File size: 16,914 Bytes
ae1d0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import gc
import logging
import os
import tempfile
from typing import Optional
import torch
from dotenv import load_dotenv
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_core.tools import Tool
from langchain_experimental.utilities import PythonREPL
# from langchain_community.tools import DuckDuckGoSearchResults
# from langchain_community.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
# from langchain_google_community import GoogleSearchAPIWrapper, GoogleSearchResults
from langchain_ollama import ChatOllama
from src.final_answer import create_final_answer_graph, validate_answer
from src.tools import (
analyze_csv_file,
analyze_excel_file,
download_file_from_url,
duckduckgo_search,
extract_text_from_image,
read_file,
reverse_decoder,
review_youtube_video,
transcribe_audio,
transcribe_youtube,
use_vision_model,
video_frames_to_images,
website_scrape,
)
logger = logging.getLogger(__name__)
load_dotenv()
base_url = os.getenv("OLLAMA_BASE_URL")
rate_limiter = InMemoryRateLimiter(requests_per_second=0.1)
class BasicAgent:
def __init__(self):
try:
logger.info("Initializing BasicAgent")
# Create the prompt template
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You are a general AI assistant. I will ask you a
question. Report your thoughts, and finish your answer
with the following template: FINAL ANSWER: [YOUR FINAL
ANSWER]. YOUR FINAL ANSWER should be a number OR as few
words as possible OR a comma separated list of numbers
and/or strings. If you are asked for a number, don't
use comma to write your number neither use units such
as $ or percent sign unless specified otherwise. If you
are asked for a string, don't use articles, neither
abbreviations (e.g. for cities), and write the digits
in plain text unless specified otherwise. If you are
asked for a comma separated list, apply the above rules
depending of whether the element to be put in the list
is a number or a string.
""",
),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
logger.info("Created prompt template")
llm = ChatOllama(
model="hf.co/lmstudio-community/Qwen2.5-14B-Instruct-GGUF:Q6_K",
base_url=base_url,
temperature=0.2,
)
logger.info("Created model successfully")
# Define available tools
tools = [
Tool(
name="DuckDuckGoSearchResults",
description="""Performs a live search using DuckDuckGo
and analyzes the top results. Returns a summary including
result titles, URLs, brief snippets, and ranking
positions. Use this to quickly assess the relevance,
diversity, and quality of information retrieved from a
privacy-focused search engine, without personalized or
biased filtering.""",
# func=DuckDuckGoSearchResults(
# api_wrapper=DuckDuckGoSearchAPIWrapper()
# ).run,
func=duckduckgo_search,
),
# Tool(
# name="GoogleSearchResults",
# description="""Performs a live Google search and analyzes
# the top results. Returns a summary including result titles,
# URLs, brief snippets, and ranking positions. Use this to
# quickly understand the relevance, variety, and quality of
# search results for a given query before deeper research or
# content planning.""",
# func=GoogleSearchResults(
# api_wrapper=GoogleSearchAPIWrapper(
# google_api_key=os.getenv("GOOGLE_SEARCH_API_KEY"),
# google_cse_id=os.getenv("GOOGLE_CSE_ID"),
# k=5, # Number of results to return
# )
# ).run,
# ),
Tool(
name="analyze csv file",
description="""Only read and analyze the contents of a CSV
file if one is explicitly referenced or uploaded in the
question. When a CSV file is provided, return a summary of
the dataset, including column names, data types, missing
value counts, basic statistics for numeric fields, and a
preview of the data. Use this only to quickly understand
the structure and quality of the dataset before performing
any further analysis.""",
func=analyze_csv_file,
),
Tool(
name="analyze excel file",
description="""Reads and analyzes the contents of an Excel
file (.xlsx or .xls). Returns structured summaries
for each sheet, including column names, data types, missing
value counts, basic statistics for numeric columns, and
sample rows. Use this to quickly explore the structure and
quality of Excel datasets.""",
func=analyze_excel_file,
),
Tool(
name="download file from url",
description="""Downloads a file from a given URL and saves
it locally. Supports various file types such as CSV, Excel,
images, and PDFs. Use this to retrieve external resources
for processing or analysis.""",
func=download_file_from_url,
),
Tool(
name="extract_text_from_image",
description="""Performs Optical Character Recognition (OCR)
on an image to extract readable text after downloading it.
Supports common image formats (e.g., PNG, JPG). Use this to
digitize printed or handwritten content from images for
search, analysis, or storage.""",
func=extract_text_from_image,
),
Tool(
name="read_file",
description="""Reads the raw content of a local text file.
Supports formats such as .txt, .json, .xml, and markdown.
Use this to load unstructured or semi-structured file
content for display, parsing, or further
processing—excluding CSV and Excel formats.""",
func=read_file,
),
Tool(
name="review_youtube_video",
description="""Analyzes a YouTube video by extracting key
information such as title, description, view count, likes,
comments, and transcript (if available). Use this to
generate summaries, insights, or sentiment analysis based
on video content and engagement.""",
func=review_youtube_video,
),
Tool(
name="transcribe_audio",
description="""Converts spoken words in an audio file into
written text using speech-to-text technology. Supports
common audio formats like MP3, WAV, and FLAC. Use this to
create transcripts for meetings, interviews, podcasts, or
any spoken content.""",
func=transcribe_audio,
),
Tool(
name="transcribe_youtube",
description="""Extracts and converts the audio from a
YouTube video into text using speech-to-text technology.
Supports generating transcripts for videos without captions
or subtitles. Use this to obtain searchable, readable text
from YouTube content.""",
func=transcribe_youtube,
),
Tool(
name="use_vision_model",
description="""Processes images using a computer vision
model to perform tasks such as object detection, image
classification, or segmentation. Use this to analyze visual
content and extract meaningful information from images.""",
func=use_vision_model,
),
Tool(
name="video_frames_to_images",
description="""Extracts individual frames from a video file
and saves them as separate image files. Use this to
analyze, process, or visualize specific moments within
video content. Use this to Youtube Videos""",
func=video_frames_to_images,
),
Tool(
name="website_scrape",
description="""It is mandatory to use duckduckgo_search
tool before invoking this tool .Fetches and extracts
content from a specified website URL. Supports retrieving
text, images, links, and other page elements.""",
func=website_scrape,
),
Tool(
name="python_repl",
description="""Write full, valid Python code using proper
multi-line code blocks Do not escape newlines (\n)
instead, write each line of code on a separate line Always
use proper indentation and syntax Return results using
print() or return if using a function Avoid partial or
inline code snippets — all code should be runnable in a
Python REPL If the input is a function, include example
usage at the end to ensure output is shown.""",
func=PythonREPL().run,
return_direct=True,
),
# Tool(
# name="wiki",
# description="""Retrieves summarized information or
# detailed content from Wikipedia based on a user query.
# Use this to quickly access encyclopedic knowledge and
# relevant facts on a wide range of topics.""",
# func=wiki,
# ),
Tool(
name="reverse decoder",
description="""Decodes a reversed sentence if the input
appears to be written backward.""",
func=reverse_decoder,
),
]
# tools = [wrap_tool_with_limit(tool, max_calls=3) for tool in raw_tools]
logger.info("Tools: %s", tools)
# Create the agent
agent = create_tool_calling_agent(llm, tools, prompt)
logger.info("Created tool calling agent")
# Create the agent executor
self.agent_executor = AgentExecutor(
agent=agent,
tools=tools,
return_intermediate_steps=True,
verbose=True,
max_iterations=5,
)
logger.info("Created agent executor")
# Create the graph
self.validation_graph = create_final_answer_graph()
except Exception as e:
logger.error("Error initializing agent: %s", e, exc_info=True)
raise
def __call__(self, question: str, task_id: str) -> str:
"""Execute the agent with the given question and optional file.
Args:
question (str): The question to answer
task_id (str): The task ID to fetch the file
Returns:
str: The final validated answer
Raises:
Exception: If no valid answer is found after max retries
"""
max_retries = 3
attempt = 0
previous_steps = set()
with tempfile.TemporaryDirectory() as temp_dir:
while attempt < max_retries:
default_api_url = os.getenv("DEFAULT_API_URL")
file_url = f"{default_api_url}/files/{task_id}"
file: Optional[dict] = None
try:
# Download file to temporary directory
file = download_file_from_url.invoke(
{
"url": file_url,
"directory": temp_dir,
}
)
logger.info("Downloaded file: %s", file_url)
except Exception:
logger.error(f"no download file available for {task_id} ")
file = None
try:
attempt += 1
logger.info("Attempt %d of %d", attempt, max_retries)
# Prepare input with file information
input_data = {
"input": question
+ (
f" [File: type={file.get('type', 'None')}, path={file.get('path', 'None')}]"
if file and file.get("type") != "error"
else ""
),
}
# Run the agent to get the answer
result = self.agent_executor.invoke(input_data)
answer = result.get("output", "")
intermediate_steps = result.get("intermediate_steps", [])
steps_str = str(intermediate_steps)
if steps_str in previous_steps:
logger.warning(
f"Detected repeated reasoning steps on attempt {attempt}. Breaking loop to avoid infinite retry."
)
break # or raise Exception to stop retries
previous_steps.add(steps_str)
logger.info("Attempt %d result: %s", attempt, result)
# Run validation (self.validation_graph is now StateGraph)
validation_result = validate_answer(
self.validation_graph, # type: ignore
answer,
[result.get("intermediate_steps", [])],
)
valid_answer = validation_result.get("valid_answer", False)
final_answer = validation_result.get("final_answer", "")
if valid_answer:
logger.info("Valid answer found on attempt %d", attempt)
torch.cuda.empty_cache()
return final_answer
logger.warning(
"Validation failed on attempt %d: %s", attempt, final_answer
)
if attempt >= max_retries:
raise Exception(
"Failed to get valid answer after %d attempts. Last error: %s",
max_retries,
final_answer,
)
except Exception as e:
logger.error("Error in attempt %d: %s", attempt, e, exc_info=True)
if attempt >= max_retries:
raise Exception(
"Failed after %d attempts. Last error: %s",
max_retries,
str(e),
)
continue
# Fallback in case loop exits unexpectedly
torch.cuda.empty_cache()
gc.collect()
raise Exception("No valid answer found after processing")
|