torch.nn.Conv1d(
|
469 |
+
d_hidden, d_in,
|
470 |
+
kernel_size=1,
|
471 |
+
stride=1, padding=0,
|
472 |
+
bias=bias,
|
473 |
+
)
|
474 |
+
self.dropout = torch.nn.Dropout(dropout)
|
475 |
+
|
476 |
+
def forward(self, x: Tensor, mask: BoolTensor, cond: Optional[Tensor] = None) -> Tensor:
|
477 |
+
"""
|
478 |
+
Args:
|
479 |
+
x (Tensor): [B, T, D_in].
|
480 |
+
mask (BoolTensor): [B, T], True for masked.
|
481 |
+
cond (Tensor): [B, T, D_cond].
|
482 |
+
Returns:
|
483 |
+
y (Tensor): [B, T, D_in].
|
484 |
+
"""
|
485 |
+
x = self.layer_norm(x)
|
486 |
+
|
487 |
+
if cond is not None:
|
488 |
+
x = self.cond_layer.forward(x, cond)
|
489 |
+
|
490 |
+
x = x.transpose(-1, -2) # [B, D_in, T]
|
491 |
+
|
492 |
+
x = self.pointwise_conv1(x) # [B, 2C, T]
|
493 |
+
x = self.glu(x) # [B, C, T]
|
494 |
+
|
495 |
+
# Take care of masking the input tensor:
|
496 |
+
if mask is not None:
|
497 |
+
x = x.masked_fill(mask.unsqueeze(1), 0.0)
|
498 |
+
|
499 |
+
# 1D Depthwise Conv
|
500 |
+
if self.causal: # Causal padding
|
501 |
+
x = pad(x, self.causal_padding)
|
502 |
+
x = self.depthwise_conv(x)
|
503 |
+
# FIXME: BatchNorm should not be used in variable length training.
|
504 |
+
x = silu(x) # [B, C, T]
|
505 |
+
|
506 |
+
if mask is not None:
|
507 |
+
x = x.masked_fill(mask.unsqueeze(1), 0.0)
|
508 |
+
|
509 |
+
x = self.pointwise_conv2(x)
|
510 |
+
x = self.dropout(x)
|
511 |
+
return x.transpose(-1, -2) # [B, T, D_in]
|
512 |
+
|
513 |
+
|
514 |
+
class Conformer(torch.nn.Module):
|
515 |
+
def __init__(
|
516 |
+
self,
|
517 |
+
d: int,
|
518 |
+
d_hidden: int,
|
519 |
+
n_heads: int,
|
520 |
+
n_layers: int,
|
521 |
+
dropout: float,
|
522 |
+
depthwise_conv_kernel_size: int,
|
523 |
+
causal: bool = False,
|
524 |
+
d_cond: int = 0
|
525 |
+
):
|
526 |
+
super().__init__()
|
527 |
+
self.pos_encoding = RelPositionalEncoding(1024, d)
|
528 |
+
self.causal = causal
|
529 |
+
|
530 |
+
self.blocks = torch.nn.ModuleList(
|
531 |
+
[
|
532 |
+
ConformerBlock(
|
533 |
+
d=d,
|
534 |
+
d_hidden=d_hidden,
|
535 |
+
attention_heads=n_heads,
|
536 |
+
dropout=dropout,
|
537 |
+
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
538 |
+
causal=causal,
|
539 |
+
d_cond=d_cond
|
540 |
+
)
|
541 |
+
for _ in range(n_layers)
|
542 |
+
]
|
543 |
+
) # type: Iterable[ConformerBlock]
|
544 |
+
|
545 |
+
def forward(
|
546 |
+
self, x: Tensor, mask: BoolTensor, cond: Tensor = None
|
547 |
+
) -> Tensor:
|
548 |
+
"""Conformer forwarding.
|
549 |
+
Args:
|
550 |
+
x (Tensor): [B, T, D].
|
551 |
+
mask (BoolTensor): [B, T], with True for masked.
|
552 |
+
cond (Tensor, optional): [B, T, D_cond].
|
553 |
+
Returns:
|
554 |
+
y (Tensor): [B, T, D]
|
555 |
+
"""
|
556 |
+
pos_emb = self.pos_encoding(x) # [1, 2T-1, D]
|
557 |
+
|
558 |
+
for block in self.blocks:
|
559 |
+
x = block.forward(x, mask, pos_emb, cond)
|
560 |
+
|
561 |
+
return x
|
562 |
+
|
563 |
+
|
564 |
+
class CNNBlock(nn.Module):
|
565 |
+
def __init__(self, in_dim, out_dim, dropout, cond_dim, kernel_size, stride):
|
566 |
+
super(CNNBlock, self).__init__()
|
567 |
+
self.layers = nn.Sequential(
|
568 |
+
nn.Conv1d(in_dim, out_dim, kernel_size, stride),
|
569 |
+
nn.ReLU(),
|
570 |
+
nn.BatchNorm1d(out_dim,),
|
571 |
+
nn.Dropout(p=dropout)
|
572 |
+
)
|
573 |
+
|
574 |
+
def forward(self, inp):
|
575 |
+
out = self.layers(inp)
|
576 |
+
return out
|
577 |
+
|
578 |
+
|
579 |
+
class CNNClassifier(nn.Module):
|
580 |
+
def __init__(self, in_dim, d_decoder, decoder_dropout, cond_dim):
|
581 |
+
super(CNNClassifier, self).__init__()
|
582 |
+
self.cnn = nn.Sequential(
|
583 |
+
CNNBlock(in_dim, d_decoder, decoder_dropout, cond_dim, 8, 4),
|
584 |
+
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 8, 4),
|
585 |
+
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
|
586 |
+
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
|
587 |
+
) # receptive field is 180, frame shift is 64
|
588 |
+
self.cond_layer = nn.Sequential(
|
589 |
+
nn.Linear(cond_dim, in_dim),
|
590 |
+
nn.LeakyReLU(),
|
591 |
+
nn.Linear(in_dim, in_dim)
|
592 |
+
)
|
593 |
+
|
594 |
+
def forward(self, inp, mask, cond):
|
595 |
+
inp = inp.transpose(-1, -2)
|
596 |
+
cond = cond.transpose(-1, -2)
|
597 |
+
inp.masked_fill_(mask.unsqueeze(1), 0.0)
|
598 |
+
cond = self.cond_layer(cond.transpose(-1, -2)).transpose(-1, -2)
|
599 |
+
cond.masked_fill_(mask.unsqueeze(1), 0.0)
|
600 |
+
inp = inp + cond
|
601 |
+
return self.cnn(inp)
|
602 |
+
|
603 |
+
|
604 |
+
class CNNClassifierWithTime(nn.Module):
|
605 |
+
def __init__(self, in_dim, d_decoder, decoder_dropout, cond_dim, time_emb_dim=512):
|
606 |
+
super(CNNClassifierWithTime, self).__init__()
|
607 |
+
self.cnn = nn.Sequential(
|
608 |
+
CNNBlock(in_dim, d_decoder, decoder_dropout, cond_dim, 8, 4),
|
609 |
+
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 8, 4),
|
610 |
+
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
|
611 |
+
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
|
612 |
+
) # receptive field is 180, frame shift is 64
|
613 |
+
self.cond_layer = nn.Sequential(
|
614 |
+
nn.Linear(cond_dim, in_dim),
|
615 |
+
nn.LeakyReLU(),
|
616 |
+
nn.Linear(in_dim, in_dim)
|
617 |
+
)
|
618 |
+
self.time_emb = SinusoidalPosEmb(time_emb_dim)
|
619 |
+
self.time_layer = nn.Sequential(
|
620 |
+
nn.Linear(time_emb_dim, in_dim),
|
621 |
+
nn.LeakyReLU(),
|
622 |
+
nn.Linear(in_dim, in_dim)
|
623 |
+
)
|
624 |
+
|
625 |
+
def forward(self, inp, mask, cond, t):
|
626 |
+
time_emb = self.time_emb(t) # [B, T]
|
627 |
+
time_emb = self.time_layer(time_emb.unsqueeze(1)).transpose(-1, -2)
|
628 |
+
inp = inp.transpose(-1, -2)
|
629 |
+
cond = cond.transpose(-1, -2)
|
630 |
+
inp.masked_fill_(mask.unsqueeze(1), 0.0)
|
631 |
+
cond = self.cond_layer(cond.transpose(-1, -2)).transpose(-1, -2)
|
632 |
+
cond.masked_fill_(mask.unsqueeze(1), 0.0)
|
633 |
+
inp = inp + cond + time_emb
|
634 |
+
return self.cnn(inp)
|
635 |
+
|
636 |
+
|
637 |
+
class SpecClassifier(nn.Module):
|
638 |
+
def __init__(self, in_dim, d_decoder, h_decoder,
|
639 |
+
l_decoder, decoder_dropout,
|
640 |
+
k_decoder, n_class, cond_dim, model_type='conformer'):
|
641 |
+
super(SpecClassifier, self).__init__()
|
642 |
+
self.model_type = model_type
|
643 |
+
self.prenet = nn.Sequential(
|
644 |
+
nn.Linear(in_features=in_dim, out_features=d_decoder)
|
645 |
+
)
|
646 |
+
if model_type == 'conformer':
|
647 |
+
self.conformer = Conformer(d=d_decoder, d_hidden=d_decoder, n_heads=h_decoder,
|
648 |
+
n_layers=l_decoder, dropout=decoder_dropout,
|
649 |
+
depthwise_conv_kernel_size=k_decoder, d_cond=cond_dim)
|
650 |
+
elif model_type == 'CNN':
|
651 |
+
self.conformer = CNNClassifier(in_dim=d_decoder, d_decoder=d_decoder,
|
652 |
+
decoder_dropout=decoder_dropout, cond_dim=cond_dim)
|
653 |
+
elif model_type == 'CNN-with-time':
|
654 |
+
self.conformer = CNNClassifierWithTime(in_dim=d_decoder, d_decoder=d_decoder,
|
655 |
+
decoder_dropout=decoder_dropout, cond_dim=cond_dim, time_emb_dim=256)
|
656 |
+
self.classifier = nn.Linear(d_decoder, n_class)
|
657 |
+
|
658 |
+
def forward(self, noisy_mel, condition, mask, **kwargs):
|
659 |
+
"""
|
660 |
+
Args:
|
661 |
+
noisy_mel: [B, T, D]
|
662 |
+
condition: [B, T, D]
|
663 |
+
mask: [B, T] with True for un-masked (real-values)
|
664 |
+
|
665 |
+
Returns:
|
666 |
+
classification logits (un-softmaxed)
|
667 |
+
"""
|
668 |
+
# print(noisy_mel.shape)
|
669 |
+
noisy_mel = noisy_mel.masked_fill(~mask.unsqueeze(-1), 0.0)
|
670 |
+
|
671 |
+
# print(self.prenet, noisy_mel.shape)
|
672 |
+
hiddens = self.prenet(noisy_mel)
|
673 |
+
|
674 |
+
if self.model_type == 'CNN-with-time':
|
675 |
+
hiddens = self.conformer.forward(hiddens, ~mask, condition, kwargs['t'])
|
676 |
+
else:
|
677 |
+
hiddens = self.conformer.forward(hiddens, ~mask, condition) # [B, T, D]
|
678 |
+
|
679 |
+
if self.model_type == 'conformer':
|
680 |
+
averaged_hiddens = torch.mean(hiddens, dim=1) # [B, D]
|
681 |
+
logits = self.classifier(averaged_hiddens)
|
682 |
+
return logits
|
683 |
+
elif self.model_type == 'CNN' or self.model_type == 'CNN-with-time':
|
684 |
+
hiddens = hiddens.transpose(-1, -2)
|
685 |
+
return self.classifier(hiddens) # [B, T', C]
|
686 |
+
|
687 |
+
@property
|
688 |
+
def nparams(self):
|
689 |
+
return sum([p.numel() for p in self.parameters()])
|
690 |
+
|
model/diffusion.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
from model.base import BaseModule
|
6 |
+
|
7 |
+
|
8 |
+
class Mish(BaseModule):
|
9 |
+
def forward(self, x):
|
10 |
+
return x * torch.tanh(torch.nn.functional.softplus(x))
|
11 |
+
|
12 |
+
|
13 |
+
class Upsample(BaseModule):
|
14 |
+
def __init__(self, dim):
|
15 |
+
super(Upsample, self).__init__()
|
16 |
+
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
return self.conv(x)
|
20 |
+
|
21 |
+
|
22 |
+
class Downsample(BaseModule):
|
23 |
+
def __init__(self, dim):
|
24 |
+
super(Downsample, self).__init__()
|
25 |
+
self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1) # kernel=3, stride=2, padding=1.
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.conv(x)
|
29 |
+
|
30 |
+
|
31 |
+
class Rezero(BaseModule):
|
32 |
+
def __init__(self, fn):
|
33 |
+
super(Rezero, self).__init__()
|
34 |
+
self.fn = fn
|
35 |
+
self.g = torch.nn.Parameter(torch.zeros(1))
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.fn(x) * self.g
|
39 |
+
|
40 |
+
|
41 |
+
class Block(BaseModule):
|
42 |
+
def __init__(self, dim, dim_out, groups=8):
|
43 |
+
super(Block, self).__init__()
|
44 |
+
self.block = torch.nn.Sequential(torch.nn.Conv2d(dim, dim_out, 3,
|
45 |
+
padding=1), torch.nn.GroupNorm(
|
46 |
+
groups, dim_out), Mish())
|
47 |
+
|
48 |
+
def forward(self, x, mask):
|
49 |
+
output = self.block(x * mask)
|
50 |
+
return output * mask
|
51 |
+
|
52 |
+
|
53 |
+
class ResnetBlock(BaseModule):
|
54 |
+
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
55 |
+
super(ResnetBlock, self).__init__()
|
56 |
+
self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim,
|
57 |
+
dim_out))
|
58 |
+
|
59 |
+
self.block1 = Block(dim, dim_out, groups=groups)
|
60 |
+
self.block2 = Block(dim_out, dim_out, groups=groups)
|
61 |
+
if dim != dim_out:
|
62 |
+
self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
|
63 |
+
else:
|
64 |
+
self.res_conv = torch.nn.Identity()
|
65 |
+
|
66 |
+
def forward(self, x, mask, time_emb):
|
67 |
+
h = self.block1(x, mask)
|
68 |
+
h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
|
69 |
+
h = self.block2(h, mask)
|
70 |
+
output = h + self.res_conv(x * mask)
|
71 |
+
return output
|
72 |
+
|
73 |
+
|
74 |
+
class LinearAttention(BaseModule):
|
75 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
76 |
+
super(LinearAttention, self).__init__()
|
77 |
+
self.heads = heads
|
78 |
+
hidden_dim = dim_head * heads
|
79 |
+
self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) # NOTE: 1x1 conv
|
80 |
+
self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
b, c, h, w = x.shape
|
84 |
+
qkv = self.to_qkv(x)
|
85 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3)
|
86 |
+
k = k.softmax(dim=-1)
|
87 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
88 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
89 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w',
|
90 |
+
heads=self.heads, h=h, w=w)
|
91 |
+
return self.to_out(out)
|
92 |
+
|
93 |
+
|
94 |
+
class Residual(BaseModule):
|
95 |
+
def __init__(self, fn):
|
96 |
+
super(Residual, self).__init__()
|
97 |
+
self.fn = fn
|
98 |
+
|
99 |
+
def forward(self, x, *args, **kwargs):
|
100 |
+
output = self.fn(x, *args, **kwargs) + x
|
101 |
+
return output
|
102 |
+
|
103 |
+
|
104 |
+
class SinusoidalPosEmb(BaseModule):
|
105 |
+
def __init__(self, dim):
|
106 |
+
super(SinusoidalPosEmb, self).__init__()
|
107 |
+
self.dim = dim
|
108 |
+
|
109 |
+
def forward(self, x, scale=1000):
|
110 |
+
device = x.device
|
111 |
+
half_dim = self.dim // 2
|
112 |
+
emb = math.log(10000) / (half_dim - 1)
|
113 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
114 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
115 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
116 |
+
return emb
|
117 |
+
|
118 |
+
|
119 |
+
class GradLogPEstimator2d(BaseModule):
|
120 |
+
def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, spk_emb_dim=64, n_feats=80, pe_scale=1000):
|
121 |
+
super(GradLogPEstimator2d, self).__init__()
|
122 |
+
self.dim = dim
|
123 |
+
self.dim_mults = dim_mults
|
124 |
+
self.groups = groups
|
125 |
+
self.spk_emb_dim = spk_emb_dim
|
126 |
+
self.pe_scale = pe_scale
|
127 |
+
|
128 |
+
self.spk_mlp = torch.nn.Sequential(torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(),
|
129 |
+
torch.nn.Linear(spk_emb_dim * 4, n_feats))
|
130 |
+
self.time_pos_emb = SinusoidalPosEmb(dim)
|
131 |
+
self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(),
|
132 |
+
torch.nn.Linear(dim * 4, dim))
|
133 |
+
|
134 |
+
dims = [3, *map(lambda m: dim * m, dim_mults)]
|
135 |
+
in_out = list(zip(dims[:-1], dims[1:]))
|
136 |
+
self.downs = torch.nn.ModuleList([])
|
137 |
+
self.ups = torch.nn.ModuleList([])
|
138 |
+
num_resolutions = len(in_out)
|
139 |
+
|
140 |
+
for ind, (dim_in, dim_out) in enumerate(in_out):
|
141 |
+
is_last = ind >= (num_resolutions - 1)
|
142 |
+
self.downs.append(torch.nn.ModuleList([
|
143 |
+
ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
|
144 |
+
ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
|
145 |
+
Residual(Rezero(LinearAttention(dim_out))),
|
146 |
+
Downsample(dim_out) if not is_last else torch.nn.Identity()]))
|
147 |
+
|
148 |
+
mid_dim = dims[-1]
|
149 |
+
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
|
150 |
+
self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
|
151 |
+
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
|
152 |
+
|
153 |
+
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
154 |
+
self.ups.append(torch.nn.ModuleList([
|
155 |
+
ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
|
156 |
+
ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
|
157 |
+
Residual(Rezero(LinearAttention(dim_in))),
|
158 |
+
Upsample(dim_in)]))
|
159 |
+
self.final_block = Block(dim, dim)
|
160 |
+
self.final_conv = torch.nn.Conv2d(dim, 1, 1)
|
161 |
+
|
162 |
+
def forward(self, x, mask, mu, t, spk=None):
|
163 |
+
# x, mu: [B, 80, L], t: [B, ], mask: [B, 1, L]
|
164 |
+
if not isinstance(spk, type(None)):
|
165 |
+
s = self.spk_mlp(spk)
|
166 |
+
|
167 |
+
t = self.time_pos_emb(t, scale=self.pe_scale)
|
168 |
+
t = self.mlp(t) # [B, 64]
|
169 |
+
|
170 |
+
s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
|
171 |
+
x = torch.stack([mu, x, s], 1) # [B, 3, 80, L]
|
172 |
+
mask = mask.unsqueeze(1) # [B, 1, 1, L]
|
173 |
+
|
174 |
+
hiddens = []
|
175 |
+
masks = [mask]
|
176 |
+
for resnet1, resnet2, attn, downsample in self.downs:
|
177 |
+
mask_down = masks[-1]
|
178 |
+
x = resnet1(x, mask_down, t) # [B, 64, 80, L]
|
179 |
+
x = resnet2(x, mask_down, t)
|
180 |
+
x = attn(x)
|
181 |
+
hiddens.append(x)
|
182 |
+
x = downsample(x * mask_down)
|
183 |
+
masks.append(mask_down[:, :, :, ::2])
|
184 |
+
|
185 |
+
masks = masks[:-1]
|
186 |
+
mask_mid = masks[-1]
|
187 |
+
x = self.mid_block1(x, mask_mid, t)
|
188 |
+
x = self.mid_attn(x)
|
189 |
+
x = self.mid_block2(x, mask_mid, t)
|
190 |
+
|
191 |
+
for resnet1, resnet2, attn, upsample in self.ups:
|
192 |
+
mask_up = masks.pop()
|
193 |
+
x = torch.cat((x, hiddens.pop()), dim=1)
|
194 |
+
x = resnet1(x, mask_up, t)
|
195 |
+
x = resnet2(x, mask_up, t)
|
196 |
+
x = attn(x)
|
197 |
+
x = upsample(x * mask_up)
|
198 |
+
|
199 |
+
x = self.final_block(x, mask)
|
200 |
+
output = self.final_conv(x * mask)
|
201 |
+
|
202 |
+
return (output * mask).squeeze(1)
|
203 |
+
|
204 |
+
|
205 |
+
def get_noise(t, beta_init, beta_term, cumulative=False):
|
206 |
+
if cumulative:
|
207 |
+
noise = beta_init*t + 0.5*(beta_term - beta_init)*(t**2)
|
208 |
+
else:
|
209 |
+
noise = beta_init + (beta_term - beta_init)*t
|
210 |
+
return noise
|
211 |
+
|
212 |
+
|
213 |
+
class Diffusion(BaseModule):
|
214 |
+
def __init__(self, n_feats, dim, spk_emb_dim=64,
|
215 |
+
beta_min=0.05, beta_max=20, pe_scale=1000):
|
216 |
+
super(Diffusion, self).__init__()
|
217 |
+
self.n_feats = n_feats
|
218 |
+
self.dim = dim
|
219 |
+
# self.n_spks = n_spks
|
220 |
+
self.spk_emb_dim = spk_emb_dim
|
221 |
+
self.beta_min = beta_min
|
222 |
+
self.beta_max = beta_max
|
223 |
+
self.pe_scale = pe_scale
|
224 |
+
|
225 |
+
self.estimator = GradLogPEstimator2d(dim,
|
226 |
+
spk_emb_dim=spk_emb_dim,
|
227 |
+
pe_scale=pe_scale,
|
228 |
+
n_feats=n_feats)
|
229 |
+
|
230 |
+
def forward_diffusion(self, x0, mask, mu, t):
|
231 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
232 |
+
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True) # it is actually the integral of beta
|
233 |
+
mean = x0*torch.exp(-0.5*cum_noise) + mu*(1.0 - torch.exp(-0.5*cum_noise))
|
234 |
+
variance = 1.0 - torch.exp(-cum_noise)
|
235 |
+
z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device,
|
236 |
+
requires_grad=False)
|
237 |
+
xt = mean + z * torch.sqrt(variance)
|
238 |
+
return xt * mask, z * mask
|
239 |
+
|
240 |
+
@torch.no_grad()
|
241 |
+
def reverse_diffusion(self, z, mask, mu, n_timesteps, stoc=False, spk=None,
|
242 |
+
use_classifier_free=False,
|
243 |
+
classifier_free_guidance=3.0,
|
244 |
+
dummy_spk=None): # emo need to be merged by spk
|
245 |
+
|
246 |
+
# looks like a plain Euler-Maruyama method
|
247 |
+
h = 1.0 / n_timesteps
|
248 |
+
xt = z * mask
|
249 |
+
for i in range(n_timesteps):
|
250 |
+
t = (1.0 - (i + 0.5)*h) * torch.ones(z.shape[0], dtype=z.dtype,
|
251 |
+
device=z.device)
|
252 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
253 |
+
noise_t = get_noise(time, self.beta_min, self.beta_max,
|
254 |
+
cumulative=False)
|
255 |
+
|
256 |
+
if not use_classifier_free:
|
257 |
+
if stoc: # adds stochastic term
|
258 |
+
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk)
|
259 |
+
dxt_det = dxt_det * noise_t * h
|
260 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
|
261 |
+
requires_grad=False)
|
262 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
263 |
+
dxt = dxt_det + dxt_stoc
|
264 |
+
else:
|
265 |
+
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk))
|
266 |
+
dxt = dxt * noise_t * h
|
267 |
+
xt = (xt - dxt) * mask
|
268 |
+
else:
|
269 |
+
if stoc: # adds stochastic term
|
270 |
+
score_estimate = (1 + classifier_free_guidance) * self.estimator(xt, mask, mu, t, spk) \
|
271 |
+
- classifier_free_guidance * self.estimator(xt, mask, mu, t, dummy_spk)
|
272 |
+
dxt_det = 0.5 * (mu - xt) - score_estimate
|
273 |
+
dxt_det = dxt_det * noise_t * h
|
274 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
|
275 |
+
requires_grad=False)
|
276 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
277 |
+
dxt = dxt_det + dxt_stoc
|
278 |
+
else:
|
279 |
+
score_estimate = (1 + classifier_free_guidance) * self.estimator(xt, mask, mu, t, spk) \
|
280 |
+
- classifier_free_guidance * self.estimator(xt, mask, mu, t, dummy_spk)
|
281 |
+
dxt = 0.5 * (mu - xt - score_estimate)
|
282 |
+
dxt = dxt * noise_t * h
|
283 |
+
xt = (xt - dxt) * mask
|
284 |
+
return xt
|
285 |
+
|
286 |
+
@torch.no_grad()
|
287 |
+
def forward(self, z, mask, mu, n_timesteps, stoc=False, spk=None,
|
288 |
+
use_classifier_free=False,
|
289 |
+
classifier_free_guidance=3.0,
|
290 |
+
dummy_spk=None
|
291 |
+
):
|
292 |
+
return self.reverse_diffusion(z, mask, mu, n_timesteps, stoc, spk, use_classifier_free, classifier_free_guidance, dummy_spk)
|
293 |
+
|
294 |
+
def loss_t(self, x0, mask, mu, t, spk=None):
|
295 |
+
xt, z = self.forward_diffusion(x0, mask, mu, t) # z is sampled from N(0, I)
|
296 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
297 |
+
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
|
298 |
+
noise_estimation = self.estimator(xt, mask, mu, t, spk)
|
299 |
+
noise_estimation *= torch.sqrt(1.0 - torch.exp(-cum_noise)) # multiply by lambda which is set to be variance
|
300 |
+
# actually multiplied by sqrt(lambda), but not lambda
|
301 |
+
# NOTE: here use a trick to put lambda into L2 norm so that don't divide z with std.
|
302 |
+
loss = torch.sum((noise_estimation + z)**2) / (torch.sum(mask)*self.n_feats)
|
303 |
+
return loss, xt
|
304 |
+
|
305 |
+
def compute_loss(self, x0, mask, mu, spk=None, offset=1e-5):
|
306 |
+
t = torch.rand(x0.shape[0], dtype=x0.dtype, device=x0.device,
|
307 |
+
requires_grad=False)
|
308 |
+
t = torch.clamp(t, offset, 1.0 - offset)
|
309 |
+
return self.loss_t(x0, mask, mu, t, spk)
|
310 |
+
|
311 |
+
def classifier_decode(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo=None, classifier_type="conformer"):
|
312 |
+
# control_emo should be [B, ] tensor
|
313 |
+
h = 1.0 / n_timesteps
|
314 |
+
xt = z * mask
|
315 |
+
for i in range(n_timesteps):
|
316 |
+
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
|
317 |
+
device=z.device)
|
318 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
319 |
+
noise_t = get_noise(time, self.beta_min, self.beta_max,
|
320 |
+
cumulative=False)
|
321 |
+
# =========== classifier part ==============
|
322 |
+
xt = xt.detach()
|
323 |
+
xt.requires_grad_(True)
|
324 |
+
if classifier_type == 'CNN-with-time':
|
325 |
+
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1), t=t)
|
326 |
+
else:
|
327 |
+
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
|
328 |
+
|
329 |
+
if classifier_type == 'conformer': # [B, C]
|
330 |
+
probs = torch.log_softmax(logits, dim=-1) # [B, C]
|
331 |
+
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
332 |
+
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
|
333 |
+
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
|
334 |
+
probs = torch.log(probs_mean)
|
335 |
+
else:
|
336 |
+
raise NotImplementedError
|
337 |
+
|
338 |
+
control_emo_probs = probs[torch.arange(len(control_emo)).to(control_emo.device), control_emo]
|
339 |
+
control_emo_probs.sum().backward(retain_graph=True)
|
340 |
+
# NOTE: sum is to treat all the components as the same weight.
|
341 |
+
xt_grad = xt.grad
|
342 |
+
# ==========================================
|
343 |
+
|
344 |
+
if stoc: # adds stochastic term
|
345 |
+
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad
|
346 |
+
dxt_det = dxt_det * noise_t * h
|
347 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
|
348 |
+
requires_grad=False)
|
349 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
350 |
+
dxt = dxt_det + dxt_stoc
|
351 |
+
else:
|
352 |
+
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad)
|
353 |
+
dxt = dxt * noise_t * h
|
354 |
+
xt = (xt - dxt) * mask
|
355 |
+
return xt
|
356 |
+
|
357 |
+
def classifier_decode_DPS(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo=None, classifier_type="conformer"):
|
358 |
+
# control_emo should be [B, ] tensor
|
359 |
+
h = 1.0 / n_timesteps
|
360 |
+
xt = z * mask
|
361 |
+
for i in range(n_timesteps):
|
362 |
+
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype, device=z.device)
|
363 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
364 |
+
noise_t = get_noise(time, self.beta_min, self.beta_max, cumulative=False)
|
365 |
+
beta_integral_t = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
|
366 |
+
bar_alpha_t = math.exp(-beta_integral_t)
|
367 |
+
|
368 |
+
# =========== classifier part ==============
|
369 |
+
xt = xt.detach()
|
370 |
+
xt.requires_grad_(True)
|
371 |
+
score_estimate = self.estimator(xt, mask, mu, t, spk)
|
372 |
+
x0_hat = (xt + (1-bar_alpha_t) * score_estimate) / math.sqrt(bar_alpha_t)
|
373 |
+
|
374 |
+
if classifier_type == 'CNN-with-time':
|
375 |
+
raise NotImplementedError
|
376 |
+
else:
|
377 |
+
logits = classifier_func(x0_hat.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
|
378 |
+
if classifier_type == 'conformer': # [B, C]
|
379 |
+
probs = torch.log_softmax(logits, dim=-1) # [B, C]
|
380 |
+
elif classifier_type == 'CNN':
|
381 |
+
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
|
382 |
+
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
|
383 |
+
|
384 |
+
probs_mean = probs_mean + 10E-10
|
385 |
+
# NOTE: at the first few steps, x0 may be very large. Then the classifier output logits will also have extreme value range.
|
386 |
+
#
|
387 |
+
|
388 |
+
probs = torch.log(probs_mean)
|
389 |
+
else:
|
390 |
+
raise NotImplementedError
|
391 |
+
|
392 |
+
control_emo_probs = probs[torch.arange(len(control_emo)).to(control_emo.device), control_emo]
|
393 |
+
control_emo_probs.sum().backward(retain_graph=True)
|
394 |
+
# NOTE: sum is to treat all the components as the same weight.
|
395 |
+
xt_grad = xt.grad
|
396 |
+
# ==========================================
|
397 |
+
|
398 |
+
if stoc: # adds stochastic term
|
399 |
+
dxt_det = 0.5 * (mu - xt) - score_estimate - guidance * xt_grad
|
400 |
+
dxt_det = dxt_det * noise_t * h
|
401 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device, requires_grad=False)
|
402 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
403 |
+
dxt = dxt_det + dxt_stoc
|
404 |
+
else:
|
405 |
+
dxt = 0.5 * (mu - xt - score_estimate - guidance * xt_grad)
|
406 |
+
dxt = dxt * noise_t * h
|
407 |
+
xt = (xt - dxt) * mask
|
408 |
+
return xt
|
409 |
+
|
410 |
+
def classifier_decode_mixture(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo1=None,control_emo2=None, emo1_weight=None, classifier_type="conformer"):
|
411 |
+
# control_emo should be [B, ] tensor
|
412 |
+
h = 1.0 / n_timesteps
|
413 |
+
xt = z * mask
|
414 |
+
for i in range(n_timesteps):
|
415 |
+
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
|
416 |
+
device=z.device)
|
417 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
418 |
+
noise_t = get_noise(time, self.beta_min, self.beta_max,
|
419 |
+
cumulative=False)
|
420 |
+
# =========== classifier part ==============
|
421 |
+
xt = xt.detach()
|
422 |
+
xt.requires_grad_(True)
|
423 |
+
if classifier_type == 'CNN-with-time':
|
424 |
+
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1), t=t)
|
425 |
+
else:
|
426 |
+
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
|
427 |
+
|
428 |
+
if classifier_type == 'conformer': # [B, C]
|
429 |
+
probs = torch.log_softmax(logits, dim=-1) # [B, C]
|
430 |
+
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
431 |
+
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
|
432 |
+
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
|
433 |
+
probs = torch.log(probs_mean)
|
434 |
+
else:
|
435 |
+
raise NotImplementedError
|
436 |
+
|
437 |
+
control_emo_probs1 = probs[torch.arange(len(control_emo1)).to(control_emo1.device), control_emo1]
|
438 |
+
control_emo_probs2 = probs[torch.arange(len(control_emo2)).to(control_emo2.device), control_emo2]
|
439 |
+
control_emo_probs = control_emo_probs1 * emo1_weight + control_emo_probs2 * (1-emo1_weight) # interpolate
|
440 |
+
|
441 |
+
control_emo_probs.sum().backward(retain_graph=True)
|
442 |
+
# NOTE: sum is to treat all the components as the same weight.
|
443 |
+
xt_grad = xt.grad
|
444 |
+
# ==========================================
|
445 |
+
|
446 |
+
if stoc: # adds stochastic term
|
447 |
+
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad
|
448 |
+
dxt_det = dxt_det * noise_t * h
|
449 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
|
450 |
+
requires_grad=False)
|
451 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
452 |
+
dxt = dxt_det + dxt_stoc
|
453 |
+
else:
|
454 |
+
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad)
|
455 |
+
dxt = dxt * noise_t * h
|
456 |
+
xt = (xt - dxt) * mask
|
457 |
+
return xt
|
458 |
+
|
459 |
+
def classifier_decode_mixture_DPS(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo1=None,control_emo2=None, emo1_weight=None, classifier_type="conformer"):
|
460 |
+
# control_emo should be [B, ] tensor
|
461 |
+
h = 1.0 / n_timesteps
|
462 |
+
xt = z * mask
|
463 |
+
for i in range(n_timesteps):
|
464 |
+
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
|
465 |
+
device=z.device)
|
466 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
467 |
+
noise_t = get_noise(time, self.beta_min, self.beta_max,
|
468 |
+
cumulative=False)
|
469 |
+
beta_integral_t = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
|
470 |
+
bar_alpha_t = math.exp(-beta_integral_t)
|
471 |
+
# =========== classifier part ==============
|
472 |
+
xt = xt.detach()
|
473 |
+
xt.requires_grad_(True)
|
474 |
+
score_estimate = self.estimator(xt, mask, mu, t, spk)
|
475 |
+
x0_hat = (xt + (1 - bar_alpha_t) * score_estimate) / math.sqrt(bar_alpha_t)
|
476 |
+
|
477 |
+
if classifier_type == 'CNN-with-time':
|
478 |
+
raise NotImplementedError
|
479 |
+
else:
|
480 |
+
logits = classifier_func(x0_hat.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
|
481 |
+
|
482 |
+
if classifier_type == 'conformer': # [B, C]
|
483 |
+
probs = torch.log_softmax(logits, dim=-1) # [B, C]
|
484 |
+
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
485 |
+
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
|
486 |
+
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
|
487 |
+
probs_mean = probs_mean + 10E-10
|
488 |
+
|
489 |
+
probs = torch.log(probs_mean)
|
490 |
+
else:
|
491 |
+
raise NotImplementedError
|
492 |
+
|
493 |
+
control_emo_probs1 = probs[torch.arange(len(control_emo1)).to(control_emo1.device), control_emo1]
|
494 |
+
control_emo_probs2 = probs[torch.arange(len(control_emo2)).to(control_emo2.device), control_emo2]
|
495 |
+
control_emo_probs = control_emo_probs1 * emo1_weight + control_emo_probs2 * (1-emo1_weight) # interpolate
|
496 |
+
|
497 |
+
control_emo_probs.sum().backward(retain_graph=True)
|
498 |
+
# NOTE: sum is to treat all the components as the same weight.
|
499 |
+
xt_grad = xt.grad
|
500 |
+
# ==========================================
|
501 |
+
|
502 |
+
if stoc: # adds stochastic term
|
503 |
+
dxt_det = 0.5 * (mu - xt) - score_estimate - guidance * xt_grad
|
504 |
+
dxt_det = dxt_det * noise_t * h
|
505 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
|
506 |
+
requires_grad=False)
|
507 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
508 |
+
dxt = dxt_det + dxt_stoc
|
509 |
+
else:
|
510 |
+
dxt = 0.5 * (mu - xt - score_estimate - guidance * xt_grad)
|
511 |
+
dxt = dxt * noise_t * h
|
512 |
+
xt = (xt - dxt) * mask
|
513 |
+
return xt
|
model/monotonic_align/LICENCE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Jaehyeon Kim
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
model/monotonic_align/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from .model.monotonic_align.core import maximum_path_c
|
6 |
+
|
7 |
+
|
8 |
+
def maximum_path(value, mask):
|
9 |
+
""" Cython optimised version.
|
10 |
+
value: [b, t_x, t_y]
|
11 |
+
mask: [b, t_x, t_y]
|
12 |
+
"""
|
13 |
+
value = value * mask
|
14 |
+
device = value.device
|
15 |
+
dtype = value.dtype
|
16 |
+
value = value.data.cpu().numpy().astype(np.float32)
|
17 |
+
path = np.zeros_like(value).astype(np.int32)
|
18 |
+
mask = mask.data.cpu().numpy()
|
19 |
+
|
20 |
+
t_x_max = mask.sum(1)[:, 0].astype(np.int32)
|
21 |
+
t_y_max = mask.sum(2)[:, 0].astype(np.int32)
|
22 |
+
maximum_path_c(path, value, t_x_max, t_y_max)
|
23 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
model/monotonic_align/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (903 Bytes). View file
|
|
model/monotonic_align/build/lib.macosx-11.1-arm64-cpython-310/model/monotonic_align/core.cpython-310-darwin.so
ADDED
Binary file (162 kB). View file
|
|
model/monotonic_align/build/temp.linux-x86_64-3.6/core.o
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b523df88cfc72d08a590c92052df8d4e252bfec3edc67981099a163f5a112ed
|
3 |
+
size 2200712
|
model/monotonic_align/build/temp.macosx-10.9-x86_64-3.6/core.o
ADDED
Binary file (616 kB). View file
|
|
model/monotonic_align/build/temp.macosx-11.1-arm64-cpython-310/core.o
ADDED
Binary file (173 kB). View file
|
|
model/monotonic_align/core.c
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/monotonic_align/core.pyx
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
cimport numpy as np
|
3 |
+
cimport cython
|
4 |
+
from cython.parallel import prange
|
5 |
+
|
6 |
+
|
7 |
+
@cython.boundscheck(False)
|
8 |
+
@cython.wraparound(False)
|
9 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_x, int t_y, float max_neg_val) nogil:
|
10 |
+
cdef int x
|
11 |
+
cdef int y
|
12 |
+
cdef float v_prev
|
13 |
+
cdef float v_cur
|
14 |
+
cdef float tmp
|
15 |
+
cdef int index = t_x - 1
|
16 |
+
|
17 |
+
for y in range(t_y):
|
18 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
19 |
+
if x == y:
|
20 |
+
v_cur = max_neg_val
|
21 |
+
else:
|
22 |
+
v_cur = value[x, y-1]
|
23 |
+
if x == 0:
|
24 |
+
if y == 0:
|
25 |
+
v_prev = 0.
|
26 |
+
else:
|
27 |
+
v_prev = max_neg_val
|
28 |
+
else:
|
29 |
+
v_prev = value[x-1, y-1]
|
30 |
+
value[x, y] = max(v_cur, v_prev) + value[x, y]
|
31 |
+
|
32 |
+
for y in range(t_y - 1, -1, -1):
|
33 |
+
path[index, y] = 1
|
34 |
+
if index != 0 and (index == y or value[index, y-1] < value[index-1, y-1]):
|
35 |
+
index = index - 1
|
36 |
+
|
37 |
+
|
38 |
+
@cython.boundscheck(False)
|
39 |
+
@cython.wraparound(False)
|
40 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_xs, int[::1] t_ys, float max_neg_val=-1e9) nogil:
|
41 |
+
cdef int b = values.shape[0]
|
42 |
+
|
43 |
+
cdef int i
|
44 |
+
for i in prange(b, nogil=True):
|
45 |
+
maximum_path_each(paths[i], values[i], t_xs[i], t_ys[i], max_neg_val)
|
model/monotonic_align/model/monotonic_align/core.cpython-310-darwin.so
ADDED
Binary file (162 kB). View file
|
|
model/monotonic_align/setup.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
from distutils.core import setup
|
4 |
+
from Cython.Build import cythonize
|
5 |
+
import numpy
|
6 |
+
|
7 |
+
setup(
|
8 |
+
name = 'monotonic_align',
|
9 |
+
ext_modules = cythonize("core.pyx"),
|
10 |
+
include_dirs=[numpy.get_include()]
|
11 |
+
)
|
model/text_encoder.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from model.base import BaseModule
|
8 |
+
from model.utils import sequence_mask, convert_pad_shape
|
9 |
+
|
10 |
+
|
11 |
+
class LayerNorm(BaseModule):
|
12 |
+
def __init__(self, channels, eps=1e-4):
|
13 |
+
super(LayerNorm, self).__init__()
|
14 |
+
self.channels = channels
|
15 |
+
self.eps = eps
|
16 |
+
|
17 |
+
self.gamma = torch.nn.Parameter(torch.ones(channels))
|
18 |
+
self.beta = torch.nn.Parameter(torch.zeros(channels))
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
n_dims = len(x.shape)
|
22 |
+
mean = torch.mean(x, 1, keepdim=True)
|
23 |
+
variance = torch.mean((x - mean)**2, 1, keepdim=True)
|
24 |
+
|
25 |
+
x = (x - mean) * torch.rsqrt(variance + self.eps)
|
26 |
+
|
27 |
+
shape = [1, -1] + [1] * (n_dims - 2)
|
28 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
29 |
+
return x
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(BaseModule):
|
33 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size,
|
34 |
+
n_layers, p_dropout):
|
35 |
+
super(ConvReluNorm, self).__init__()
|
36 |
+
self.in_channels = in_channels
|
37 |
+
self.hidden_channels = hidden_channels
|
38 |
+
self.out_channels = out_channels
|
39 |
+
self.kernel_size = kernel_size
|
40 |
+
self.n_layers = n_layers
|
41 |
+
self.p_dropout = p_dropout
|
42 |
+
|
43 |
+
self.conv_layers = torch.nn.ModuleList()
|
44 |
+
self.norm_layers = torch.nn.ModuleList()
|
45 |
+
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels,
|
46 |
+
kernel_size, padding=kernel_size//2))
|
47 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
48 |
+
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
|
49 |
+
for _ in range(n_layers - 1):
|
50 |
+
self.conv_layers.append(torch.nn.Conv1d(hidden_channels, hidden_channels,
|
51 |
+
kernel_size, padding=kernel_size//2))
|
52 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
53 |
+
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
|
54 |
+
self.proj.weight.data.zero_()
|
55 |
+
self.proj.bias.data.zero_()
|
56 |
+
|
57 |
+
def forward(self, x, x_mask):
|
58 |
+
x_org = x
|
59 |
+
for i in range(self.n_layers):
|
60 |
+
x = self.conv_layers[i](x * x_mask)
|
61 |
+
x = self.norm_layers[i](x)
|
62 |
+
x = self.relu_drop(x)
|
63 |
+
x = x_org + self.proj(x)
|
64 |
+
return x * x_mask
|
65 |
+
|
66 |
+
|
67 |
+
class DurationPredictor(BaseModule):
|
68 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
69 |
+
super(DurationPredictor, self).__init__()
|
70 |
+
self.in_channels = in_channels
|
71 |
+
self.filter_channels = filter_channels
|
72 |
+
self.p_dropout = p_dropout
|
73 |
+
|
74 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
75 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels,
|
76 |
+
kernel_size, padding=kernel_size//2)
|
77 |
+
self.norm_1 = LayerNorm(filter_channels)
|
78 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels,
|
79 |
+
kernel_size, padding=kernel_size//2)
|
80 |
+
self.norm_2 = LayerNorm(filter_channels)
|
81 |
+
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
82 |
+
|
83 |
+
def forward(self, x, x_mask):
|
84 |
+
x = self.conv_1(x * x_mask)
|
85 |
+
x = torch.relu(x)
|
86 |
+
x = self.norm_1(x)
|
87 |
+
x = self.drop(x)
|
88 |
+
x = self.conv_2(x * x_mask)
|
89 |
+
x = torch.relu(x)
|
90 |
+
x = self.norm_2(x)
|
91 |
+
x = self.drop(x)
|
92 |
+
x = self.proj(x * x_mask)
|
93 |
+
return x * x_mask
|
94 |
+
|
95 |
+
|
96 |
+
class MultiHeadAttention(BaseModule):
|
97 |
+
def __init__(self, channels, out_channels, n_heads, window_size=None,
|
98 |
+
heads_share=True, p_dropout=0.0, proximal_bias=False,
|
99 |
+
proximal_init=False):
|
100 |
+
super(MultiHeadAttention, self).__init__()
|
101 |
+
assert channels % n_heads == 0
|
102 |
+
|
103 |
+
self.channels = channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.n_heads = n_heads
|
106 |
+
self.window_size = window_size
|
107 |
+
self.heads_share = heads_share
|
108 |
+
self.proximal_bias = proximal_bias
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.attn = None
|
111 |
+
|
112 |
+
self.k_channels = channels // n_heads
|
113 |
+
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
114 |
+
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
115 |
+
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
116 |
+
if window_size is not None:
|
117 |
+
n_heads_rel = 1 if heads_share else n_heads
|
118 |
+
rel_stddev = self.k_channels**-0.5
|
119 |
+
self.emb_rel_k = torch.nn.Parameter(torch.randn(n_heads_rel,
|
120 |
+
window_size * 2 + 1, self.k_channels) * rel_stddev)
|
121 |
+
self.emb_rel_v = torch.nn.Parameter(torch.randn(n_heads_rel,
|
122 |
+
window_size * 2 + 1, self.k_channels) * rel_stddev)
|
123 |
+
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
124 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
127 |
+
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
128 |
+
if proximal_init:
|
129 |
+
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
130 |
+
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
131 |
+
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
132 |
+
|
133 |
+
def forward(self, x, c, attn_mask=None):
|
134 |
+
q = self.conv_q(x)
|
135 |
+
k = self.conv_k(c)
|
136 |
+
v = self.conv_v(c)
|
137 |
+
|
138 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
139 |
+
|
140 |
+
x = self.conv_o(x)
|
141 |
+
return x
|
142 |
+
|
143 |
+
def attention(self, query, key, value, mask=None):
|
144 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
145 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
146 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
147 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
148 |
+
|
149 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
150 |
+
if self.window_size is not None:
|
151 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
152 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
153 |
+
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
|
154 |
+
rel_logits = self._relative_position_to_absolute_position(rel_logits)
|
155 |
+
scores_local = rel_logits / math.sqrt(self.k_channels)
|
156 |
+
scores = scores + scores_local
|
157 |
+
if self.proximal_bias:
|
158 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
159 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device,
|
160 |
+
dtype=scores.dtype)
|
161 |
+
if mask is not None:
|
162 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
163 |
+
p_attn = torch.nn.functional.softmax(scores, dim=-1)
|
164 |
+
p_attn = self.drop(p_attn)
|
165 |
+
output = torch.matmul(p_attn, value)
|
166 |
+
if self.window_size is not None:
|
167 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
168 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
169 |
+
output = output + self._matmul_with_relative_values(relative_weights,
|
170 |
+
value_relative_embeddings)
|
171 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
172 |
+
return output, p_attn
|
173 |
+
|
174 |
+
def _matmul_with_relative_values(self, x, y):
|
175 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
176 |
+
return ret
|
177 |
+
|
178 |
+
def _matmul_with_relative_keys(self, x, y):
|
179 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
180 |
+
return ret
|
181 |
+
|
182 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
183 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
184 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
185 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
186 |
+
if pad_length > 0:
|
187 |
+
padded_relative_embeddings = torch.nn.functional.pad(
|
188 |
+
relative_embeddings, convert_pad_shape([[0, 0],
|
189 |
+
[pad_length, pad_length], [0, 0]]))
|
190 |
+
else:
|
191 |
+
padded_relative_embeddings = relative_embeddings
|
192 |
+
used_relative_embeddings = padded_relative_embeddings[:,
|
193 |
+
slice_start_position:slice_end_position]
|
194 |
+
return used_relative_embeddings
|
195 |
+
|
196 |
+
def _relative_position_to_absolute_position(self, x):
|
197 |
+
batch, heads, length, _ = x.size()
|
198 |
+
x = torch.nn.functional.pad(x, convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
199 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
200 |
+
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
201 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
202 |
+
return x_final
|
203 |
+
|
204 |
+
def _absolute_position_to_relative_position(self, x):
|
205 |
+
batch, heads, length, _ = x.size()
|
206 |
+
x = torch.nn.functional.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
207 |
+
x_flat = x.view([batch, heads, length**2 + length*(length - 1)])
|
208 |
+
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
209 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
210 |
+
return x_final
|
211 |
+
|
212 |
+
def _attention_bias_proximal(self, length):
|
213 |
+
r = torch.arange(length, dtype=torch.float32)
|
214 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
215 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
216 |
+
|
217 |
+
|
218 |
+
class FFN(BaseModule):
|
219 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size,
|
220 |
+
p_dropout=0.0):
|
221 |
+
super(FFN, self).__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.out_channels = out_channels
|
224 |
+
self.filter_channels = filter_channels
|
225 |
+
self.kernel_size = kernel_size
|
226 |
+
self.p_dropout = p_dropout
|
227 |
+
|
228 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size,
|
229 |
+
padding=kernel_size//2)
|
230 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size,
|
231 |
+
padding=kernel_size//2)
|
232 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
233 |
+
|
234 |
+
def forward(self, x, x_mask):
|
235 |
+
x = self.conv_1(x * x_mask)
|
236 |
+
x = torch.relu(x)
|
237 |
+
x = self.drop(x)
|
238 |
+
x = self.conv_2(x * x_mask)
|
239 |
+
return x * x_mask
|
240 |
+
|
241 |
+
|
242 |
+
class Encoder(BaseModule):
|
243 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers,
|
244 |
+
kernel_size=1, p_dropout=0.0, window_size=None, **kwargs):
|
245 |
+
super(Encoder, self).__init__()
|
246 |
+
self.hidden_channels = hidden_channels
|
247 |
+
self.filter_channels = filter_channels
|
248 |
+
self.n_heads = n_heads
|
249 |
+
self.n_layers = n_layers
|
250 |
+
self.kernel_size = kernel_size
|
251 |
+
self.p_dropout = p_dropout
|
252 |
+
self.window_size = window_size
|
253 |
+
|
254 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
255 |
+
self.attn_layers = torch.nn.ModuleList()
|
256 |
+
self.norm_layers_1 = torch.nn.ModuleList()
|
257 |
+
self.ffn_layers = torch.nn.ModuleList()
|
258 |
+
self.norm_layers_2 = torch.nn.ModuleList()
|
259 |
+
for _ in range(self.n_layers):
|
260 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels,
|
261 |
+
n_heads, window_size=window_size, p_dropout=p_dropout))
|
262 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
263 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels,
|
264 |
+
filter_channels, kernel_size, p_dropout=p_dropout))
|
265 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
266 |
+
|
267 |
+
def forward(self, x, x_mask):
|
268 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
269 |
+
for i in range(self.n_layers):
|
270 |
+
x = x * x_mask
|
271 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
272 |
+
y = self.drop(y)
|
273 |
+
x = self.norm_layers_1[i](x + y)
|
274 |
+
y = self.ffn_layers[i](x, x_mask)
|
275 |
+
y = self.drop(y)
|
276 |
+
x = self.norm_layers_2[i](x + y)
|
277 |
+
x = x * x_mask
|
278 |
+
return x
|
279 |
+
|
280 |
+
|
281 |
+
class TextEncoder(BaseModule):
|
282 |
+
def __init__(self, n_vocab, n_feats, n_channels, filter_channels,
|
283 |
+
filter_channels_dp, n_heads, n_layers, kernel_size,
|
284 |
+
p_dropout, window_size=None, spk_emb_dim=64, n_spks=1):
|
285 |
+
super(TextEncoder, self).__init__()
|
286 |
+
self.n_vocab = n_vocab
|
287 |
+
self.n_feats = n_feats
|
288 |
+
self.n_channels = n_channels
|
289 |
+
self.filter_channels = filter_channels
|
290 |
+
self.filter_channels_dp = filter_channels_dp
|
291 |
+
self.n_heads = n_heads
|
292 |
+
self.n_layers = n_layers
|
293 |
+
self.kernel_size = kernel_size
|
294 |
+
self.p_dropout = p_dropout
|
295 |
+
self.window_size = window_size
|
296 |
+
self.spk_emb_dim = spk_emb_dim
|
297 |
+
self.n_spks = n_spks
|
298 |
+
|
299 |
+
self.emb = torch.nn.Embedding(n_vocab, n_channels)
|
300 |
+
torch.nn.init.normal_(self.emb.weight, 0.0, n_channels**-0.5)
|
301 |
+
|
302 |
+
self.prenet = ConvReluNorm(n_channels, n_channels, n_channels,
|
303 |
+
kernel_size=5, n_layers=3, p_dropout=0.5)
|
304 |
+
|
305 |
+
self.encoder = Encoder(n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels, n_heads, n_layers,
|
306 |
+
kernel_size, p_dropout, window_size=window_size)
|
307 |
+
|
308 |
+
self.proj_m = torch.nn.Conv1d(n_channels + (spk_emb_dim if n_spks > 1 else 0), n_feats, 1)
|
309 |
+
self.proj_w = DurationPredictor(n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels_dp,
|
310 |
+
kernel_size, p_dropout)
|
311 |
+
|
312 |
+
def forward(self, x, x_lengths, spk=None):
|
313 |
+
x = self.emb(x) * math.sqrt(self.n_channels)
|
314 |
+
x = torch.transpose(x, 1, -1)
|
315 |
+
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
316 |
+
|
317 |
+
x = self.prenet(x, x_mask)
|
318 |
+
if self.n_spks > 1:
|
319 |
+
x = torch.cat([x, spk.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
|
320 |
+
x = self.encoder(x, x_mask)
|
321 |
+
mu = self.proj_m(x) * x_mask
|
322 |
+
|
323 |
+
x_dp = torch.detach(x)
|
324 |
+
logw = self.proj_w(x_dp, x_mask)
|
325 |
+
|
326 |
+
return mu, logw, x_mask
|
model/tts.py
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import monotonic_align
|
7 |
+
from model.base import BaseModule
|
8 |
+
from model.text_encoder import TextEncoder
|
9 |
+
from model.diffusion import Diffusion
|
10 |
+
from model.utils import sequence_mask, generate_path, duration_loss, fix_len_compatibility
|
11 |
+
|
12 |
+
|
13 |
+
class GradTTSWithEmo(BaseModule):
|
14 |
+
def __init__(self, n_vocab=148, n_spks=1,n_emos=5, spk_emb_dim=64,
|
15 |
+
n_enc_channels=192, filter_channels=768, filter_channels_dp=256,
|
16 |
+
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4,
|
17 |
+
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000,
|
18 |
+
use_classifier_free=False, dummy_spk_rate=0.5,
|
19 |
+
**kwargs):
|
20 |
+
super(GradTTSWithEmo, self).__init__()
|
21 |
+
self.n_vocab = n_vocab
|
22 |
+
self.n_spks = n_spks
|
23 |
+
self.n_emos = n_emos
|
24 |
+
self.spk_emb_dim = spk_emb_dim
|
25 |
+
self.n_enc_channels = n_enc_channels
|
26 |
+
self.filter_channels = filter_channels
|
27 |
+
self.filter_channels_dp = filter_channels_dp
|
28 |
+
self.n_heads = n_heads
|
29 |
+
self.n_enc_layers = n_enc_layers
|
30 |
+
self.enc_kernel = enc_kernel
|
31 |
+
self.enc_dropout = enc_dropout
|
32 |
+
self.window_size = window_size
|
33 |
+
self.n_feats = n_feats
|
34 |
+
self.dec_dim = dec_dim
|
35 |
+
self.beta_min = beta_min
|
36 |
+
self.beta_max = beta_max
|
37 |
+
self.pe_scale = pe_scale
|
38 |
+
self.use_classifier_free = use_classifier_free
|
39 |
+
|
40 |
+
# if n_spks > 1:
|
41 |
+
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
42 |
+
self.emo_emb = torch.nn.Embedding(n_emos, spk_emb_dim)
|
43 |
+
self.merge_spk_emo = torch.nn.Sequential(
|
44 |
+
torch.nn.Linear(spk_emb_dim*2, spk_emb_dim),
|
45 |
+
torch.nn.ReLU(),
|
46 |
+
torch.nn.Linear(spk_emb_dim, spk_emb_dim)
|
47 |
+
)
|
48 |
+
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
|
49 |
+
filter_channels, filter_channels_dp, n_heads,
|
50 |
+
n_enc_layers, enc_kernel, enc_dropout, window_size,
|
51 |
+
spk_emb_dim=spk_emb_dim, n_spks=n_spks)
|
52 |
+
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale)
|
53 |
+
|
54 |
+
if self.use_classifier_free:
|
55 |
+
self.dummy_xv = torch.nn.Parameter(torch.randn(size=(spk_emb_dim, )))
|
56 |
+
self.dummy_rate = dummy_spk_rate
|
57 |
+
print(f"Using classifier free with rate {self.dummy_rate}")
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
|
61 |
+
length_scale=1.0, classifier_free_guidance=1., force_dur=None):
|
62 |
+
"""
|
63 |
+
Generates mel-spectrogram from text. Returns:
|
64 |
+
1. encoder outputs
|
65 |
+
2. decoder outputs
|
66 |
+
3. generated alignment
|
67 |
+
|
68 |
+
Args:
|
69 |
+
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
70 |
+
x_lengths (torch.Tensor): lengths of texts in batch.
|
71 |
+
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
|
72 |
+
temperature (float, optional): controls variance of terminal distribution.
|
73 |
+
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
|
74 |
+
Usually, does not provide synthesis improvements.
|
75 |
+
length_scale (float, optional): controls speech pace.
|
76 |
+
Increase value to slow down generated speech and vice versa.
|
77 |
+
"""
|
78 |
+
x, x_lengths = self.relocate_input([x, x_lengths])
|
79 |
+
|
80 |
+
# Get speaker embedding
|
81 |
+
spk = self.spk_emb(spk)
|
82 |
+
emo = self.emo_emb(emo)
|
83 |
+
|
84 |
+
if self.use_classifier_free:
|
85 |
+
emo = emo / torch.sqrt(torch.sum(emo**2, dim=1, keepdim=True)) # unit norm
|
86 |
+
|
87 |
+
spk_merged = self.merge_spk_emo(torch.cat([spk, emo], dim=-1))
|
88 |
+
|
89 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
90 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
|
91 |
+
|
92 |
+
w = torch.exp(logw) * x_mask
|
93 |
+
w_ceil = torch.ceil(w) * length_scale
|
94 |
+
if force_dur is not None:
|
95 |
+
w_ceil = force_dur.unsqueeze(1) # [1, 1, Ltext]
|
96 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
97 |
+
y_max_length = int(y_lengths.max())
|
98 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
99 |
+
|
100 |
+
# Using obtained durations `w` construct alignment map `attn`
|
101 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
102 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
103 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
104 |
+
|
105 |
+
# Align encoded text and get mu_y
|
106 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
107 |
+
mu_y = mu_y.transpose(1, 2)
|
108 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
109 |
+
|
110 |
+
# Sample latent representation from terminal distribution N(mu_y, I)
|
111 |
+
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
|
112 |
+
# print(z)
|
113 |
+
# Generate sample by performing reverse dynamics
|
114 |
+
|
115 |
+
unit_dummy_emo = self.dummy_xv / torch.sqrt(torch.sum(self.dummy_xv**2)) if self.use_classifier_free else None
|
116 |
+
dummy_spk = self.merge_spk_emo(torch.cat([spk, unit_dummy_emo.unsqueeze(0).repeat(len(spk), 1)], dim=-1)) if self.use_classifier_free else None
|
117 |
+
|
118 |
+
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
|
119 |
+
use_classifier_free=self.use_classifier_free,
|
120 |
+
classifier_free_guidance=classifier_free_guidance,
|
121 |
+
dummy_spk=dummy_spk)
|
122 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
123 |
+
|
124 |
+
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
|
125 |
+
|
126 |
+
def classifier_guidance_decode(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
|
127 |
+
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
|
128 |
+
x, x_lengths = self.relocate_input([x, x_lengths])
|
129 |
+
|
130 |
+
# Get speaker embedding
|
131 |
+
spk = self.spk_emb(spk)
|
132 |
+
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder.
|
133 |
+
|
134 |
+
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
|
135 |
+
|
136 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
137 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
|
138 |
+
|
139 |
+
w = torch.exp(logw) * x_mask
|
140 |
+
# print("w shape is ", w.shape)
|
141 |
+
w_ceil = torch.ceil(w) * length_scale
|
142 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
143 |
+
y_max_length = int(y_lengths.max())
|
144 |
+
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
145 |
+
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
|
146 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
147 |
+
|
148 |
+
# Using obtained durations `w` construct alignment map `attn`
|
149 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
150 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
151 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
152 |
+
|
153 |
+
# Align encoded text and get mu_y
|
154 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
155 |
+
mu_y = mu_y.transpose(1, 2)
|
156 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
157 |
+
|
158 |
+
# Sample latent representation from terminal distribution N(mu_y, I)
|
159 |
+
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
|
160 |
+
# Generate sample by performing reverse dynamics
|
161 |
+
|
162 |
+
decoder_outputs = self.decoder.classifier_decode(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
|
163 |
+
classifier_func, guidance,
|
164 |
+
control_emo=emo, classifier_type=classifier_type)
|
165 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
166 |
+
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
|
167 |
+
|
168 |
+
def classifier_guidance_decode_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
|
169 |
+
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
|
170 |
+
x, x_lengths = self.relocate_input([x, x_lengths])
|
171 |
+
|
172 |
+
# Get speaker embedding
|
173 |
+
spk = self.spk_emb(spk)
|
174 |
+
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder.
|
175 |
+
|
176 |
+
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
|
177 |
+
|
178 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
179 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
|
180 |
+
|
181 |
+
w = torch.exp(logw) * x_mask
|
182 |
+
w_ceil = torch.ceil(w) * length_scale
|
183 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
184 |
+
y_max_length = int(y_lengths.max())
|
185 |
+
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
186 |
+
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
|
187 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
188 |
+
|
189 |
+
# Using obtained durations `w` construct alignment map `attn`
|
190 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
191 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
192 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
193 |
+
|
194 |
+
# Align encoded text and get mu_y
|
195 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
196 |
+
mu_y = mu_y.transpose(1, 2)
|
197 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
198 |
+
|
199 |
+
# Sample latent representation from terminal distribution N(mu_y, I)
|
200 |
+
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
|
201 |
+
# Generate sample by performing reverse dynamics
|
202 |
+
|
203 |
+
decoder_outputs = self.decoder.classifier_decode_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
|
204 |
+
classifier_func, guidance,
|
205 |
+
control_emo=emo, classifier_type=classifier_type)
|
206 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
207 |
+
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
|
208 |
+
|
209 |
+
def classifier_guidance_decode_two_mixture(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None,
|
210 |
+
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
|
211 |
+
x, x_lengths = self.relocate_input([x, x_lengths])
|
212 |
+
|
213 |
+
# Get speaker embedding
|
214 |
+
spk = self.spk_emb(spk)
|
215 |
+
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder.
|
216 |
+
|
217 |
+
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
|
218 |
+
|
219 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
220 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
|
221 |
+
|
222 |
+
w = torch.exp(logw) * x_mask
|
223 |
+
w_ceil = torch.ceil(w) * length_scale
|
224 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
225 |
+
y_max_length = int(y_lengths.max())
|
226 |
+
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
227 |
+
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
|
228 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
229 |
+
|
230 |
+
# Using obtained durations `w` construct alignment map `attn`
|
231 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
232 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
233 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
234 |
+
|
235 |
+
# Align encoded text and get mu_y
|
236 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
237 |
+
mu_y = mu_y.transpose(1, 2)
|
238 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
239 |
+
|
240 |
+
# Sample latent representation from terminal distribution N(mu_y, I)
|
241 |
+
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
|
242 |
+
# Generate sample by performing reverse dynamics
|
243 |
+
|
244 |
+
decoder_outputs = self.decoder.classifier_decode_mixture(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
|
245 |
+
classifier_func, guidance,
|
246 |
+
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type)
|
247 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
248 |
+
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
|
249 |
+
|
250 |
+
def classifier_guidance_decode_two_mixture_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None,
|
251 |
+
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
|
252 |
+
x, x_lengths = self.relocate_input([x, x_lengths])
|
253 |
+
|
254 |
+
# Get speaker embedding
|
255 |
+
spk = self.spk_emb(spk)
|
256 |
+
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder.
|
257 |
+
|
258 |
+
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
|
259 |
+
|
260 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
261 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
|
262 |
+
|
263 |
+
w = torch.exp(logw) * x_mask
|
264 |
+
w_ceil = torch.ceil(w) * length_scale
|
265 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
266 |
+
y_max_length = int(y_lengths.max())
|
267 |
+
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
|
268 |
+
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
|
269 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
270 |
+
|
271 |
+
# Using obtained durations `w` construct alignment map `attn`
|
272 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
273 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
274 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
275 |
+
|
276 |
+
# Align encoded text and get mu_y
|
277 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
278 |
+
mu_y = mu_y.transpose(1, 2)
|
279 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
280 |
+
|
281 |
+
# Sample latent representation from terminal distribution N(mu_y, I)
|
282 |
+
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
|
283 |
+
# Generate sample by performing reverse dynamics
|
284 |
+
|
285 |
+
decoder_outputs = self.decoder.classifier_decode_mixture_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
|
286 |
+
classifier_func, guidance,
|
287 |
+
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type)
|
288 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
289 |
+
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
|
290 |
+
|
291 |
+
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, emo=None, out_size=None, use_gt_dur=False, durs=None):
|
292 |
+
"""
|
293 |
+
Computes 3 losses:
|
294 |
+
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
|
295 |
+
2. prior loss: loss between mel-spectrogram and encoder outputs.
|
296 |
+
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
300 |
+
x_lengths (torch.Tensor): lengths of texts in batch.
|
301 |
+
y (torch.Tensor): batch of corresponding mel-spectrograms.
|
302 |
+
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
|
303 |
+
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
|
304 |
+
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
|
305 |
+
use_gt_dur: bool
|
306 |
+
durs: gt duration
|
307 |
+
"""
|
308 |
+
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths]) # y: B, 80, L
|
309 |
+
|
310 |
+
spk = self.spk_emb(spk)
|
311 |
+
emo = self.emo_emb(emo) # [B, D]
|
312 |
+
if self.use_classifier_free:
|
313 |
+
emo = emo / torch.sqrt(torch.sum(emo ** 2, dim=1, keepdim=True)) # unit norm
|
314 |
+
use_dummy_per_sample = torch.distributions.Binomial(1, torch.tensor(
|
315 |
+
[self.dummy_rate] * len(emo))).sample().bool() # [b, ] True/False where True accords to rate
|
316 |
+
emo[use_dummy_per_sample] = (self.dummy_xv / torch.sqrt(
|
317 |
+
torch.sum(self.dummy_xv ** 2))) # substitute with dummy xv(unit norm too)
|
318 |
+
|
319 |
+
spk = self.merge_spk_emo(torch.cat([spk, emo], dim=-1)) # [B, D]
|
320 |
+
|
321 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
322 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
|
323 |
+
y_max_length = y.shape[-1]
|
324 |
+
|
325 |
+
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
326 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
327 |
+
|
328 |
+
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
329 |
+
if use_gt_dur:
|
330 |
+
attn = generate_path(durs, attn_mask.squeeze(1)).detach()
|
331 |
+
else:
|
332 |
+
with torch.no_grad():
|
333 |
+
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
334 |
+
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
335 |
+
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
|
336 |
+
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
337 |
+
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
|
338 |
+
log_prior = y_square - y_mu_double + mu_square + const
|
339 |
+
# it's actually the log likelihood of y given the Gaussian with (mu_x, I)
|
340 |
+
|
341 |
+
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
342 |
+
attn = attn.detach()
|
343 |
+
|
344 |
+
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
345 |
+
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
346 |
+
dur_loss = duration_loss(logw, logw_, x_lengths)
|
347 |
+
# print(attn.shape)
|
348 |
+
|
349 |
+
# Cut a small segment of mel-spectrogram in order to increase batch size
|
350 |
+
if not isinstance(out_size, type(None)):
|
351 |
+
clip_size = min(out_size, y_max_length) # when out_size > max length, do not actually perform clipping
|
352 |
+
clip_size = -fix_len_compatibility(-clip_size) # this is to ensure dividable
|
353 |
+
max_offset = (y_lengths - clip_size).clamp(0)
|
354 |
+
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
|
355 |
+
out_offset = torch.LongTensor([
|
356 |
+
torch.tensor(random.choice(range(start, end)) if end > start else 0)
|
357 |
+
for start, end in offset_ranges
|
358 |
+
]).to(y_lengths)
|
359 |
+
|
360 |
+
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], clip_size, dtype=attn.dtype, device=attn.device)
|
361 |
+
y_cut = torch.zeros(y.shape[0], self.n_feats, clip_size, dtype=y.dtype, device=y.device)
|
362 |
+
y_cut_lengths = []
|
363 |
+
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
|
364 |
+
y_cut_length = clip_size + (y_lengths[i] - clip_size).clamp(None, 0)
|
365 |
+
y_cut_lengths.append(y_cut_length)
|
366 |
+
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
|
367 |
+
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
|
368 |
+
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
|
369 |
+
y_cut_lengths = torch.LongTensor(y_cut_lengths)
|
370 |
+
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
|
371 |
+
|
372 |
+
attn = attn_cut # attn -> [B, text_length, cut_length]. It does not begin from top left corner
|
373 |
+
y = y_cut
|
374 |
+
y_mask = y_cut_mask
|
375 |
+
|
376 |
+
# Align encoded text with mel-spectrogram and get mu_y segment
|
377 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) # here mu_x is not cut.
|
378 |
+
mu_y = mu_y.transpose(1, 2) # B, 80, cut_length
|
379 |
+
|
380 |
+
# Compute loss of score-based decoder
|
381 |
+
# print(y.shape, y_mask.shape, mu_y.shape)
|
382 |
+
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
|
383 |
+
|
384 |
+
# Compute loss between aligned encoder outputs and mel-spectrogram
|
385 |
+
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
386 |
+
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
387 |
+
|
388 |
+
return dur_loss, prior_loss, diff_loss
|
389 |
+
|
390 |
+
|
391 |
+
class GradTTSXvector(BaseModule):
|
392 |
+
def __init__(self, n_vocab=148, spk_emb_dim=64,
|
393 |
+
n_enc_channels=192, filter_channels=768, filter_channels_dp=256,
|
394 |
+
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4,
|
395 |
+
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000, xvector_dim=512, **kwargs):
|
396 |
+
super(GradTTSXvector, self).__init__()
|
397 |
+
self.n_vocab = n_vocab
|
398 |
+
# self.n_spks = n_spks
|
399 |
+
self.spk_emb_dim = spk_emb_dim
|
400 |
+
self.n_enc_channels = n_enc_channels
|
401 |
+
self.filter_channels = filter_channels
|
402 |
+
self.filter_channels_dp = filter_channels_dp
|
403 |
+
self.n_heads = n_heads
|
404 |
+
self.n_enc_layers = n_enc_layers
|
405 |
+
self.enc_kernel = enc_kernel
|
406 |
+
self.enc_dropout = enc_dropout
|
407 |
+
self.window_size = window_size
|
408 |
+
self.n_feats = n_feats
|
409 |
+
self.dec_dim = dec_dim
|
410 |
+
self.beta_min = beta_min
|
411 |
+
self.beta_max = beta_max
|
412 |
+
self.pe_scale = pe_scale
|
413 |
+
|
414 |
+
self.xvector_proj = torch.nn.Linear(xvector_dim, spk_emb_dim)
|
415 |
+
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
|
416 |
+
filter_channels, filter_channels_dp, n_heads,
|
417 |
+
n_enc_layers, enc_kernel, enc_dropout, window_size,
|
418 |
+
spk_emb_dim=spk_emb_dim, n_spks=999) # NOTE: not important `n_spk`
|
419 |
+
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale)
|
420 |
+
|
421 |
+
@torch.no_grad()
|
422 |
+
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0):
|
423 |
+
"""
|
424 |
+
Generates mel-spectrogram from text. Returns:
|
425 |
+
1. encoder outputs
|
426 |
+
2. decoder outputs
|
427 |
+
3. generated alignment
|
428 |
+
|
429 |
+
Args:
|
430 |
+
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
431 |
+
x_lengths (torch.Tensor): lengths of texts in batch.
|
432 |
+
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
|
433 |
+
temperature (float, optional): controls variance of terminal distribution.
|
434 |
+
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
|
435 |
+
Usually, does not provide synthesis improvements.
|
436 |
+
length_scale (float, optional): controls speech pace.
|
437 |
+
Increase value to slow down generated speech and vice versa.
|
438 |
+
spk: actually the xvectors
|
439 |
+
"""
|
440 |
+
x, x_lengths = self.relocate_input([x, x_lengths])
|
441 |
+
|
442 |
+
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding
|
443 |
+
|
444 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
445 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
|
446 |
+
|
447 |
+
w = torch.exp(logw) * x_mask
|
448 |
+
w_ceil = torch.ceil(w) * length_scale
|
449 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
450 |
+
y_max_length = int(y_lengths.max())
|
451 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
452 |
+
|
453 |
+
# Using obtained durations `w` construct alignment map `attn`
|
454 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
455 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
456 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
457 |
+
|
458 |
+
# Align encoded text and get mu_y
|
459 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
460 |
+
mu_y = mu_y.transpose(1, 2)
|
461 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
462 |
+
|
463 |
+
# Sample latent representation from terminal distribution N(mu_y, I)
|
464 |
+
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
|
465 |
+
# Generate sample by performing reverse dynamics
|
466 |
+
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk)
|
467 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
468 |
+
|
469 |
+
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
|
470 |
+
|
471 |
+
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, out_size=None, use_gt_dur=False, durs=None):
|
472 |
+
"""
|
473 |
+
Computes 3 losses:
|
474 |
+
1. duration loss: loss between predicted token durations and those extracted by Monotonic Alignment Search (MAS).
|
475 |
+
2. prior loss: loss between mel-spectrogram and encoder outputs.
|
476 |
+
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
480 |
+
x_lengths (torch.Tensor): lengths of texts in batch.
|
481 |
+
y (torch.Tensor): batch of corresponding mel-spectrograms.
|
482 |
+
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
|
483 |
+
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
|
484 |
+
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
|
485 |
+
spk: xvector
|
486 |
+
use_gt_dur: bool
|
487 |
+
durs: gt duration
|
488 |
+
"""
|
489 |
+
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths])
|
490 |
+
|
491 |
+
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding
|
492 |
+
|
493 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
494 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
|
495 |
+
y_max_length = y.shape[-1]
|
496 |
+
|
497 |
+
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
498 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
499 |
+
|
500 |
+
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
501 |
+
if not use_gt_dur:
|
502 |
+
with torch.no_grad():
|
503 |
+
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
504 |
+
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
505 |
+
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
|
506 |
+
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
507 |
+
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
|
508 |
+
log_prior = y_square - y_mu_double + mu_square + const
|
509 |
+
|
510 |
+
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
511 |
+
attn = attn.detach()
|
512 |
+
else:
|
513 |
+
with torch.no_grad():
|
514 |
+
attn = generate_path(durs, attn_mask.squeeze(1)).detach()
|
515 |
+
|
516 |
+
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
517 |
+
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
518 |
+
dur_loss = duration_loss(logw, logw_, x_lengths)
|
519 |
+
|
520 |
+
# print(attn.shape)
|
521 |
+
|
522 |
+
# Cut a small segment of mel-spectrogram in order to increase batch size
|
523 |
+
if not isinstance(out_size, type(None)):
|
524 |
+
max_offset = (y_lengths - out_size).clamp(0)
|
525 |
+
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
|
526 |
+
out_offset = torch.LongTensor([
|
527 |
+
torch.tensor(random.choice(range(start, end)) if end > start else 0)
|
528 |
+
for start, end in offset_ranges
|
529 |
+
]).to(y_lengths)
|
530 |
+
|
531 |
+
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
|
532 |
+
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
|
533 |
+
y_cut_lengths = []
|
534 |
+
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
|
535 |
+
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
|
536 |
+
y_cut_lengths.append(y_cut_length)
|
537 |
+
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
|
538 |
+
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
|
539 |
+
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
|
540 |
+
y_cut_lengths = torch.LongTensor(y_cut_lengths)
|
541 |
+
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
|
542 |
+
|
543 |
+
attn = attn_cut
|
544 |
+
y = y_cut
|
545 |
+
y_mask = y_cut_mask
|
546 |
+
|
547 |
+
# Align encoded text with mel-spectrogram and get mu_y segment
|
548 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
549 |
+
mu_y = mu_y.transpose(1, 2)
|
550 |
+
|
551 |
+
# Compute loss of score-based decoder
|
552 |
+
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
|
553 |
+
|
554 |
+
# Compute loss between aligned encoder outputs and mel-spectrogram
|
555 |
+
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
556 |
+
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
557 |
+
|
558 |
+
return dur_loss, prior_loss, diff_loss
|
model/utils.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def sequence_mask(length, max_length=None):
|
7 |
+
if max_length is None:
|
8 |
+
max_length = length.max()
|
9 |
+
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
|
10 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
11 |
+
|
12 |
+
|
13 |
+
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
14 |
+
while True:
|
15 |
+
if length % (2**num_downsamplings_in_unet) == 0:
|
16 |
+
return length
|
17 |
+
length += 1
|
18 |
+
|
19 |
+
|
20 |
+
def convert_pad_shape(pad_shape):
|
21 |
+
l = pad_shape[::-1]
|
22 |
+
pad_shape = [item for sublist in l for item in sublist]
|
23 |
+
return pad_shape
|
24 |
+
|
25 |
+
|
26 |
+
def generate_path(duration, mask):
|
27 |
+
device = duration.device
|
28 |
+
|
29 |
+
b, t_x, t_y = mask.shape
|
30 |
+
cum_duration = torch.cumsum(duration, 1)
|
31 |
+
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
32 |
+
|
33 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
34 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
35 |
+
path = path.view(b, t_x, t_y)
|
36 |
+
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0],
|
37 |
+
[1, 0], [0, 0]]))[:, :-1]
|
38 |
+
path = path * mask
|
39 |
+
return path
|
40 |
+
|
41 |
+
|
42 |
+
def duration_loss(logw, logw_, lengths):
|
43 |
+
loss = torch.sum((logw - logw_)**2) / torch.sum(lengths)
|
44 |
+
return loss
|
models.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
6 |
+
from xutils import init_weights, get_padding
|
7 |
+
|
8 |
+
LRELU_SLOPE = 0.1
|
9 |
+
|
10 |
+
|
11 |
+
class ResBlock1(torch.nn.Module):
|
12 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
13 |
+
super(ResBlock1, self).__init__()
|
14 |
+
self.h = h
|
15 |
+
self.convs1 = nn.ModuleList([
|
16 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
17 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
18 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
19 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
20 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
21 |
+
padding=get_padding(kernel_size, dilation[2])))
|
22 |
+
])
|
23 |
+
self.convs1.apply(init_weights)
|
24 |
+
|
25 |
+
self.convs2 = nn.ModuleList([
|
26 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
27 |
+
padding=get_padding(kernel_size, 1))),
|
28 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
29 |
+
padding=get_padding(kernel_size, 1))),
|
30 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
31 |
+
padding=get_padding(kernel_size, 1)))
|
32 |
+
])
|
33 |
+
self.convs2.apply(init_weights)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
37 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
38 |
+
xt = c1(xt)
|
39 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
40 |
+
xt = c2(xt)
|
41 |
+
x = xt + x
|
42 |
+
return x
|
43 |
+
|
44 |
+
def remove_weight_norm(self):
|
45 |
+
for l in self.convs1:
|
46 |
+
remove_weight_norm(l)
|
47 |
+
for l in self.convs2:
|
48 |
+
remove_weight_norm(l)
|
49 |
+
|
50 |
+
|
51 |
+
class ResBlock2(torch.nn.Module):
|
52 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
53 |
+
super(ResBlock2, self).__init__()
|
54 |
+
self.h = h
|
55 |
+
self.convs = nn.ModuleList([
|
56 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
57 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
58 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
59 |
+
padding=get_padding(kernel_size, dilation[1])))
|
60 |
+
])
|
61 |
+
self.convs.apply(init_weights)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
for c in self.convs:
|
65 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
66 |
+
xt = c(xt)
|
67 |
+
x = xt + x
|
68 |
+
return x
|
69 |
+
|
70 |
+
def remove_weight_norm(self):
|
71 |
+
for l in self.convs:
|
72 |
+
remove_weight_norm(l)
|
73 |
+
|
74 |
+
|
75 |
+
class Generator(torch.nn.Module):
|
76 |
+
def __init__(self, h):
|
77 |
+
super(Generator, self).__init__()
|
78 |
+
self.h = h
|
79 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
80 |
+
self.num_upsamples = len(h.upsample_rates)
|
81 |
+
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
82 |
+
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
83 |
+
|
84 |
+
self.ups = nn.ModuleList()
|
85 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
86 |
+
self.ups.append(weight_norm(
|
87 |
+
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
|
88 |
+
k, u, padding=(k-u)//2)))
|
89 |
+
|
90 |
+
self.resblocks = nn.ModuleList()
|
91 |
+
for i in range(len(self.ups)):
|
92 |
+
ch = h.upsample_initial_channel//(2**(i+1))
|
93 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
94 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
95 |
+
|
96 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
97 |
+
self.ups.apply(init_weights)
|
98 |
+
self.conv_post.apply(init_weights)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x = self.conv_pre(x)
|
102 |
+
for i in range(self.num_upsamples):
|
103 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
104 |
+
x = self.ups[i](x)
|
105 |
+
xs = None
|
106 |
+
for j in range(self.num_kernels):
|
107 |
+
if xs is None:
|
108 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
109 |
+
else:
|
110 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
111 |
+
x = xs / self.num_kernels
|
112 |
+
x = F.leaky_relu(x)
|
113 |
+
x = self.conv_post(x)
|
114 |
+
x = torch.tanh(x)
|
115 |
+
|
116 |
+
return x
|
117 |
+
|
118 |
+
def remove_weight_norm(self):
|
119 |
+
print('Removing weight norm...')
|
120 |
+
for l in self.ups:
|
121 |
+
remove_weight_norm(l)
|
122 |
+
for l in self.resblocks:
|
123 |
+
l.remove_weight_norm()
|
124 |
+
remove_weight_norm(self.conv_pre)
|
125 |
+
remove_weight_norm(self.conv_post)
|
126 |
+
|
127 |
+
|
128 |
+
class DiscriminatorP(torch.nn.Module):
|
129 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
130 |
+
super(DiscriminatorP, self).__init__()
|
131 |
+
self.period = period
|
132 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
133 |
+
self.convs = nn.ModuleList([
|
134 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
135 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
136 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
137 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
138 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
139 |
+
])
|
140 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
fmap = []
|
144 |
+
|
145 |
+
# 1d to 2d
|
146 |
+
b, c, t = x.shape
|
147 |
+
if t % self.period != 0: # pad first
|
148 |
+
n_pad = self.period - (t % self.period)
|
149 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
150 |
+
t = t + n_pad
|
151 |
+
x = x.view(b, c, t // self.period, self.period)
|
152 |
+
|
153 |
+
for l in self.convs:
|
154 |
+
x = l(x)
|
155 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
156 |
+
fmap.append(x)
|
157 |
+
x = self.conv_post(x)
|
158 |
+
fmap.append(x)
|
159 |
+
x = torch.flatten(x, 1, -1)
|
160 |
+
|
161 |
+
return x, fmap
|
162 |
+
|
163 |
+
|
164 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
165 |
+
def __init__(self):
|
166 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
167 |
+
self.discriminators = nn.ModuleList([
|
168 |
+
DiscriminatorP(2),
|
169 |
+
DiscriminatorP(3),
|
170 |
+
DiscriminatorP(5),
|
171 |
+
DiscriminatorP(7),
|
172 |
+
DiscriminatorP(11),
|
173 |
+
])
|
174 |
+
|
175 |
+
def forward(self, y, y_hat):
|
176 |
+
y_d_rs = []
|
177 |
+
y_d_gs = []
|
178 |
+
fmap_rs = []
|
179 |
+
fmap_gs = []
|
180 |
+
for i, d in enumerate(self.discriminators):
|
181 |
+
y_d_r, fmap_r = d(y)
|
182 |
+
y_d_g, fmap_g = d(y_hat)
|
183 |
+
y_d_rs.append(y_d_r)
|
184 |
+
fmap_rs.append(fmap_r)
|
185 |
+
y_d_gs.append(y_d_g)
|
186 |
+
fmap_gs.append(fmap_g)
|
187 |
+
|
188 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
189 |
+
|
190 |
+
|
191 |
+
class DiscriminatorS(torch.nn.Module):
|
192 |
+
def __init__(self, use_spectral_norm=False):
|
193 |
+
super(DiscriminatorS, self).__init__()
|
194 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
195 |
+
self.convs = nn.ModuleList([
|
196 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
197 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
198 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
199 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
200 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
201 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
202 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
203 |
+
])
|
204 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
205 |
+
|
206 |
+
def forward(self, x):
|
207 |
+
fmap = []
|
208 |
+
for l in self.convs:
|
209 |
+
x = l(x)
|
210 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
211 |
+
fmap.append(x)
|
212 |
+
x = self.conv_post(x)
|
213 |
+
fmap.append(x)
|
214 |
+
x = torch.flatten(x, 1, -1)
|
215 |
+
|
216 |
+
return x, fmap
|
217 |
+
|
218 |
+
|
219 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
220 |
+
def __init__(self):
|
221 |
+
super(MultiScaleDiscriminator, self).__init__()
|
222 |
+
self.discriminators = nn.ModuleList([
|
223 |
+
DiscriminatorS(use_spectral_norm=True),
|
224 |
+
DiscriminatorS(),
|
225 |
+
DiscriminatorS(),
|
226 |
+
])
|
227 |
+
self.meanpools = nn.ModuleList([
|
228 |
+
AvgPool1d(4, 2, padding=2),
|
229 |
+
AvgPool1d(4, 2, padding=2)
|
230 |
+
])
|
231 |
+
|
232 |
+
def forward(self, y, y_hat):
|
233 |
+
y_d_rs = []
|
234 |
+
y_d_gs = []
|
235 |
+
fmap_rs = []
|
236 |
+
fmap_gs = []
|
237 |
+
for i, d in enumerate(self.discriminators):
|
238 |
+
if i != 0:
|
239 |
+
y = self.meanpools[i-1](y)
|
240 |
+
y_hat = self.meanpools[i-1](y_hat)
|
241 |
+
y_d_r, fmap_r = d(y)
|
242 |
+
y_d_g, fmap_g = d(y_hat)
|
243 |
+
y_d_rs.append(y_d_r)
|
244 |
+
fmap_rs.append(fmap_r)
|
245 |
+
y_d_gs.append(y_d_g)
|
246 |
+
fmap_gs.append(fmap_g)
|
247 |
+
|
248 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
249 |
+
|
250 |
+
|
251 |
+
def feature_loss(fmap_r, fmap_g):
|
252 |
+
loss = 0
|
253 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
254 |
+
for rl, gl in zip(dr, dg):
|
255 |
+
loss += torch.mean(torch.abs(rl - gl))
|
256 |
+
|
257 |
+
return loss*2
|
258 |
+
|
259 |
+
|
260 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
261 |
+
loss = 0
|
262 |
+
r_losses = []
|
263 |
+
g_losses = []
|
264 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
265 |
+
r_loss = torch.mean((1-dr)**2)
|
266 |
+
g_loss = torch.mean(dg**2)
|
267 |
+
loss += (r_loss + g_loss)
|
268 |
+
r_losses.append(r_loss.item())
|
269 |
+
g_losses.append(g_loss.item())
|
270 |
+
|
271 |
+
return loss, r_losses, g_losses
|
272 |
+
|
273 |
+
|
274 |
+
def generator_loss(disc_outputs):
|
275 |
+
loss = 0
|
276 |
+
gen_losses = []
|
277 |
+
for dg in disc_outputs:
|
278 |
+
l = torch.mean((1-dg)**2)
|
279 |
+
gen_losses.append(l)
|
280 |
+
loss += l
|
281 |
+
|
282 |
+
return loss, gen_losses
|
283 |
+
|
text/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
text/LICENSE
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CMUdict
|
2 |
+
-------
|
3 |
+
|
4 |
+
CMUdict (the Carnegie Mellon Pronouncing Dictionary) is a free
|
5 |
+
pronouncing dictionary of English, suitable for uses in speech
|
6 |
+
technology and is maintained by the Speech Group in the School of
|
7 |
+
Computer Science at Carnegie Mellon University.
|
8 |
+
|
9 |
+
The Carnegie Mellon Speech Group does not guarantee the accuracy of
|
10 |
+
this dictionary, nor its suitability for any specific purpose. In
|
11 |
+
fact, we expect a number of errors, omissions and inconsistencies to
|
12 |
+
remain in the dictionary. We intend to continually update the
|
13 |
+
dictionary by correction existing entries and by adding new ones. From
|
14 |
+
time to time a new major version will be released.
|
15 |
+
|
16 |
+
We welcome input from users: Please send email to Alex Rudnicky
|
17 |
+
(air+cmudict@cs.cmu.edu).
|
18 |
+
|
19 |
+
The Carnegie Mellon Pronouncing Dictionary, in its current and
|
20 |
+
previous versions is Copyright (C) 1993-2014 by Carnegie Mellon
|
21 |
+
University. Use of this dictionary for any research or commercial
|
22 |
+
purpose is completely unrestricted. If you make use of or
|
23 |
+
redistribute this material we request that you acknowledge its
|
24 |
+
origin in your descriptions.
|
25 |
+
|
26 |
+
If you add words to or correct words in your version of this
|
27 |
+
dictionary, we would appreciate it if you could send these additions
|
28 |
+
and corrections to us (air+cmudict@cs.cmu.edu) for consideration in a
|
29 |
+
subsequent version. All submissions will be reviewed and approved by
|
30 |
+
the current maintainer, Alex Rudnicky at Carnegie Mellon.
|
text/__init__.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
import re
|
4 |
+
from text import cleaners
|
5 |
+
from text.symbols import symbols
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
10 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
11 |
+
|
12 |
+
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
13 |
+
|
14 |
+
|
15 |
+
def get_arpabet(word, dictionary):
|
16 |
+
word_arpabet = dictionary.lookup(word)
|
17 |
+
if word_arpabet is not None:
|
18 |
+
return "{" + word_arpabet[0] + "}"
|
19 |
+
else:
|
20 |
+
return word
|
21 |
+
|
22 |
+
|
23 |
+
def text_to_sequence(text, cleaner_names=["kazakh_cleaners"], dictionary=None):
|
24 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
25 |
+
|
26 |
+
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
|
27 |
+
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
|
28 |
+
|
29 |
+
Args:
|
30 |
+
text: string to convert to a sequence
|
31 |
+
cleaner_names: names of the cleaner functions to run the text through
|
32 |
+
dictionary: arpabet class with arpabet dictionary
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
List of integers corresponding to the symbols in the text
|
36 |
+
'''
|
37 |
+
sequence = []
|
38 |
+
space = _symbols_to_sequence(' ')
|
39 |
+
# Check for curly braces and treat their contents as ARPAbet:
|
40 |
+
while len(text):
|
41 |
+
m = _curly_re.match(text)
|
42 |
+
if not m:
|
43 |
+
clean_text = _clean_text(text, cleaner_names)
|
44 |
+
#clean_text = text
|
45 |
+
if dictionary is not None:
|
46 |
+
clean_text = [get_arpabet(w, dictionary) for w in clean_text.split(" ")]
|
47 |
+
for i in range(len(clean_text)):
|
48 |
+
t = clean_text[i]
|
49 |
+
if t.startswith("{"):
|
50 |
+
sequence += _arpabet_to_sequence(t[1:-1])
|
51 |
+
else:
|
52 |
+
sequence += _symbols_to_sequence(t)
|
53 |
+
sequence += space
|
54 |
+
else:
|
55 |
+
sequence += _symbols_to_sequence(clean_text)
|
56 |
+
break
|
57 |
+
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
|
58 |
+
sequence += _arpabet_to_sequence(m.group(2))
|
59 |
+
text = m.group(3)
|
60 |
+
|
61 |
+
# remove trailing space
|
62 |
+
if dictionary is not None:
|
63 |
+
sequence = sequence[:-1] if sequence[-1] == space[0] else sequence
|
64 |
+
return sequence
|
65 |
+
|
66 |
+
|
67 |
+
def sequence_to_text(sequence):
|
68 |
+
'''Converts a sequence of IDs back to a string'''
|
69 |
+
result = ''
|
70 |
+
for symbol_id in sequence:
|
71 |
+
if symbol_id in _id_to_symbol:
|
72 |
+
s = _id_to_symbol[symbol_id]
|
73 |
+
# Enclose ARPAbet back in curly braces:
|
74 |
+
if len(s) > 1 and s[0] == '@':
|
75 |
+
s = '{%s}' % s[1:]
|
76 |
+
result += s
|
77 |
+
return result.replace('}{', ' ')
|
78 |
+
|
79 |
+
def convert_text(string):
|
80 |
+
text_norm = text_to_sequence(string.lower())
|
81 |
+
text_norm = torch.IntTensor(text_norm)
|
82 |
+
text_len = torch.IntTensor([text_norm.size(0)])
|
83 |
+
text_padded = torch.LongTensor(1, len(text_norm))
|
84 |
+
text_padded.zero_()
|
85 |
+
text_padded[0, :text_norm.size(0)] = text_norm
|
86 |
+
return text_padded, text_len
|
87 |
+
|
88 |
+
def _clean_text(text, cleaner_names):
|
89 |
+
for name in cleaner_names:
|
90 |
+
cleaner = getattr(cleaners, name)
|
91 |
+
if not cleaner:
|
92 |
+
raise Exception('Unknown cleaner: %s' % name)
|
93 |
+
text = cleaner(text)
|
94 |
+
return text
|
95 |
+
|
96 |
+
|
97 |
+
def _symbols_to_sequence(symbols):
|
98 |
+
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
|
99 |
+
|
100 |
+
|
101 |
+
def _arpabet_to_sequence(text):
|
102 |
+
return _symbols_to_sequence(['@' + s for s in text.split()])
|
103 |
+
|
104 |
+
|
105 |
+
def _should_keep_symbol(s):
|
106 |
+
return s in _symbol_to_id and s != '_' and s != '~'
|