Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#1034
by
Akarimvand
- opened
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from gradio import processing_utils, utils
|
5 |
from PIL import Image
|
6 |
import random
|
7 |
-
|
8 |
from diffusers import (
|
9 |
DiffusionPipeline,
|
10 |
AutoencoderKL,
|
@@ -18,12 +16,8 @@ from diffusers import (
|
|
18 |
)
|
19 |
import tempfile
|
20 |
import time
|
21 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
22 |
-
import user_history
|
23 |
-
from illusion_style import css
|
24 |
import os
|
25 |
from transformers import CLIPImageProcessor
|
26 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
27 |
|
28 |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
29 |
|
@@ -35,6 +29,7 @@ controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrco
|
|
35 |
SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
36 |
safety_checker = None
|
37 |
feature_extractor = None
|
|
|
38 |
if SAFETY_CHECKER_ENABLED:
|
39 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
|
40 |
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
@@ -48,30 +43,6 @@ main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
48 |
torch_dtype=torch.float16,
|
49 |
).to("cuda")
|
50 |
|
51 |
-
# Function to check NSFW images
|
52 |
-
#def check_nsfw_images(images: list[Image.Image]) -> tuple[list[Image.Image], list[bool]]:
|
53 |
-
# if SAFETY_CHECKER_ENABLED:
|
54 |
-
# safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
55 |
-
# has_nsfw_concepts = safety_checker(
|
56 |
-
# images=[images],
|
57 |
-
# clip_input=safety_checker_input.pixel_values.to("cuda")
|
58 |
-
# )
|
59 |
-
# return images, has_nsfw_concepts
|
60 |
-
# else:
|
61 |
-
# return images, [False] * len(images)
|
62 |
-
|
63 |
-
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
64 |
-
#main_pipe.unet.to(memory_format=torch.channels_last)
|
65 |
-
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
66 |
-
#model_id = "stabilityai/sd-x2-latent-upscaler"
|
67 |
-
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
|
68 |
-
|
69 |
-
|
70 |
-
#image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
71 |
-
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
72 |
-
#upscaler.to("cuda")
|
73 |
-
|
74 |
-
|
75 |
# Sampler map
|
76 |
SAMPLER_MAP = {
|
77 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
@@ -80,92 +51,74 @@ SAMPLER_MAP = {
|
|
80 |
|
81 |
def center_crop_resize(img, output_size=(512, 512)):
|
82 |
width, height = img.size
|
83 |
-
|
84 |
-
# Calculate dimensions to crop to the center
|
85 |
new_dimension = min(width, height)
|
86 |
-
left = (width - new_dimension)/2
|
87 |
-
top = (height - new_dimension)/2
|
88 |
-
right = (width + new_dimension)/2
|
89 |
-
bottom = (height + new_dimension)/2
|
90 |
-
|
91 |
-
# Crop and resize
|
92 |
img = img.crop((left, top, right, bottom))
|
93 |
img = img.resize(output_size)
|
94 |
-
|
95 |
return img
|
96 |
|
97 |
def common_upscale(samples, width, height, upscale_method, crop=False):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
def upscale(samples, upscale_method, scale_by):
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
|
122 |
def check_inputs(prompt: str, control_image: Image.Image):
|
123 |
if control_image is None:
|
124 |
raise gr.Error("Please select or upload an Input Illusion")
|
|
|
125 |
if prompt is None or prompt == "":
|
126 |
raise gr.Error("Prompt is required")
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
control_image: Image.Image,
|
141 |
-
prompt: str,
|
142 |
-
negative_prompt: str,
|
143 |
-
guidance_scale: float = 8.0,
|
144 |
-
controlnet_conditioning_scale: float = 1,
|
145 |
-
control_guidance_start: float = 1,
|
146 |
-
control_guidance_end: float = 1,
|
147 |
-
upscaler_strength: float = 0.5,
|
148 |
-
seed: int = -1,
|
149 |
-
sampler = "DPM++ Karras SDE",
|
150 |
-
progress = gr.Progress(track_tqdm=True),
|
151 |
-
profile: gr.OAuthProfile | None = None,
|
152 |
-
):
|
153 |
start_time = time.time()
|
154 |
-
start_time_struct = time.localtime(start_time)
|
155 |
-
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
|
156 |
-
print(f"Inference started at {start_time_formatted}")
|
157 |
|
158 |
-
# Generate the initial image
|
159 |
-
#init_image = init_pipe(prompt).images[0]
|
160 |
-
|
161 |
-
# Rest of your existing code
|
162 |
control_image_small = center_crop_resize(control_image)
|
163 |
-
|
164 |
-
|
165 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
|
|
166 |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
167 |
generator = torch.Generator(device="cuda").manual_seed(my_seed)
|
168 |
-
|
169 |
out = main_pipe(
|
170 |
prompt=prompt,
|
171 |
negative_prompt=negative_prompt,
|
@@ -178,11 +131,13 @@ def inference(
|
|
178 |
num_inference_steps=15,
|
179 |
output_type="latent"
|
180 |
)
|
|
|
181 |
upscaled_latents = upscale(out, "nearest-exact", 2)
|
182 |
-
|
|
|
183 |
prompt=prompt,
|
184 |
negative_prompt=negative_prompt,
|
185 |
-
control_image=
|
186 |
image=upscaled_latents,
|
187 |
guidance_scale=float(guidance_scale),
|
188 |
generator=generator,
|
@@ -192,97 +147,31 @@ def inference(
|
|
192 |
control_guidance_end=float(control_guidance_end),
|
193 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
194 |
)
|
195 |
-
end_time = time.time()
|
196 |
-
end_time_struct = time.localtime(end_time)
|
197 |
-
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
198 |
-
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
image=out_image["images"][0],
|
204 |
-
profile=profile,
|
205 |
-
metadata={
|
206 |
-
"prompt": prompt,
|
207 |
-
"negative_prompt": negative_prompt,
|
208 |
-
"guidance_scale": guidance_scale,
|
209 |
-
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
210 |
-
"control_guidance_start": control_guidance_start,
|
211 |
-
"control_guidance_end": control_guidance_end,
|
212 |
-
"upscaler_strength": upscaler_strength,
|
213 |
-
"seed": seed,
|
214 |
-
"sampler": sampler,
|
215 |
-
},
|
216 |
-
)
|
217 |
|
218 |
-
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
|
219 |
-
|
220 |
with gr.Blocks() as app:
|
221 |
-
gr.Markdown(
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
<p>This project works by using <a href="https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster">Monster Labs QR Control Net</a>. Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: <a href="https://twitter.com/MrUgleh">MrUgleh</a> for discovering the workflow :)</p>
|
229 |
-
</div>
|
230 |
-
'''
|
231 |
-
)
|
232 |
-
|
233 |
-
|
234 |
-
state_img_input = gr.State()
|
235 |
-
state_img_output = gr.State()
|
236 |
with gr.Row():
|
237 |
with gr.Column():
|
238 |
-
control_image = gr.Image(label="Input Illusion", type="pil"
|
239 |
-
|
240 |
-
gr.
|
241 |
-
prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and castle in the distance")
|
242 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", info="Type what you don't want to see", value="low quality", elem_id="negative_prompt")
|
243 |
-
with gr.Accordion(label="Advanced Options", open=False):
|
244 |
-
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
245 |
-
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
|
246 |
-
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
|
247 |
-
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
|
248 |
-
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
|
249 |
-
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed")
|
250 |
-
used_seed = gr.Number(label="Last seed used",interactive=False)
|
251 |
run_btn = gr.Button("Run")
|
252 |
-
|
253 |
-
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False
|
254 |
-
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
255 |
-
community_icon = gr.HTML(community_icon_html)
|
256 |
-
loading_icon = gr.HTML(loading_icon_html)
|
257 |
-
share_button = gr.Button("Share to community", elem_id="share-btn")
|
258 |
-
|
259 |
-
prompt.submit(
|
260 |
-
check_inputs,
|
261 |
-
inputs=[prompt, control_image],
|
262 |
-
queue=False
|
263 |
-
).success(
|
264 |
-
inference,
|
265 |
-
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
266 |
-
outputs=[result_image, result_image, share_group, used_seed])
|
267 |
-
|
268 |
-
run_btn.click(
|
269 |
-
check_inputs,
|
270 |
-
inputs=[prompt, control_image],
|
271 |
-
queue=False
|
272 |
-
).success(
|
273 |
-
inference,
|
274 |
-
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
275 |
-
outputs=[result_image, result_image, share_group, used_seed])
|
276 |
-
|
277 |
-
share_button.click(None, [], [], js=share_js)
|
278 |
-
|
279 |
-
with gr.Blocks(css=css) as app_with_history:
|
280 |
-
with gr.Tab("Demo"):
|
281 |
-
app.render()
|
282 |
-
with gr.Tab("Past generations"):
|
283 |
-
user_history.render()
|
284 |
|
285 |
-
|
|
|
|
|
286 |
|
287 |
if __name__ == "__main__":
|
288 |
-
|
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
4 |
from PIL import Image
|
5 |
import random
|
|
|
6 |
from diffusers import (
|
7 |
DiffusionPipeline,
|
8 |
AutoencoderKL,
|
|
|
16 |
)
|
17 |
import tempfile
|
18 |
import time
|
|
|
|
|
|
|
19 |
import os
|
20 |
from transformers import CLIPImageProcessor
|
|
|
21 |
|
22 |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
23 |
|
|
|
29 |
SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
30 |
safety_checker = None
|
31 |
feature_extractor = None
|
32 |
+
|
33 |
if SAFETY_CHECKER_ENABLED:
|
34 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
|
35 |
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
43 |
torch_dtype=torch.float16,
|
44 |
).to("cuda")
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Sampler map
|
47 |
SAMPLER_MAP = {
|
48 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
|
|
51 |
|
52 |
def center_crop_resize(img, output_size=(512, 512)):
|
53 |
width, height = img.size
|
|
|
|
|
54 |
new_dimension = min(width, height)
|
55 |
+
left = (width - new_dimension) / 2
|
56 |
+
top = (height - new_dimension) / 2
|
57 |
+
right = (width + new_dimension) / 2
|
58 |
+
bottom = (height + new_dimension) / 2
|
59 |
+
|
|
|
60 |
img = img.crop((left, top, right, bottom))
|
61 |
img = img.resize(output_size)
|
62 |
+
|
63 |
return img
|
64 |
|
65 |
def common_upscale(samples, width, height, upscale_method, crop=False):
|
66 |
+
if crop == "center":
|
67 |
+
old_width = samples.shape[3]
|
68 |
+
old_height = samples.shape[2]
|
69 |
+
old_aspect = old_width / old_height
|
70 |
+
new_aspect = width / height
|
71 |
+
|
72 |
+
x = 0
|
73 |
+
y = 0
|
74 |
+
|
75 |
+
if old_aspect > new_aspect:
|
76 |
+
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
77 |
+
elif old_aspect < new_aspect:
|
78 |
+
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
79 |
+
|
80 |
+
s = samples[:, :, y:old_height - y, x:old_width - x]
|
81 |
+
else:
|
82 |
+
s = samples
|
83 |
+
|
84 |
+
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
85 |
|
86 |
def upscale(samples, upscale_method, scale_by):
|
87 |
+
width = round(samples["images"].shape[3] * scale_by)
|
88 |
+
height = round(samples["images"].shape[2] * scale_by)
|
89 |
+
|
90 |
+
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
|
91 |
+
|
92 |
+
return s
|
93 |
|
94 |
def check_inputs(prompt: str, control_image: Image.Image):
|
95 |
if control_image is None:
|
96 |
raise gr.Error("Please select or upload an Input Illusion")
|
97 |
+
|
98 |
if prompt is None or prompt == "":
|
99 |
raise gr.Error("Prompt is required")
|
100 |
|
101 |
+
@spaces.GPU
|
102 |
+
def inference(control_image: Image.Image, prompt: str, negative_prompt: str,
|
103 |
+
guidance_scale: float = 8.0,
|
104 |
+
controlnet_conditioning_scale: float = 1,
|
105 |
+
control_guidance_start: float = 1,
|
106 |
+
control_guidance_end: float = 1,
|
107 |
+
upscaler_strength: float = 0.5,
|
108 |
+
seed: int = -1,
|
109 |
+
sampler="DPM++ Karras SDE",
|
110 |
+
progress=gr.Progress(track_tqdm=True),
|
111 |
+
profile=None):
|
112 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
start_time = time.time()
|
|
|
|
|
|
|
114 |
|
|
|
|
|
|
|
|
|
115 |
control_image_small = center_crop_resize(control_image)
|
116 |
+
|
|
|
117 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
118 |
+
|
119 |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
120 |
generator = torch.Generator(device="cuda").manual_seed(my_seed)
|
121 |
+
|
122 |
out = main_pipe(
|
123 |
prompt=prompt,
|
124 |
negative_prompt=negative_prompt,
|
|
|
131 |
num_inference_steps=15,
|
132 |
output_type="latent"
|
133 |
)
|
134 |
+
|
135 |
upscaled_latents = upscale(out, "nearest-exact", 2)
|
136 |
+
|
137 |
+
out_image = main_pipe(
|
138 |
prompt=prompt,
|
139 |
negative_prompt=negative_prompt,
|
140 |
+
control_image=center_crop_resize(control_image, (1024, 1024)),
|
141 |
image=upscaled_latents,
|
142 |
guidance_scale=float(guidance_scale),
|
143 |
generator=generator,
|
|
|
147 |
control_guidance_end=float(control_guidance_end),
|
148 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
149 |
)
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
end_time = time.time()
|
152 |
+
|
153 |
+
# Save image + metadata logic here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
|
|
155 |
with gr.Blocks() as app:
|
156 |
+
gr.Markdown('''
|
157 |
+
<div style="text-align: center;">
|
158 |
+
<h1>Illusion Diffusion HQ π</h1>
|
159 |
+
<p style="font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</p>
|
160 |
+
</div>
|
161 |
+
''')
|
162 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
with gr.Row():
|
164 |
with gr.Column():
|
165 |
+
control_image = gr.Image(label="Input Illusion", type="pil")
|
166 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Medieval village scene with busy streets and castle in the distance")
|
167 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
run_btn = gr.Button("Run")
|
169 |
+
|
170 |
+
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
run_btn.click(check_inputs, inputs=[prompt, control_image]).success(
|
173 |
+
inference, inputs=[control_image, prompt, negative_prompt], outputs=[result_image]
|
174 |
+
)
|
175 |
|
176 |
if __name__ == "__main__":
|
177 |
+
app.launch()
|