File size: 3,582 Bytes
4f08543
 
 
 
 
 
 
 
 
 
 
 
e788e59
4f08543
 
 
 
 
 
 
 
 
7e40507
4f08543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374c5de
4f08543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c25bf3
4f08543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

hf_hub_download(
    repo_id="OEvortex/HelpingAI2-6B",
    filename="helpingai-6b-q4_k_m.gguf",
    local_dir="./models"
)



llm = None
llm_model = None

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.LLAMA_3

    global llm
    global llm_model
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

description = "🌟 HelpingAI: Emotionally Intelligent Conversational AI 🚀"


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                'helpingai-6b-q4_k_m.gguf',
            ],
            value="helpingai-6b-q4_k_m.gguf",
            label="Model"
        ),
        gr.Textbox(value="You are HelpingAI a emotional AI always answer my question in HelpingAI style", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Chat with HelpingAI using llama.cpp", 
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()