Create syntax_analysis.py
Browse files- modules/syntax_analysis.py +132 -0
modules/syntax_analysis.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# syntax_analysis.py
|
2 |
+
import spacy
|
3 |
+
import networkx as nx
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from collections import Counter
|
6 |
+
|
7 |
+
# Load spaCy model
|
8 |
+
nlp = spacy.load("es_core_news_lg")
|
9 |
+
|
10 |
+
# Define colors for grammatical categories
|
11 |
+
POS_COLORS = {
|
12 |
+
'ADJ': '#FFA07A', # Light Salmon
|
13 |
+
'ADP': '#98FB98', # Pale Green
|
14 |
+
'ADV': '#87CEFA', # Light Sky Blue
|
15 |
+
'AUX': '#DDA0DD', # Plum
|
16 |
+
'CCONJ': '#F0E68C', # Khaki
|
17 |
+
'DET': '#FFB6C1', # Light Pink
|
18 |
+
'INTJ': '#FF6347', # Tomato
|
19 |
+
'NOUN': '#90EE90', # Light Green
|
20 |
+
'NUM': '#FAFAD2', # Light Goldenrod Yellow
|
21 |
+
'PART': '#D3D3D3', # Light Gray
|
22 |
+
'PRON': '#FFA500', # Orange
|
23 |
+
'PROPN': '#20B2AA', # Light Sea Green
|
24 |
+
'SCONJ': '#DEB887', # Burlywood
|
25 |
+
'SYM': '#7B68EE', # Medium Slate Blue
|
26 |
+
'VERB': '#FF69B4', # Hot Pink
|
27 |
+
'X': '#A9A9A9', # Dark Gray
|
28 |
+
}
|
29 |
+
|
30 |
+
POS_TRANSLATIONS = {
|
31 |
+
'ADJ': 'Adjetivo',
|
32 |
+
'ADP': 'Advposici贸n',
|
33 |
+
'ADV': 'Adverbio',
|
34 |
+
'AUX': 'Auxiliar',
|
35 |
+
'CCONJ': 'Conjunci贸n Coordinante',
|
36 |
+
'DET': 'Determinante',
|
37 |
+
'INTJ': 'Interjecci贸n',
|
38 |
+
'NOUN': 'Sustantivo',
|
39 |
+
'NUM': 'N煤mero',
|
40 |
+
'PART': 'Part铆cula',
|
41 |
+
'PRON': 'Pronombre',
|
42 |
+
'PROPN': 'Nombre Propio',
|
43 |
+
'SCONJ': 'Conjunci贸n Subordinante',
|
44 |
+
'SYM': 'S铆mbolo',
|
45 |
+
'VERB': 'Verbo',
|
46 |
+
'X': 'Otro',
|
47 |
+
}
|
48 |
+
|
49 |
+
def count_pos(doc):
|
50 |
+
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
|
51 |
+
|
52 |
+
def create_syntax_graph(doc):
|
53 |
+
G = nx.DiGraph()
|
54 |
+
pos_counts = count_pos(doc)
|
55 |
+
word_nodes = {}
|
56 |
+
word_colors = {}
|
57 |
+
|
58 |
+
for token in doc:
|
59 |
+
if token.pos_ != 'PUNCT':
|
60 |
+
lower_text = token.text.lower()
|
61 |
+
if lower_text not in word_nodes:
|
62 |
+
node_id = len(word_nodes)
|
63 |
+
word_nodes[lower_text] = node_id
|
64 |
+
color = POS_COLORS.get(token.pos_, '#FFFFFF')
|
65 |
+
word_colors[lower_text] = color
|
66 |
+
G.add_node(node_id,
|
67 |
+
label=f"{token.text}\n[{POS_TRANSLATIONS.get(token.pos_, token.pos_)}]",
|
68 |
+
pos=token.pos_,
|
69 |
+
size=pos_counts[token.pos_] * 500,
|
70 |
+
color=color)
|
71 |
+
|
72 |
+
if token.dep_ != "ROOT" and token.head.pos_ != 'PUNCT':
|
73 |
+
head_id = word_nodes.get(token.head.text.lower())
|
74 |
+
if head_id is not None:
|
75 |
+
G.add_edge(head_id, word_nodes[lower_text], label=token.dep_)
|
76 |
+
|
77 |
+
return G, word_colors
|
78 |
+
|
79 |
+
def visualize_syntax_graph(doc):
|
80 |
+
G, word_colors = create_syntax_graph(doc)
|
81 |
+
|
82 |
+
plt.figure(figsize=(20, 15))
|
83 |
+
pos = nx.spring_layout(G, k=2, iterations=100)
|
84 |
+
|
85 |
+
node_colors = [data['color'] for _, data in G.nodes(data=True)]
|
86 |
+
node_sizes = [data['size'] for _, data in G.nodes(data=True)]
|
87 |
+
|
88 |
+
nx.draw(G, pos, with_labels=False, node_color=node_colors, node_size=node_sizes, arrows=True)
|
89 |
+
|
90 |
+
nx.draw_networkx_labels(G, pos, {node: data['label'] for node, data in G.nodes(data=True)}, font_size=8)
|
91 |
+
|
92 |
+
edge_labels = nx.get_edge_attributes(G, 'label')
|
93 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
|
94 |
+
|
95 |
+
plt.title("An谩lisis Sint谩ctico")
|
96 |
+
plt.axis('off')
|
97 |
+
|
98 |
+
legend_elements = [plt.Rectangle((0,0),1,1, facecolor=color, edgecolor='none', label=f"{POS_TRANSLATIONS[pos]} ({count_pos(doc)[pos]})")
|
99 |
+
for pos, color in POS_COLORS.items() if pos in set(nx.get_node_attributes(G, 'pos').values())]
|
100 |
+
plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5))
|
101 |
+
|
102 |
+
return plt
|
103 |
+
|
104 |
+
def visualize_syntax(text):
|
105 |
+
max_tokens = 5000
|
106 |
+
doc = nlp(text)
|
107 |
+
if len(doc) > max_tokens:
|
108 |
+
doc = nlp(text[:max_tokens])
|
109 |
+
print(f"Warning: The input text is too long. Only the first {max_tokens} tokens will be visualized.")
|
110 |
+
return visualize_syntax_graph(doc)
|
111 |
+
|
112 |
+
# Repeated words colors
|
113 |
+
def get_repeated_words_colors(doc):
|
114 |
+
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
|
115 |
+
repeated_words = {word: count for word, count in word_counts.items() if count > 1}
|
116 |
+
|
117 |
+
word_colors = {}
|
118 |
+
for token in doc:
|
119 |
+
if token.text.lower() in repeated_words:
|
120 |
+
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')
|
121 |
+
|
122 |
+
return word_colors
|
123 |
+
|
124 |
+
def highlight_repeated_words(doc, word_colors):
|
125 |
+
highlighted_text = []
|
126 |
+
for token in doc:
|
127 |
+
if token.text.lower() in word_colors:
|
128 |
+
color = word_colors[token.text.lower()]
|
129 |
+
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
|
130 |
+
else:
|
131 |
+
highlighted_text.append(token.text)
|
132 |
+
return ' '.join(highlighted_text)
|