File size: 6,159 Bytes
7f1d38b
355f3ac
6bf8d03
e031c18
 
 
 
0e46985
e031c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e46985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e031c18
 
 
 
 
0e46985
e031c18
 
 
 
 
 
 
 
 
 
 
 
 
 
0e46985
e031c18
 
 
 
 
 
 
 
 
 
 
0e46985
 
e031c18
70dc026
 
e031c18
 
 
 
70dc026
 
e031c18
70dc026
 
e031c18
 
 
 
70dc026
 
e031c18
 
70dc026
 
e031c18
70dc026
e031c18
 
 
0e46985
e031c18
 
 
 
 
0e46985
e031c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#syntax_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter

# Remove the global nlp model loading

# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A',    # Light Salmon
    'ADP': '#98FB98',    # Pale Green
    'ADV': '#87CEFA',    # Light Sky Blue
    'AUX': '#DDA0DD',    # Plum
    'CCONJ': '#F0E68C',  # Khaki
    'DET': '#FFB6C1',    # Light Pink
    'INTJ': '#FF6347',   # Tomato
    'NOUN': '#90EE90',   # Light Green
    'NUM': '#FAFAD2',    # Light Goldenrod Yellow
    'PART': '#D3D3D3',   # Light Gray
    'PRON': '#FFA500',   # Orange
    'PROPN': '#20B2AA',  # Light Sea Green
    'SCONJ': '#DEB887',  # Burlywood
    'SYM': '#7B68EE',    # Medium Slate Blue
    'VERB': '#FF69B4',   # Hot Pink
    'X': '#A9A9A9',      # Dark Gray
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo',
        'ADP': 'Adposici贸n',
        'ADV': 'Adverbio',
        'AUX': 'Auxiliar',
        'CCONJ': 'Conjunci贸n Coordinante',
        'DET': 'Determinante',
        'INTJ': 'Interjecci贸n',
        'NOUN': 'Sustantivo',
        'NUM': 'N煤mero',
        'PART': 'Part铆cula',
        'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio',
        'SCONJ': 'Conjunci贸n Subordinante',
        'SYM': 'S铆mbolo',
        'VERB': 'Verbo',
        'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective',
        'ADP': 'Adposition',
        'ADV': 'Adverb',
        'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction',
        'DET': 'Determiner',
        'INTJ': 'Interjection',
        'NOUN': 'Noun',
        'NUM': 'Number',
        'PART': 'Particle',
        'PRON': 'Pronoun',
        'PROPN': 'Proper Noun',
        'SCONJ': 'Subordinating Conjunction',
        'SYM': 'Symbol',
        'VERB': 'Verb',
        'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif',
        'ADP': 'Adposition',
        'ADV': 'Adverbe',
        'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination',
        'DET': 'D茅terminant',
        'INTJ': 'Interjection',
        'NOUN': 'Nom',
        'NUM': 'Nombre',
        'PART': 'Particule',
        'PRON': 'Pronom',
        'PROPN': 'Nom Propre',
        'SCONJ': 'Conjonction de Subordination',
        'SYM': 'Symbole',
        'VERB': 'Verbe',
        'X': 'Autre',
    }
}

def count_pos(doc):
    return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')

def create_syntax_graph(doc, lang):
    G = nx.DiGraph()
    pos_counts = count_pos(doc)
    word_nodes = {}
    word_colors = {}

    for token in doc:
        if token.pos_ != 'PUNCT':
            lower_text = token.text.lower()
            if lower_text not in word_nodes:
                node_id = len(word_nodes)
                word_nodes[lower_text] = node_id
                color = POS_COLORS.get(token.pos_, '#FFFFFF')
                word_colors[lower_text] = color
                G.add_node(node_id,
                           label=f"{token.text}\n[{POS_TRANSLATIONS[lang].get(token.pos_, token.pos_)}]",
                           pos=token.pos_,
                           size=pos_counts[token.pos_] * 500,
                           color=color)

            if token.dep_ != "ROOT" and token.head.pos_ != 'PUNCT':
                head_id = word_nodes.get(token.head.text.lower())
                if head_id is not None:
                    G.add_edge(head_id, word_nodes[lower_text], label=token.dep_)

    return G, word_colors

def visualize_syntax_graph(doc, lang):
    G, word_colors = create_syntax_graph(doc, lang)

    plt.figure(figsize=(24, 18))  # Increase figure size
    pos = nx.spring_layout(G, k=0.9, iterations=50)  # Adjust layout parameters

    node_colors = [data['color'] for _, data in G.nodes(data=True)]
    node_sizes = [data['size'] for _, data in G.nodes(data=True)]

    nx.draw(G, pos, with_labels=False, node_color=node_colors, node_size=node_sizes, arrows=True, 
            arrowsize=20, width=2, edge_color='gray')  # Adjust node and edge appearance

    nx.draw_networkx_labels(G, pos, {node: data['label'] for node, data in G.nodes(data=True)}, 
                            font_size=10, font_weight='bold')  # Increase font size and make bold

    edge_labels = nx.get_edge_attributes(G, 'label')
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)

    plt.title("Syntactic Analysis" if lang == 'en' else "Analyse Syntaxique" if lang == 'fr' else "An谩lisis Sint谩ctico",
              fontsize=20, fontweight='bold')  # Increase title font size
    plt.axis('off')

    legend_elements = [plt.Rectangle((0,0),1,1, facecolor=color, edgecolor='none', 
                       label=f"{POS_TRANSLATIONS[lang][pos]} ({count_pos(doc)[pos]})")
                       for pos, color in POS_COLORS.items() if pos in set(nx.get_node_attributes(G, 'pos').values())]
    plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12)  # Increase legend font size

    return plt

def visualize_syntax(text, nlp, lang):
    max_tokens = 5000
    doc = nlp(text)
    if len(doc) > max_tokens:
        doc = nlp(text[:max_tokens])
        print(f"Warning: The input text is too long. Only the first {max_tokens} tokens will be visualized.")
    return visualize_syntax_graph(doc, lang)

def get_repeated_words_colors(doc):
    word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
    repeated_words = {word: count for word, count in word_counts.items() if count > 1}

    word_colors = {}
    for token in doc:
        if token.text.lower() in repeated_words:
            word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')

    return word_colors

def highlight_repeated_words(doc, word_colors):
    highlighted_text = []
    for token in doc:
        if token.text.lower() in word_colors:
            color = word_colors[token.text.lower()]
            highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
        else:
            highlighted_text.append(token.text)
    return ' '.join(highlighted_text)