File size: 881 Bytes
b488bef
47ee765
7f292e1
428e3e7
8762d1f
 
2863de0
7f292e1
cc8344a
 
7f292e1
cc8344a
c000958
428e3e7
58e9978
8762d1f
7f292e1
cc8344a
 
 
 
 
 
 
 
7f292e1
cc8344a
428e3e7
 
47ee765
c000958
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
from ultralytics import YOLO
from PIL import Image

# Load YOLO model
model = YOLO("Suspicious_Activities_nano.pt")

# Define the prediction function
def predict_suspicious_activity(image):
    results = model.predict(source=image, show=False, conf=0.6)
    results_img = results[0].plot()  # Get the image with bounding boxes/annotations
    return Image.fromarray(results_img)  # Get class names
    

# Create Gradio interface
interface = gr.Interface(
    fn=predict_suspicious_activity,  # Function to run on input
    inputs=gr.Image(type="pil"),  # Input type is image (PIL)
    outputs=gr.Image(type="pil"),  # Output type is image (PIL)






    title="Suspicious Activity Detection with YOLO",  # Interface title
    description="Upload an image to detect suspicious activities.",  # Description
)

# Launch the interface
interface.launch(share=True)