Update app.py
Browse files
app.py
CHANGED
@@ -1,164 +1,199 @@
|
|
1 |
-
import
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
|
5 |
-
from sklearn.preprocessing import StandardScaler
|
6 |
from ultralytics import YOLO
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
def process_input(input_media):
|
27 |
-
"""
|
28 |
-
Process either a video or an image for suspicious activity detection
|
29 |
-
"""
|
30 |
-
# Determine if input is a video or image path
|
31 |
-
is_video = input_media.lower().endswith(('.mp4', '.avi', '.mov'))
|
32 |
-
|
33 |
-
if is_video:
|
34 |
-
return process_video(input_media)
|
35 |
-
else:
|
36 |
-
return process_image(input_media)
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
cls = int(box.cls[0]) # Class ID
|
49 |
-
confidence = float(box.conf[0])
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
else:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
-
|
87 |
"""
|
88 |
-
|
89 |
-
cap = cv2.VideoCapture(input_video)
|
90 |
-
|
91 |
-
# Prepare to save output video
|
92 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
93 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
94 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
while cap.isOpened():
|
102 |
-
ret, frame = cap.read()
|
103 |
-
if not ret:
|
104 |
-
break
|
105 |
-
|
106 |
-
# Perform YOLO detection
|
107 |
-
results = yolo_model(frame, verbose=False)
|
108 |
-
for box in results[0].boxes:
|
109 |
-
cls = int(box.cls[0]) # Class ID
|
110 |
-
confidence = float(box.conf[0])
|
111 |
-
|
112 |
-
# Detect persons only (class_id 0 for 'person')
|
113 |
-
if cls == 0 and confidence > 0.5:
|
114 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box coordinates
|
115 |
-
|
116 |
-
# Extract ROI for classification
|
117 |
-
roi = frame[y1:y2, x1:x2]
|
118 |
-
if roi.size > 0:
|
119 |
-
# Preprocess ROI to extract keypoints
|
120 |
-
keypoints = extract_keypoints(roi)
|
121 |
-
|
122 |
-
if keypoints is not None and len(keypoints) > 0:
|
123 |
-
# Standardize and reshape keypoints for LSTM input
|
124 |
-
keypoints_scaled = scaler.fit_transform([keypoints]) # Standardize features
|
125 |
-
keypoints_reshaped = keypoints_scaled.reshape((1, 1, len(keypoints))) # Reshape for LSTM
|
126 |
-
|
127 |
-
# Predict with LSTM model
|
128 |
-
prediction = (lstm_model.predict(keypoints_reshaped) > 0.5).astype(int)[0][0]
|
129 |
-
|
130 |
-
# Draw bounding box and label
|
131 |
-
color = (0, 0, 255) if prediction == 1 else (0, 255, 0)
|
132 |
-
label = 'Suspicious' if prediction == 1 else 'Normal'
|
133 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
134 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
135 |
-
else:
|
136 |
-
print("No valid keypoints detected for ROI. Skipping frame.")
|
137 |
-
else:
|
138 |
-
print("ROI size is zero. Skipping frame.")
|
139 |
-
|
140 |
-
# Write processed frame to output video
|
141 |
-
out.write(frame)
|
142 |
-
|
143 |
-
# Release resources
|
144 |
-
cap.release()
|
145 |
-
out.release()
|
146 |
-
|
147 |
-
return 'output_video.mp4'
|
148 |
|
149 |
-
#
|
150 |
iface = gr.Interface(
|
151 |
-
fn=
|
152 |
inputs=[
|
153 |
-
gr.File(label="Upload
|
154 |
-
|
155 |
-
type="filepath")
|
156 |
],
|
157 |
outputs=[
|
158 |
-
gr.
|
|
|
159 |
],
|
160 |
-
title="
|
161 |
-
description="Upload
|
162 |
)
|
163 |
|
164 |
# Launch the interface
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
+
import gradio as gr
|
|
|
6 |
from ultralytics import YOLO
|
7 |
+
from deep_sort.utils.parser import get_config
|
8 |
+
from deep_sort.deep_sort import DeepSort
|
9 |
|
10 |
+
# Initialize YOLO and DeepSort
|
11 |
+
deep_sort_weights = 'ckpt.t7'
|
12 |
+
tracker = DeepSort(model_path=deep_sort_weights, max_age=80)
|
13 |
+
model = YOLO("person_gun.pt")
|
14 |
|
15 |
+
class ObjectDetector:
|
16 |
+
def __init__(self):
|
17 |
+
# Tracking variables
|
18 |
+
self.unique_track_ids = set()
|
19 |
+
self.track_labels = {}
|
20 |
+
self.track_times = {}
|
21 |
+
self.track_positions = {}
|
22 |
+
self.running_counters = {}
|
23 |
+
self.alert_person_ids = []
|
24 |
+
|
25 |
+
# Detection parameters
|
26 |
+
self.running_threshold = 0.5
|
27 |
+
self.fps = 30 # Default FPS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def process_frame(self, frame):
|
30 |
+
"""
|
31 |
+
Process a single frame for object detection and tracking
|
32 |
+
"""
|
33 |
+
# Reset alert tracking for this frame
|
34 |
+
self.alert_person_ids.clear()
|
35 |
+
og_frame = frame.copy()
|
36 |
+
|
37 |
+
# Detect persons
|
38 |
+
results = model(frame, device=0, classes=0, conf=0.75)
|
|
|
|
|
39 |
|
40 |
+
for result in results:
|
41 |
+
boxes = result.boxes
|
42 |
+
cls = boxes.cls.tolist()
|
43 |
+
conf = boxes.conf
|
44 |
+
xywh = boxes.xywh
|
45 |
+
|
46 |
+
pred_cls = np.array(cls)
|
47 |
+
conf = conf.detach().cpu().numpy()
|
48 |
+
bboxes_xywh = xywh.cpu().numpy()
|
49 |
+
|
50 |
+
# Update tracking
|
51 |
+
tracks = tracker.update(bboxes_xywh, conf, og_frame)
|
52 |
+
active_track_ids = set()
|
53 |
+
|
54 |
+
# Reset running status
|
55 |
+
new_running_status = "No Running"
|
56 |
+
|
57 |
+
for track in tracker.tracker.tracks:
|
58 |
+
track_id = track.track_id
|
59 |
+
x1, y1, x2, y2 = track.to_tlbr()
|
60 |
+
w = x2 - x1
|
61 |
+
h = y2 - y1
|
62 |
+
|
63 |
+
# Define color for bounding box
|
64 |
+
red_color = (0, 0, 255)
|
65 |
+
blue_color = (255, 0, 0)
|
66 |
+
green_color = (0, 255, 0)
|
67 |
+
color_id = track_id % 3
|
68 |
+
color = red_color if color_id == 0 else blue_color if color_id == 1 else green_color
|
69 |
+
cv2.rectangle(og_frame, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
70 |
+
|
71 |
+
# Initialize tracking for new tracks
|
72 |
+
if track_id not in self.track_labels:
|
73 |
+
self.track_labels[track_id] = "Person"
|
74 |
+
self.track_times[track_id] = 0
|
75 |
+
self.track_positions[track_id] = (x1, y1)
|
76 |
+
self.running_counters[track_id] = 0
|
77 |
+
|
78 |
+
self.track_times[track_id] += 1
|
79 |
+
prev_x1, prev_y1 = self.track_positions[track_id]
|
80 |
+
displacement = np.sqrt((x1 - prev_x1) ** 2 + (y1 - prev_y1) ** 2)
|
81 |
+
|
82 |
+
# Calculate speed
|
83 |
+
speed = displacement / self.fps if self.fps > 0 else 0
|
84 |
+
|
85 |
+
self.track_positions[track_id] = (x1, y1)
|
86 |
+
|
87 |
+
# Detect running
|
88 |
+
if speed > self.running_threshold and w * h > 5000:
|
89 |
+
self.running_counters[track_id] += 1
|
90 |
+
if self.running_counters[track_id] > self.fps/2:
|
91 |
+
self.track_labels[track_id] = "Running"
|
92 |
+
new_running_status = "Running Detected"
|
93 |
else:
|
94 |
+
self.running_counters[track_id] = 0
|
95 |
+
self.track_labels[track_id] = "Person"
|
96 |
+
|
97 |
+
# Track time and potential alerts
|
98 |
+
total_seconds = self.track_times[track_id] / self.fps if self.fps > 0 else 0
|
99 |
+
minutes = int(total_seconds // 60)
|
100 |
+
seconds = int(total_seconds % 60)
|
101 |
+
|
102 |
+
# Trigger alert for prolonged stay
|
103 |
+
if total_seconds > 60 and track_id not in self.alert_person_ids:
|
104 |
+
self.alert_person_ids.append(track_id)
|
105 |
+
|
106 |
+
# Add label to frame
|
107 |
+
cv2.putText(og_frame, f"{self.track_labels[track_id]} {minutes:02}:{seconds:02}",
|
108 |
+
(int(x1) + 10, int(y1) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
109 |
+
|
110 |
+
active_track_ids.add(track_id)
|
111 |
+
|
112 |
+
# Update unique track IDs
|
113 |
+
self.unique_track_ids.intersection_update(active_track_ids)
|
114 |
+
self.unique_track_ids.update(active_track_ids)
|
115 |
+
|
116 |
+
# Prepare result dictionary
|
117 |
+
result_info = {
|
118 |
+
'person_count': len(self.unique_track_ids),
|
119 |
+
'running_status': new_running_status,
|
120 |
+
'prolonged_stay_ids': list(self.alert_person_ids)
|
121 |
+
}
|
122 |
+
|
123 |
+
return og_frame, result_info
|
124 |
+
|
125 |
+
def process_input(self, input_media):
|
126 |
+
"""
|
127 |
+
Process either video or webcam input
|
128 |
+
"""
|
129 |
+
# Determine input type
|
130 |
+
if isinstance(input_media, str): # Video file path
|
131 |
+
cap = cv2.VideoCapture(input_media)
|
132 |
+
else: # Webcam input
|
133 |
+
cap = cv2.VideoCapture(0)
|
134 |
+
|
135 |
+
# Prepare output video
|
136 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
137 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
138 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 30
|
139 |
+
self.fps = fps
|
140 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
141 |
+
out = cv2.VideoWriter('output_detection.mp4', fourcc, fps, (width, height))
|
142 |
+
|
143 |
+
# Processing loop
|
144 |
+
frame_info_list = []
|
145 |
+
while cap.isOpened():
|
146 |
+
ret, frame = cap.read()
|
147 |
+
if not ret:
|
148 |
+
break
|
149 |
+
|
150 |
+
# Process frame
|
151 |
+
processed_frame, frame_info = self.process_frame(frame)
|
152 |
+
out.write(processed_frame)
|
153 |
+
frame_info_list.append(frame_info)
|
154 |
|
155 |
+
# Release resources
|
156 |
+
cap.release()
|
157 |
+
out.release()
|
158 |
+
|
159 |
+
return 'output_detection.mp4', frame_info_list
|
160 |
+
|
161 |
+
# Create Gradio interface
|
162 |
+
detector = ObjectDetector()
|
163 |
+
|
164 |
+
def detect_interface(input_media):
|
165 |
"""
|
166 |
+
Gradio interface function for detection
|
167 |
"""
|
168 |
+
output_video, frame_info_list = detector.process_input(input_media)
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Generate text summary
|
171 |
+
summary = "Detection Summary:\n"
|
172 |
+
if frame_info_list:
|
173 |
+
# Take the last frame's information
|
174 |
+
last_frame_info = frame_info_list[-1]
|
175 |
+
summary += f"Total Persons Detected: {last_frame_info['person_count']}\n"
|
176 |
+
summary += f"Running Status: {last_frame_info['running_status']}\n"
|
177 |
+
if last_frame_info['prolonged_stay_ids']:
|
178 |
+
summary += f"Prolonged Stay Detected - Person IDs: {last_frame_info['prolonged_stay_ids']}"
|
179 |
+
else:
|
180 |
+
summary += "No Prolonged Stay Detected"
|
181 |
|
182 |
+
return output_video, summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
# Gradio Interface
|
185 |
iface = gr.Interface(
|
186 |
+
fn=detect_interface,
|
187 |
inputs=[
|
188 |
+
gr.File(label="Upload Video", type="filepath"),
|
189 |
+
gr.Webcam(label="Or Use Webcam")
|
|
|
190 |
],
|
191 |
outputs=[
|
192 |
+
gr.Video(label="Processed Video"),
|
193 |
+
gr.Textbox(label="Detection Summary")
|
194 |
],
|
195 |
+
title="Object Detection with Tracking",
|
196 |
+
description="Upload a video or use webcam for real-time object detection and tracking"
|
197 |
)
|
198 |
|
199 |
# Launch the interface
|