File size: 21,800 Bytes
3d2e945
 
 
 
3032eab
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6316c92
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda2ed9
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda2ed9
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda2ed9
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda2ed9
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda2ed9
405937f
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
import matplotlib
import librosa
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import re
import uuid
import soundfile
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from einops import repeat
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
from pathlib import Path
from vocoder.hifigan.modules import VocoderHifigan
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
from inference.svs.ds_e2e import DiffSingerE2EInfer
from audio_to_text.inference_waveform import AudioCapModel
import whisper
from text_to_speech.TTS_binding import TTSInference
from inference.svs.ds_e2e import DiffSingerE2EInfer
from inference.tts.GenerSpeech import GenerSpeechInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
from utils.os_utils import move_file
import scipy.io.wavfile as wavfile



def initialize_model(config, ckpt, device):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)

    model = model.to(device)
    model.cond_stage_model.to(model.device)
    model.cond_stage_model.device = model.device
    sampler = DDIMSampler(model)
    return sampler

def initialize_model_inpaint(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    print(model.device,device,model.cond_stage_model.device)
    sampler = DDIMSampler(model)
    return sampler
def select_best_audio(prompt,wav_list):
    clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth','text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
    text_embeddings = clap_model.get_text_embeddings([prompt])
    score_list = []
    for data in wav_list:
        sr,wav = data
        audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
        score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
        score_list.append(score)
    max_index = np.array(score_list).argmax()
    print(score_list,max_index)
    return wav_list[max_index]


class T2I:
    def __init__(self, device):
        print("Initializing T2I to %s" % device)
        self.device = device
        self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
        self.pipe.to(device)

    def inference(self, text):
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
        print(f'{text} refined to {refined_text}')
        image = self.pipe(refined_text).images[0]
        image.save(image_filename)
        print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
        return image_filename

class ImageCaptioning:
    def __init__(self, device):
        print("Initializing ImageCaptioning to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)

    def inference(self, image_path):
        inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        captions = self.processor.decode(out[0], skip_special_tokens=True)
        return captions

class T2A:
    def __init__(self, device):
        print("Initializing Make-An-Audio to %s" % device)
        self.device = device
        self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/text-to-audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device) 
        self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)

    def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
        SAMPLE_RATE = 16000
        prng = np.random.RandomState(seed)
        start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
        start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
        uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
        c = self.sampler.model.get_learned_conditioning(n_samples * [text])
        shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8]  # (z_dim, 80//2^x, 848//2^x)
        samples_ddim, _ = self.sampler.sample(S = ddim_steps,
                                            conditioning = c,
                                            batch_size = n_samples,
                                            shape = shape,
                                            verbose = False,
                                            unconditional_guidance_scale = scale,
                                            unconditional_conditioning = uc,
                                            x_T = start_code)

        x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]

        wav_list = []
        for idx,spec in enumerate(x_samples_ddim):
            wav = self.vocoder.vocode(spec)
            wav_list.append((SAMPLE_RATE,wav))
        best_wav = select_best_audio(text, wav_list)
        return best_wav

    def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
        melbins,mel_len = 80,624
        with torch.no_grad():
            result = self.txt2audio(
                text = text,
                H = melbins,
                W = mel_len
            )
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, result[1], samplerate = 16000)
        print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
        return audio_filename

class I2A:
    def __init__(self, device):
        print("Initializing Make-An-Audio-Image to %s" % device)
        self.device = device
        self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt', device=device)
        self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
    def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
        SAMPLE_RATE = 16000
        n_samples = 1 # only support 1 sample
        prng = np.random.RandomState(seed)
        start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
        start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
        uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
        #image = Image.fromarray(image)
        image = Image.open(image)
        image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
        image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
        c = image_embedding.repeat(n_samples, 1, 1)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
        shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8]  # (z_dim, 80//2^x, 848//2^x)
        samples_ddim, _ = self.sampler.sample(S=ddim_steps,
                                            conditioning=c,
                                            batch_size=n_samples,
                                            shape=shape,
                                            verbose=False,
                                            unconditional_guidance_scale=scale,
                                            unconditional_conditioning=uc,
                                            x_T=start_code)

        x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
        wav_list = []
        for idx,spec in enumerate(x_samples_ddim):
            wav = self.vocoder.vocode(spec)
            wav_list.append((SAMPLE_RATE,wav))
        best_wav = wav_list[0]
        return best_wav
    def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
        melbins,mel_len = 80,624
        with torch.no_grad():
            result = self.img2audio(
                image=image,
                H=melbins, 
                W=mel_len
            )
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, result[1], samplerate = 16000)
        print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
        return audio_filename

class TTS:
    def __init__(self, device=None):
        self.inferencer = TTSInference(device)
    
    def inference(self, text):
        global temp_audio_filename
        inp = {"text": text}
        out = self.inferencer.infer_once(inp)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, out, samplerate = 22050)
        return audio_filename

class T2S:
    def __init__(self, device= None):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print("Initializing DiffSinger to %s" % device)
        self.device = device
        self.exp_name = 'checkpoints/0831_opencpop_ds1000'
        self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml'
        self.set_model_hparams()
        self.pipe = DiffSingerE2EInfer(self.hp, device)
        self.default_inp = {
            'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP',
            'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest',
            'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590'
        }

    def set_model_hparams(self):
        set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
        self.hp = hp

    def inference(self, inputs):
        self.set_model_hparams()
        val = inputs.split(",")
        key = ['text', 'notes', 'notes_duration']
        if inputs == '' or len(val) < len(key):
            inp = self.default_inp
        else:
            inp = {k:v for k,v in zip(key,val)}
        wav = self.pipe.infer_once(inp)
        wav *= 32767
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
        print(f"Processed T2S.run, audio_filename: {audio_filename}")
        return audio_filename

class TTS_OOD:
    def __init__(self, device):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print("Initializing GenerSpeech to %s" % device)
        self.device = device
        self.exp_name = 'checkpoints/GenerSpeech'
        self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml'
        self.set_model_hparams()
        self.pipe = GenerSpeechInfer(self.hp, device)

    def set_model_hparams(self):
        set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
        f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy'
        if os.path.exists(f0_stats_fn):
            hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn)
            hp['f0_mean'] = float(hp['f0_mean'])
            hp['f0_std'] = float(hp['f0_std'])
        hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt'
        self.hp = hp

    def inference(self, inputs):
        self.set_model_hparams()
        key = ['ref_audio', 'text']
        val = inputs.split(",")
        inp = {k: v for k, v in zip(key, val)}
        print(inp)
        wav = self.pipe.infer_once(inp)
        wav *= 32767
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
        print(
            f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}")
        return audio_filename
    
class Inpaint:
    def __init__(self, device):
        print("Initializing Make-An-Audio-inpaint to %s" % device)
        self.device = device
        self.sampler = initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt')
        self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
        self.cmap_transform = matplotlib.cm.viridis
    def make_batch_sd(self, mel, mask, num_samples=1):

        mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
        mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
        masked_mel = (1 - mask) * mel

        mel = mel * 2 - 1
        mask = mask * 2 - 1
        masked_mel = masked_mel * 2 -1

        batch = {
             "mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
             "mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
             "masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
        }
        return batch
    def gen_mel(self, input_audio_path):
        SAMPLE_RATE = 16000
        sr, ori_wav = wavfile.read(input_audio_path)
        print("gen_mel")
        print(sr,ori_wav.shape,ori_wav)
        ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
        if len(ori_wav.shape)==2:# stereo
            ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
        print(sr,ori_wav.shape,ori_wav)
        ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)

        mel_len,hop_size = 848,256
        input_len = mel_len * hop_size
        if len(ori_wav) < input_len:
            input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
        else:
            input_wav = ori_wav[:input_len]
 
        mel = TRANSFORMS_16000(input_wav)
        return mel
    def gen_mel_audio(self, input_audio):
        SAMPLE_RATE = 16000
        sr,ori_wav = input_audio
        print("gen_mel_audio")
        print(sr,ori_wav.shape,ori_wav)

        ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
        if len(ori_wav.shape)==2:# stereo
            ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
        print(sr,ori_wav.shape,ori_wav)
        ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)

        mel_len,hop_size = 848,256
        input_len = mel_len * hop_size
        if len(ori_wav) < input_len:
            input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
        else:
            input_wav = ori_wav[:input_len]
        mel = TRANSFORMS_16000(input_wav)
        return mel
    def show_mel_fn(self, input_audio_path):
        crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
        crop_mel = self.gen_mel(input_audio_path)[:,:crop_len]
        color_mel = self.cmap_transform(crop_mel)
        image = Image.fromarray((color_mel*255).astype(np.uint8))
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        image.save(image_filename)
        return image_filename
    def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
        model = self.sampler.model
    
        prng = np.random.RandomState(seed)
        start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
        start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)

        c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
        cc = torch.nn.functional.interpolate(batch["mask"],
                                                size=c.shape[-2:])
        c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask

        shape = (c.shape[1]-1,)+c.shape[2:]
        samples_ddim, _ = self.sampler.sample(S=ddim_steps,
                                            conditioning=c,
                                            batch_size=c.shape[0],
                                            shape=shape,
                                            verbose=False)
        x_samples_ddim = model.decode_first_stage(samples_ddim)

    
        mask = batch["mask"]# [-1,1]
        mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
        mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
        predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
        inpainted = (1-mask)*mel+mask*predicted_mel
        inpainted = inpainted.cpu().numpy().squeeze()
        inapint_wav = self.vocoder.vocode(inpainted)

        return inpainted, inapint_wav
    def inference(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100):
        SAMPLE_RATE = 16000
        torch.set_grad_enabled(False)
        mel_img = Image.open(mel_and_mask['image'])
        mask_img = Image.open(mel_and_mask["mask"])
        show_mel = np.array(mel_img.convert("L"))/255 # 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
        mask = np.array(mask_img.convert("L"))/255
        mel_bins,mel_len = 80,848
        input_mel = self.gen_mel_audio(input_audio)[:,:mel_len]# 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
        mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)# 将mask填充到原来的mel的大小
        print(mask.shape,input_mel.shape)
        with torch.no_grad():
            batch = self.make_batch_sd(input_mel,mask,num_samples=1)
            inpainted,gen_wav = self.inpaint(
                batch=batch,
                seed=seed,
                ddim_steps=ddim_steps,
                num_samples=1,
                H=mel_bins, W=mel_len
            )
        inpainted = inpainted[:,:show_mel.shape[1]]
        color_mel = self.cmap_transform(inpainted)
        input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
        gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
        image = Image.fromarray((color_mel*255).astype(np.uint8))
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        image.save(image_filename)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, gen_wav, samplerate = 16000)
        return image_filename, audio_filename
    
class ASR:
    def __init__(self, device):
        print("Initializing Whisper to %s" % device)
        self.device = device
        self.model = whisper.load_model("base", device=device)
    def inference(self, audio_path):
        audio = whisper.load_audio(audio_path)
        audio = whisper.pad_or_trim(audio)
        mel = whisper.log_mel_spectrogram(audio).to(self.device)
        _, probs = self.model.detect_language(mel)
        options = whisper.DecodingOptions()
        result = whisper.decode(self.model, mel, options)
        return result.text

class A2T:
    def __init__(self, device):
        print("Initializing Audio-To-Text Model to %s" % device)
        self.device = device
        self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm")
    def inference(self, audio_path):
        audio = whisper.load_audio(audio_path)
        caption_text = self.model(audio)
        return caption_text[0]