File size: 7,104 Bytes
738b9a7 355f3ac 6bf8d03 e031c18 0e46985 e031c18 0e46985 e031c18 bd04299 738b9a7 6a23e42 738b9a7 90f97d8 738b9a7 90f97d8 738b9a7 3096dcc 029967c 3096dcc 029967c 3096dcc 6a23e42 3096dcc 738b9a7 90f97d8 e031c18 738b9a7 e031c18 90f97d8 e031c18 90f97d8 e031c18 90f97d8 738b9a7 e031c18 90f97d8 738b9a7 e031c18 738b9a7 18525b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
# Remove the global nlp model loading
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', # Light Salmon
'ADP': '#98FB98', # Pale Green
'ADV': '#87CEFA', # Light Sky Blue
'AUX': '#DDA0DD', # Plum
'CCONJ': '#F0E68C', # Khaki
'DET': '#FFB6C1', # Light Pink
'INTJ': '#FF6347', # Tomato
'NOUN': '#90EE90', # Light Green
'NUM': '#FAFAD2', # Light Goldenrod Yellow
'PART': '#D3D3D3', # Light Gray
'PRON': '#FFA500', # Orange
'PROPN': '#20B2AA', # Light Sea Green
'SCONJ': '#DEB887', # Burlywood
'SYM': '#7B68EE', # Medium Slate Blue
'VERB': '#FF69B4', # Hot Pink
'X': '#A9A9A9', # Dark Gray
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo',
'ADP': 'Adposición',
'ADV': 'Adverbio',
'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante',
'DET': 'Determinante',
'INTJ': 'Interjección',
'NOUN': 'Sustantivo',
'NUM': 'Número',
'PART': 'Partícula',
'PRON': 'Pronombre',
'PROPN': 'Nombre Propio',
'SCONJ': 'Conjunción Subordinante',
'SYM': 'Símbolo',
'VERB': 'Verbo',
'X': 'Otro',
},
'en': {
'ADJ': 'Adjective',
'ADP': 'Adposition',
'ADV': 'Adverb',
'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction',
'DET': 'Determiner',
'INTJ': 'Interjection',
'NOUN': 'Noun',
'NUM': 'Number',
'PART': 'Particle',
'PRON': 'Pronoun',
'PROPN': 'Proper Noun',
'SCONJ': 'Subordinating Conjunction',
'SYM': 'Symbol',
'VERB': 'Verb',
'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif',
'ADP': 'Adposition',
'ADV': 'Adverbe',
'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination',
'DET': 'Déterminant',
'INTJ': 'Interjection',
'NOUN': 'Nom',
'NUM': 'Nombre',
'PART': 'Particule',
'PRON': 'Pronom',
'PROPN': 'Nom Propre',
'SCONJ': 'Conjonction de Subordination',
'SYM': 'Symbole',
'VERB': 'Verbe',
'X': 'Autre',
}
}
########################################################################################################################################
def count_pos(doc):
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
def extract_entities(doc):
entities = {
"Personas": [],
"Conceptos": [],
"Lugares": [],
"Fechas": []
}
for ent in doc.ents:
if ent.label_ == "PER":
entities["Personas"].append(ent.text)
elif ent.label_ in ["LOC", "GPE"]:
entities["Lugares"].append(ent.text)
elif ent.label_ == "DATE":
entities["Fechas"].append(ent.text)
else:
entities["Conceptos"].append(ent.text)
return entities
def visualize_context_graph(doc, lang):
G = nx.Graph()
entities = extract_entities(doc)
# Add nodes
for category, items in entities.items():
for item in items:
G.add_node(item, category=category)
# Add edges
for sent in doc.sents:
sent_entities = [ent for ent in sent.ents if ent.text in G.nodes()]
person = next((ent for ent in sent_entities if ent.label_ == "PER"), None)
if person:
for ent in sent_entities:
if ent != person:
G.add_edge(person.text, ent.text)
# Visualize
plt.figure(figsize=(20, 15))
pos = nx.spring_layout(G, k=0.5, iterations=50)
color_map = {"Personas": "lightblue", "Conceptos": "lightgreen", "Lugares": "lightcoral", "Fechas": "lightyellow"}
node_colors = [color_map[G.nodes[node]['category']] for node in G.nodes()]
nx.draw(G, pos, node_color=node_colors, with_labels=True, node_size=3000, font_size=8, font_weight='bold')
# Add a legend
legend_elements = [plt.Rectangle((0,0),1,1,fc=color, edgecolor='none') for color in color_map.values()]
plt.legend(legend_elements, color_map.keys(), loc='upper left', bbox_to_anchor=(1, 1))
plt.title("Análisis del Contexto" if lang == 'es' else "Context Analysis" if lang == 'en' else "Analyse du Contexte", fontsize=20)
plt.axis('off')
return plt
def create_semantic_graph(doc, lang):
G = nx.Graph()
pos_counts = count_pos(doc)
for token in doc:
if token.pos_ != 'PUNCT':
G.add_node(token.text,
pos=token.pos_,
color=POS_COLORS.get(token.pos_, '#CCCCCC'), # Color gris por defecto
size=pos_counts.get(token.pos_, 1) * 100) # Tamaño mínimo si no hay conteo
for token in doc:
if token.dep_ != "ROOT" and token.head.text in G.nodes and token.text in G.nodes:
G.add_edge(token.head.text, token.text, label=token.dep_)
return G, pos_counts
def visualize_semantic_relations(doc, lang):
G = nx.Graph()
word_freq = Counter(token.text.lower() for token in doc if token.pos_ not in ['PUNCT', 'SPACE'])
top_words = [word for word, _ in word_freq.most_common(20)] # Top 20 most frequent words
for token in doc:
if token.text.lower() in top_words:
G.add_node(token.text, pos=token.pos_)
for token in doc:
if token.text.lower() in top_words and token.head.text.lower() in top_words:
G.add_edge(token.text, token.head.text, label=token.dep_)
plt.figure(figsize=(24, 18))
pos = nx.spring_layout(G, k=0.9, iterations=50)
node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]
nx.draw(G, pos, node_color=node_colors, with_labels=True,
font_size=10, font_weight='bold', arrows=True, arrowsize=20, width=2, edge_color='gray')
edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
plt.title("Relaciones Semánticas Relevantes" if lang == 'es' else "Relevant Semantic Relations" if lang == 'en' else "Relations Sémantiques Pertinentes",
fontsize=20, fontweight='bold')
plt.axis('off')
legend_elements = [plt.Rectangle((0,0),1,1, facecolor=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
for pos in set(nx.get_node_attributes(G, 'pos').values())]
plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12)
return plt
def perform_semantic_analysis(text, nlp, lang):
doc = nlp(text)
context_graph = visualize_context_graph(doc, lang)
relations_graph = visualize_semantic_relations(doc, lang)
# Extraer entidades para mostrar en forma de lista
entities = extract_entities(doc)
return context_graph, relations_graph, entities |