Spaces:
Sleeping
Sleeping
File size: 11,516 Bytes
d6fbb7e 2da7120 08f3bff 6a09b39 d6fbb7e 10e9b7d 08f3bff 10e9b7d eccf8e4 3c4371f 2da7120 6a09b39 10e9b7d 08f3bff d6fbb7e e80aab9 3db6293 e80aab9 2da7120 d6fbb7e bef7146 d6fbb7e 08f3bff bef7146 d6fbb7e 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 d59e1c2 6a09b39 2da7120 6a09b39 2da7120 6a09b39 2da7120 6a09b39 d59e1c2 d6fbb7e 31243f4 d6fbb7e 08f3bff d6fbb7e 31243f4 6a09b39 31243f4 d6fbb7e 3c4371f 08f3bff 31243f4 eccf8e4 05c1e76 4e563da 7168e8d 4e563da e80aab9 08f3bff 3c4371f f9b5dc1 d6fbb7e 31243f4 f9b5dc1 d6fbb7e 2da7120 bef7146 7168e8d bef7146 6a09b39 2da7120 08f3bff 6a09b39 08f3bff 6a09b39 08f3bff 31243f4 6a09b39 d59e1c2 d6fbb7e 7d65c66 f9b5dc1 6a09b39 f9b5dc1 31243f4 f9b5dc1 6a09b39 f9b5dc1 31243f4 2da7120 d6fbb7e e80aab9 7d65c66 e80aab9 f9b5dc1 d6fbb7e 7d65c66 d6fbb7e 31243f4 d6fbb7e e80aab9 2da7120 6a09b39 f9b5dc1 d59e1c2 d6fbb7e f9b5dc1 6a09b39 f9b5dc1 2da7120 e80aab9 6a09b39 2da7120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
"""
app.py
This script provides the Gradio web interface to run the evaluation.
This version focuses on robust image detection and processing.
"""
import os
import re
import gradio as gr
import requests
import pandas as pd
from urllib.parse import urlparse
import mimetypes
from typing import Optional, Tuple
from agent import create_agent_executor
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Helper function to parse the agent's output ---
def parse_final_answer(agent_response: str) -> str:
# Remove the FINAL ANSWER pattern search entirely
lines = [line for line in agent_response.split('\n') if line.strip()]
if lines: return lines[-1].strip()
return "Could not parse answer."
def detect_file_type_robust(url: str) -> Tuple[str, dict]:
"""
Robust file type detection with multiple validation methods.
Returns (file_type, metadata_dict)
"""
if not url or not url.strip():
return "unknown", {"error": "Empty URL"}
url = url.strip()
metadata = {"original_url": url}
# Normalize URL
if not url.startswith(('http://', 'https://')):
return "unknown", {"error": "Invalid URL format - must start with http/https"}
try:
parsed = urlparse(url)
metadata["domain"] = parsed.netloc
metadata["path"] = parsed.path
except Exception as e:
return "unknown", {"error": f"URL parsing failed: {e}"}
# Method 1: File extension analysis
url_lower = url.lower()
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.svg', '.tiff', '.ico'}
# Check for image extensions
for ext in image_extensions:
if url_lower.endswith(ext) or ext in url_lower.split('?')[0]: # Handle query params
metadata["detection_method"] = "file_extension"
metadata["extension"] = ext
return "image", metadata
# Method 2: Content-Type header check
try:
print(f"Checking content type for: {url}")
response = requests.head(url, timeout=10, allow_redirects=True)
content_type = response.headers.get('content-type', '').lower()
metadata["content_type"] = content_type
metadata["status_code"] = response.status_code
if response.status_code == 200:
if any(img_type in content_type for img_type in ['image/', 'image/jpeg', 'image/png', 'image/gif', 'image/webp']):
metadata["detection_method"] = "content_type"
return "image", metadata
else:
metadata["error"] = f"HTTP {response.status_code}"
except requests.RequestException as e:
metadata["error"] = f"Network error: {e}"
print(f"Network error checking {url}: {e}")
# Method 3: Domain-based detection for common image hosts
image_domains = {
'imgur.com', 'i.imgur.com',
'cdn.discordapp.com', 'media.discordapp.net',
'pbs.twimg.com', 'abs.twimg.com',
'i.redd.it', 'preview.redd.it',
'images.unsplash.com',
'via.placeholder.com',
'picsum.photos'
}
domain_lower = metadata.get("domain", "").lower()
if any(img_domain in domain_lower for img_domain in image_domains):
metadata["detection_method"] = "domain_based"
return "image", metadata
# Method 4: Guess from MIME types
try:
mime_type, _ = mimetypes.guess_type(url)
if mime_type and mime_type.startswith('image/'):
metadata["detection_method"] = "mime_guess"
metadata["mime_type"] = mime_type
return "image", metadata
except Exception:
pass
return "unknown", metadata
def create_structured_prompt(question_text: str, file_url: str = None) -> str:
"""
Create a structured prompt that provides clear task analysis for the agent.
"""
if not file_url:
return f"""TASK: {question_text}
ANALYSIS: This is a text-only question with no attachments.
APPROACH: Use available tools (web search, Wikipedia, etc.) as needed to answer accurately."""
file_type, metadata = detect_file_type_robust(file_url)
if file_type == "image":
return f"""TASK: {question_text}
ATTACHMENT ANALYSIS:
- Type: Image file detected
- URL: {file_url}
- Detection method: {metadata.get('detection_method', 'unknown')}
- Metadata: {metadata}
REASONING REQUIRED:
1. This question involves an image that needs to be analyzed
2. You must examine the image content to answer the question
3. The image URL should be processed directly by your vision capabilities
APPROACH: Process the image URL directly with your vision model, then provide a comprehensive answer based on what you see."""
else:
error_info = metadata.get('error', 'Unknown file type')
return f"""TASK: {question_text}
ATTACHMENT ANALYSIS:
- URL: {file_url}
- Type: Could not identify as supported file type
- Error: {error_info}
- Metadata: {metadata}
REASONING REQUIRED:
1. There is an attachment but it's not a recognized image format
2. You should attempt to process it as a regular web resource
3. Use web search or other tools to gather information about the URL content
APPROACH: Use web search or other available tools to gather information about this resource."""
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
if not profile:
return "Please log in to Hugging Face with the button above to submit.", None
username = profile.username
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
# 1. Instantiate Agent
print("Initializing your custom agent...")
try:
agent_executor = create_agent_executor(provider="groq")
except Exception as e:
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", pd.DataFrame()
# DEBUG: Print format of each question
print("\n=== QUESTION FORMATS DEBUG ===")
for i, item in enumerate(questions_data):
print(f"Question {i+1} keys: {list(item.keys())}")
print(f"Question {i+1} full data: {item}")
print("-" * 50)
print("=== END DEBUG ===\n")
# 3. Run your Agent
results_log, answers_payload = [], []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
# Get file URL if it exists
file_url = f"{DEFAULT_API_URL}/files/{task_id}" if item.get("has_file") else None
if file_url is None:
print ("No File Url")
# Create structured prompt with robust file analysis
structured_prompt = create_structured_prompt(question_text, file_url)
if file_url:
file_type, metadata = detect_file_type_robust(file_url)
print(f"File analysis: {file_url}")
print(f" - Type: {file_type}")
print(f" - Detection method: {metadata.get('detection_method', 'unknown')}")
if metadata.get('error'):
print(f" - Error: {metadata['error']}")
print(f"Structured Prompt for Agent:\n{structured_prompt}")
try:
# Pass the structured prompt to the agent
result = agent_executor.invoke({"messages": [("user", structured_prompt)]})
raw_answer = result['messages'][-1].content
submitted_answer = parse_final_answer(raw_answer)
print(f"Raw LLM Response: '{raw_answer}'")
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File URL": file_url or "None",
"File Type": detect_file_type_robust(file_url)[0] if file_url else "None",
"Detection Method": detect_file_type_robust(file_url)[1].get('detection_method', 'N/A') if file_url else "N/A",
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"!! AGENT ERROR on task {task_id}: {e}")
error_msg = f"AGENT RUNTIME ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File URL": file_url or "None",
"File Type": detect_file_type_robust(file_url)[0] if file_url else "None",
"Detection Method": "Error",
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare and 5. Submit
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}%\n"
f"Processed {len([r for r in results_log if 'ERROR' not in r['Submitted Answer']])} successful tasks")
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks(title="Image-Capable Agent Evaluation") as demo:
gr.Markdown("# Image-Capable Agent Evaluation Runner")
gr.Markdown("This agent can process images and perform web searches using Groq's vision-capable models.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=6, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
row_count=10,
column_widths=[80, 200, 120, 100, 80, 200]
)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " Image Agent App Starting " + "-"*30)
demo.launch() |