File size: 44,802 Bytes
3d2e945
 
 
 
3032eab
3d2e945
1b4468e
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4468e
 
 
 
 
 
 
 
 
 
3d2e945
4d54c87
 
 
 
 
 
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988947c
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d54c87
 
 
 
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d54c87
 
 
 
 
 
 
3d2e945
 
 
 
 
 
 
 
 
 
988947c
3d2e945
 
4d54c87
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c52f81e
 
 
 
 
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988947c
 
4d54c87
 
3d2e945
 
 
 
 
 
 
 
 
 
 
1400424
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c52f81e
 
 
 
 
 
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
7c71ec4
 
9bf0961
7c71ec4
 
 
 
 
 
 
 
9bf0961
7c71ec4
 
 
 
3d2e945
 
 
 
 
 
 
fda2ed9
3d2e945
 
 
 
 
 
 
 
c52f81e
 
 
 
 
4d54c87
 
4f2ef2c
4d54c87
 
 
 
 
c52f81e
3d2e945
 
 
 
4d54c87
 
 
 
 
3d2e945
4d54c87
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
fda2ed9
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
c52f81e
 
 
 
 
 
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988947c
 
3d2e945
4d54c87
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400424
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400424
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c71ec4
3d2e945
 
 
 
1400424
3d2e945
 
1400424
 
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c52f81e
 
 
 
 
 
 
7c71ec4
1400424
7c71ec4
 
 
 
 
 
3d2e945
 
 
 
 
 
4d54c87
 
 
 
 
 
 
3d2e945
 
 
 
 
 
 
 
189fb81
 
 
 
3d2e945
 
 
 
 
 
4d54c87
 
 
 
 
 
 
3d2e945
 
 
1b4468e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06be3a6
1b4468e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06be3a6
 
1b4468e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2ad87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'audio_detection'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mono2binaural'))
import matplotlib
import librosa
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import re
import uuid
import soundfile
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from einops import repeat
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
from pathlib import Path
from vocoder.hifigan.modules import VocoderHifigan
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
from inference.svs.ds_e2e import DiffSingerE2EInfer
from audio_to_text.inference_waveform import AudioCapModel
import whisper
from text_to_speech.TTS_binding import TTSInference
from inference.svs.ds_e2e import DiffSingerE2EInfer
from inference.tts.GenerSpeech import GenerSpeechInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
from utils.os_utils import move_file
import scipy.io.wavfile as wavfile
from audio_infer.utils import config as detection_config
from audio_infer.pytorch.models import PVT
from src.models import BinauralNetwork
from sound_extraction.model.LASSNet import LASSNet
from sound_extraction.utils.stft import STFT
from sound_extraction.utils.wav_io import load_wav, save_wav
from target_sound_detection.src import models as tsd_models
from target_sound_detection.src.models import event_labels
from target_sound_detection.src.utils import median_filter, decode_with_timestamps
import clip

def prompts(name, description):
    def decorator(func):
        func.name = name
        func.description = description
        return func

    return decorator

def initialize_model(config, ckpt, device):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)

    model = model.to(device)
    model.cond_stage_model.to(model.device)
    model.cond_stage_model.device = model.device
    sampler = DDIMSampler(model)
    return sampler

def initialize_model_inpaint(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    print(model.device,device,model.cond_stage_model.device)
    sampler = DDIMSampler(model)
    return sampler
def select_best_audio(prompt,wav_list):
    clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth','text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
    text_embeddings = clap_model.get_text_embeddings([prompt])
    score_list = []
    for data in wav_list:
        sr,wav = data
        audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
        score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
        score_list.append(score)
    max_index = np.array(score_list).argmax()
    print(score_list,max_index)
    return wav_list[max_index]


class T2I:
    def __init__(self, device):
        print("Initializing T2I to %s" % device)
        self.device = device
        self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
        self.pipe.to(device)

    @prompts(name="Generate Image From User Input Text",
             description="useful when you want to generate an image from a user input text and save it to a file. "
                         "like: generate an image of an object or something, or generate an image that includes some objects. "
                         "The input to this tool should be a string, representing the text used to generate image. ")

    def inference(self, text):
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
        print(f'{text} refined to {refined_text}')
        image = self.pipe(refined_text).images[0]
        image.save(image_filename)
        print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
        return image_filename

class ImageCaptioning:
    def __init__(self, device):
        print("Initializing ImageCaptioning to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)


    @prompts(name="Remove Something From The Photo",
             description="useful when you want to remove and object or something from the photo "
                         "from its description or location. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the object need to be removed. ")

    def inference(self, image_path):
        inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        captions = self.processor.decode(out[0], skip_special_tokens=True)
        return captions

class T2A:
    def __init__(self, device):
        print("Initializing Make-An-Audio to %s" % device)
        self.device = device
        self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/text-to-audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device) 
        self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)


    def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
        SAMPLE_RATE = 16000
        prng = np.random.RandomState(seed)
        start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
        start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
        uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
        c = self.sampler.model.get_learned_conditioning(n_samples * [text])
        shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8]  # (z_dim, 80//2^x, 848//2^x)
        samples_ddim, _ = self.sampler.sample(S = ddim_steps,
                                            conditioning = c,
                                            batch_size = n_samples,
                                            shape = shape,
                                            verbose = False,
                                            unconditional_guidance_scale = scale,
                                            unconditional_conditioning = uc,
                                            x_T = start_code)

        x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]

        wav_list = []
        for idx,spec in enumerate(x_samples_ddim):
            wav = self.vocoder.vocode(spec)
            wav_list.append((SAMPLE_RATE,wav))
        best_wav = select_best_audio(text, wav_list)
        return best_wav

    @prompts(name="Generate Audio From User Input Text",
             description="useful for when you want to generate an audio "
                         "from a user input text and it saved it to a file."
                         "The input to this tool should be a string, "
                         "representing the text used to generate audio.")
    
    def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
        melbins,mel_len = 80,624
        with torch.no_grad():
            result = self.txt2audio(
                text = text,
                H = melbins,
                W = mel_len
            )
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, result[1], samplerate = 16000)
        print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
        return audio_filename

class I2A:
    def __init__(self, device):
        print("Initializing Make-An-Audio-Image to %s" % device)
        self.device = device
        self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt', device=device)
        self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)


    def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
        SAMPLE_RATE = 16000
        n_samples = 1 # only support 1 sample
        prng = np.random.RandomState(seed)
        start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
        start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
        uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
        #image = Image.fromarray(image)
        image = Image.open(image)
        image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
        image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
        c = image_embedding.repeat(n_samples, 1, 1)
        shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8]  # (z_dim, 80//2^x, 848//2^x)
        samples_ddim, _ = self.sampler.sample(S=ddim_steps,
                                            conditioning=c,
                                            batch_size=n_samples,
                                            shape=shape,
                                            verbose=False,
                                            unconditional_guidance_scale=scale,
                                            unconditional_conditioning=uc,
                                            x_T=start_code)

        x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
        wav_list = []
        for idx,spec in enumerate(x_samples_ddim):
            wav = self.vocoder.vocode(spec)
            wav_list.append((SAMPLE_RATE,wav))
        best_wav = wav_list[0]
        return best_wav

    @prompts(name="Generate Audio From The Image",
             description="useful for when you want to generate an audio "
                         "based on an image. "
                         "The input to this tool should be a string, "
                         "representing the image_path. ")
    
    def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
        melbins,mel_len = 80,624
        with torch.no_grad():
            result = self.img2audio(
                image=image,
                H=melbins, 
                W=mel_len
            )
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, result[1], samplerate = 16000)
        print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
        return audio_filename

class TTS:
    def __init__(self, device=None):
        self.model = TTSInference(device)
    
    @prompts(name="Synthesize Speech Given the User Input Text",
             description="useful for when you want to convert a user input text into speech audio it saved it to a file."
                         "The input to this tool should be a string, "
                         "representing the text used to be converted to speech.")

    def inference(self, text):
        inp = {"text": text}
        out = self.model.infer_once(inp)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, out, samplerate = 22050)
        return audio_filename

class T2S:
    def __init__(self, device= None):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print("Initializing DiffSinger to %s" % device)
        self.device = device
        self.exp_name = 'checkpoints/0831_opencpop_ds1000'
        self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml'
        self.set_model_hparams()
        self.pipe = DiffSingerE2EInfer(self.hp, device)
        self.default_inp = {
            'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP',
            'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest',
            'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590'
        }


    def set_model_hparams(self):
        set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
        self.hp = hp

    @prompts(name="Generate Singing Voice From User Input Text, Note and Duration Sequence",
             description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) "
                         "and save it to a file."
                         "If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence. "
                         "If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. "
                         "Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx."
                         "The input to this tool should be a comma seperated string of three, "
                         "representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided. ")
    
    def inference(self, inputs):
        self.set_model_hparams()
        val = inputs.split(",")
        key = ['text', 'notes', 'notes_duration']
        try:
            inp = {k: v for k, v in zip(key, val)}
            wav = self.pipe.infer_once(inp)
        except:
            print('Error occurs. Generate default audio sample.\n')
            inp = self.default_inp
            wav = self.pipe.infer_once(inp)
        wav *= 32767
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
        print(f"Processed T2S.run, audio_filename: {audio_filename}")
        return audio_filename

class TTS_OOD:
    def __init__(self, device):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print("Initializing GenerSpeech to %s" % device)
        self.device = device
        self.exp_name = 'checkpoints/GenerSpeech'
        self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml'
        self.set_model_hparams()
        self.pipe = GenerSpeechInfer(self.hp, device)

    def set_model_hparams(self):
        set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
        f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy'
        if os.path.exists(f0_stats_fn):
            hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn)
            hp['f0_mean'] = float(hp['f0_mean'])
            hp['f0_std'] = float(hp['f0_std'])
        hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt'
        self.hp = hp

    @prompts(name="Style Transfer",
             description="useful for when you want to generate speech samples with styles "
                         "(e.g., timbre, emotion, and prosody) derived from a reference custom voice. "
                         "Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx."
                         "The input to this tool should be a comma seperated string of two, "
                         "representing reference audio path and input text. " )
    
    def inference(self, inputs):
        self.set_model_hparams()
        key = ['ref_audio', 'text']
        val = inputs.split(",")
        inp = {k: v for k, v in zip(key, val)}
        wav = self.pipe.infer_once(inp)
        wav *= 32767
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
        print(
            f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}")
        return audio_filename
    
class Inpaint:
    def __init__(self, device):
        print("Initializing Make-An-Audio-inpaint to %s" % device)
        self.device = device
        self.sampler = initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt')
        self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
        self.cmap_transform = matplotlib.cm.viridis

    def make_batch_sd(self, mel, mask, num_samples=1):

        mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
        mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
        masked_mel = (1 - mask) * mel

        mel = mel * 2 - 1
        mask = mask * 2 - 1
        masked_mel = masked_mel * 2 -1

        batch = {
             "mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
             "mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
             "masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
        }
        return batch
    def gen_mel(self, input_audio_path):
        SAMPLE_RATE = 16000
        sr, ori_wav = wavfile.read(input_audio_path)
        print("gen_mel")
        print(sr,ori_wav.shape,ori_wav)
        ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0
        if len(ori_wav.shape)==2:# stereo
            ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
        print(sr,ori_wav.shape,ori_wav)
        ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)

        mel_len,hop_size = 848,256
        input_len = mel_len * hop_size
        if len(ori_wav) < input_len:
            input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
        else:
            input_wav = ori_wav[:input_len]
 
        mel = TRANSFORMS_16000(input_wav)
        return mel
    def gen_mel_audio(self, input_audio):
        SAMPLE_RATE = 16000
        sr,ori_wav = input_audio
        print("gen_mel_audio")
        print(sr,ori_wav.shape,ori_wav)

        ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0
        if len(ori_wav.shape)==2:# stereo
            ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
        print(sr,ori_wav.shape,ori_wav)
        ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)

        mel_len,hop_size = 848,256
        input_len = mel_len * hop_size
        if len(ori_wav) < input_len:
            input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
        else:
            input_wav = ori_wav[:input_len]
        mel = TRANSFORMS_16000(input_wav)
        return mel
    def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
        model = self.sampler.model
    
        prng = np.random.RandomState(seed)
        start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
        start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)

        c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
        cc = torch.nn.functional.interpolate(batch["mask"],
                                                size=c.shape[-2:])
        c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask

        shape = (c.shape[1]-1,)+c.shape[2:]
        samples_ddim, _ = self.sampler.sample(S=ddim_steps,
                                            conditioning=c,
                                            batch_size=c.shape[0],
                                            shape=shape,
                                            verbose=False)
        x_samples_ddim = model.decode_first_stage(samples_ddim)

    
        mask = batch["mask"]# [-1,1]
        mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
        mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
        predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
        inpainted = (1-mask)*mel+mask*predicted_mel
        inpainted = inpainted.cpu().numpy().squeeze()
        inapint_wav = self.vocoder.vocode(inpainted)

        return inpainted, inapint_wav
    def predict(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100):
        SAMPLE_RATE = 16000
        torch.set_grad_enabled(False)
        mel_img = Image.open(mel_and_mask['image'])
        mask_img = Image.open(mel_and_mask["mask"])
        show_mel = np.array(mel_img.convert("L"))/255
        mask = np.array(mask_img.convert("L"))/255
        mel_bins,mel_len = 80,848
        input_mel = self.gen_mel_audio(input_audio)[:,:mel_len]
        mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)
        print(mask.shape,input_mel.shape)
        with torch.no_grad():
            batch = self.make_batch_sd(input_mel,mask,num_samples=1)
            inpainted,gen_wav = self.inpaint(
                batch=batch,
                seed=seed,
                ddim_steps=ddim_steps,
                num_samples=1,
                H=mel_bins, W=mel_len
            )
        inpainted = inpainted[:,:show_mel.shape[1]]
        color_mel = self.cmap_transform(inpainted)
        input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
        gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
        image = Image.fromarray((color_mel*255).astype(np.uint8))
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        image.save(image_filename)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, gen_wav, samplerate = 16000)
        return image_filename, audio_filename

    @prompts(name="Audio Inpainting",
             description="useful for when you want to inpaint a mel spectrum of an audio and predict this audio, "
                         "this tool will generate a mel spectrum and you can inpaint it, receives audio_path as input. "
                         "The input to this tool should be a string, "
                         "representing the audio_path. " )
    
    def inference(self, input_audio_path):
        crop_len = 500
        crop_mel = self.gen_mel(input_audio_path)[:,:crop_len]
        color_mel = self.cmap_transform(crop_mel)
        image = Image.fromarray((color_mel*255).astype(np.uint8))
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        image.save(image_filename)
        return image_filename
    
class ASR:
    def __init__(self, device):
        print("Initializing Whisper to %s" % device)
        self.device = device
        self.model = whisper.load_model("base", device=device)

    @prompts(name="Transcribe speech",
             description="useful for when you want to know the text corresponding to a human speech, "
                         "receives audio_path as input. "
                         "The input to this tool should be a string, "
                         "representing the audio_path. " )    

    def inference(self, audio_path):
        audio = whisper.load_audio(audio_path)
        audio = whisper.pad_or_trim(audio)
        mel = whisper.log_mel_spectrogram(audio).to(self.device)
        _, probs = self.model.detect_language(mel)
        options = whisper.DecodingOptions()
        result = whisper.decode(self.model, mel, options)
        return result.text
        
    def translate_english(self, audio_path):
        audio = self.model.transcribe(audio_path, language='English')
        return audio['text']

class A2T:
    def __init__(self, device):
        print("Initializing Audio-To-Text Model to %s" % device)
        self.device = device
        self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm")

    @prompts(name="Generate Text From The Audio",
             description="useful for when you want to describe an audio in text, "
                         "receives audio_path as input. "
                         "The input to this tool should be a string, "
                         "representing the audio_path. " )    

    def inference(self, audio_path):
        audio = whisper.load_audio(audio_path)
        caption_text = self.model(audio)
        return caption_text[0]

class SoundDetection:
    def __init__(self, device):
        self.device = device
        self.sample_rate = 32000
        self.window_size = 1024
        self.hop_size = 320
        self.mel_bins = 64
        self.fmin = 50
        self.fmax = 14000
        self.model_type = 'PVT'
        self.checkpoint_path = 'audio_detection/audio_infer/useful_ckpts/audio_detection.pth'
        self.classes_num = detection_config.classes_num
        self.labels = detection_config.labels
        self.frames_per_second = self.sample_rate // self.hop_size
        # Model = eval(self.model_type)
        self.model = PVT(sample_rate=self.sample_rate, window_size=self.window_size, 
            hop_size=self.hop_size, mel_bins=self.mel_bins, fmin=self.fmin, fmax=self.fmax, 
            classes_num=self.classes_num)
        checkpoint = torch.load(self.checkpoint_path, map_location=self.device)
        self.model.load_state_dict(checkpoint['model'])
        self.model.to(device)

    @prompts(name="Detect The Sound Event From The Audio",
             description="useful for when you want to know what event in the audio and the sound event start or end time, it will return an image "
                         "receives audio_path as input. "
                         "The input to this tool should be a string, "
                         "representing the audio_path. " )  
    
    def inference(self, audio_path):
        # Forward
        (waveform, _) = librosa.core.load(audio_path, sr=self.sample_rate, mono=True)
        waveform = waveform[None, :]    # (1, audio_length)
        waveform = torch.from_numpy(waveform)
        waveform = waveform.to(self.device)
        # Forward
        with torch.no_grad():
            self.model.eval()
            batch_output_dict = self.model(waveform, None)
        framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0]
        """(time_steps, classes_num)"""
        # print('Sound event detection result (time_steps x classes_num): {}'.format(
        #     framewise_output.shape))
        import numpy as np
        import matplotlib.pyplot as plt
        sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1]
        top_k = 10  # Show top results
        top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]]    
        """(time_steps, top_k)"""
        # Plot result    
        stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=self.window_size, 
            hop_length=self.hop_size, window='hann', center=True)
        frames_num = stft.shape[-1]
        fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4))
        axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet')
        axs[0].set_ylabel('Frequency bins')
        axs[0].set_title('Log spectrogram')
        axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1)
        axs[1].xaxis.set_ticks(np.arange(0, frames_num, self.frames_per_second))
        axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / self.frames_per_second))
        axs[1].yaxis.set_ticks(np.arange(0, top_k))
        axs[1].yaxis.set_ticklabels(np.array(self.labels)[sorted_indexes[0 : top_k]])
        axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3)
        axs[1].set_xlabel('Seconds')
        axs[1].xaxis.set_ticks_position('bottom')
        plt.tight_layout()
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        plt.savefig(image_filename)
        return image_filename

class SoundExtraction:
    def __init__(self, device):
        self.device = device
        self.model_file = 'sound_extraction/useful_ckpts/LASSNet.pt'
        self.stft = STFT()
        import torch.nn as nn
        self.model = nn.DataParallel(LASSNet(device)).to(device)
        checkpoint = torch.load(self.model_file)
        self.model.load_state_dict(checkpoint['model'])
        self.model.eval()

    @prompts(name="Extract Sound Event From Mixture Audio Based On Language Description",
             description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, "
                         "receives audio_path and text as input. "
                         "The input to this tool should be a comma seperated string of two, "
                         "representing mixture audio path and input text." ) 
    
    def inference(self, inputs):
        #key = ['ref_audio', 'text']
        val = inputs.split(",")
        audio_path = val[0] # audio_path, text
        text = val[1]
        waveform = load_wav(audio_path)
        waveform = torch.tensor(waveform).transpose(1,0)
        mixed_mag, mixed_phase = self.stft.transform(waveform)
        text_query = ['[CLS] ' + text]
        mixed_mag = mixed_mag.transpose(2,1).unsqueeze(0).to(self.device)
        est_mask = self.model(mixed_mag, text_query)
        est_mag = est_mask * mixed_mag  
        est_mag = est_mag.squeeze(1)  
        est_mag = est_mag.permute(0, 2, 1) 
        est_wav = self.stft.inverse(est_mag.cpu().detach(), mixed_phase)
        est_wav = est_wav.squeeze(0).squeeze(0).numpy()  
        #est_path = f'output/est{i}.wav'
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        print('audio_filename ', audio_filename)
        save_wav(est_wav, audio_filename)
        return audio_filename


class Binaural:
    def __init__(self, device):
        self.device = device
        self.model_file = 'mono2binaural/useful_ckpts/m2b/binaural_network.net'
        self.position_file = ['mono2binaural/useful_ckpts/m2b/tx_positions.txt',
                              'mono2binaural/useful_ckpts/m2b/tx_positions2.txt',
                              'mono2binaural/useful_ckpts/m2b/tx_positions3.txt',
                              'mono2binaural/useful_ckpts/m2b/tx_positions4.txt',
                              'mono2binaural/useful_ckpts/m2b/tx_positions5.txt']
        self.net = BinauralNetwork(view_dim=7,
                      warpnet_layers=4,
                      warpnet_channels=64,
                      )
        self.net.load_from_file(self.model_file)
        self.sr = 48000

    @prompts(name="Sythesize Binaural Audio From A Mono Audio Input",
             description="useful for when you want to transfer your mono audio into binaural audio, "
                         "receives audio_path as input. "
                         "The input to this tool should be a string, "
                         "representing the audio_path. " ) 
    
    def inference(self, audio_path):
        mono, sr  = librosa.load(path=audio_path, sr=self.sr, mono=True)
        mono = torch.from_numpy(mono)
        mono = mono.unsqueeze(0)
        import numpy as np
        import random
        rand_int = random.randint(0,4)
        view = np.loadtxt(self.position_file[rand_int]).transpose().astype(np.float32)
        view = torch.from_numpy(view)
        if not view.shape[-1] * 400 == mono.shape[-1]:
            mono = mono[:,:(mono.shape[-1]//400)*400] # 
            if view.shape[1]*400 > mono.shape[1]:
                m_a = view.shape[1] - mono.shape[-1]//400 
                rand_st = random.randint(0,m_a)
                view = view[:,m_a:m_a+(mono.shape[-1]//400)] # 
        # binauralize and save output
        self.net.eval().to(self.device)
        mono, view = mono.to(self.device), view.to(self.device)
        chunk_size = 48000  # forward in chunks of 1s
        rec_field =  1000  # add 1000 samples as "safe bet" since warping has undefined rec. field
        rec_field -= rec_field % 400  # make sure rec_field is a multiple of 400 to match audio and view frequencies
        chunks = [
            {
                "mono": mono[:, max(0, i-rec_field):i+chunk_size],
                "view": view[:, max(0, i-rec_field)//400:(i+chunk_size)//400]
            }
            for i in range(0, mono.shape[-1], chunk_size)
        ]
        for i, chunk in enumerate(chunks):
            with torch.no_grad():
                mono = chunk["mono"].unsqueeze(0)
                view = chunk["view"].unsqueeze(0)
                binaural = self.net(mono, view).squeeze(0)
                if i > 0:
                    binaural = binaural[:, -(mono.shape[-1]-rec_field):]
                chunk["binaural"] = binaural
        binaural = torch.cat([chunk["binaural"] for chunk in chunks], dim=-1)
        binaural = torch.clamp(binaural, min=-1, max=1).cpu()
        #binaural = chunked_forwarding(net, mono, view)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        import torchaudio
        torchaudio.save(audio_filename, binaural, sr)
        #soundfile.write(audio_filename, binaural, samplerate = 48000)
        print(f"Processed Binaural.run, audio_filename: {audio_filename}")
        return audio_filename

class TargetSoundDetection:
    def __init__(self, device):
        self.device = device
        self.MEL_ARGS = {
            'n_mels': 64,
            'n_fft': 2048,
            'hop_length': int(22050 * 20 / 1000),
            'win_length': int(22050 * 40 / 1000)
        }
        self.EPS = np.spacing(1)
        self.clip_model, _ = clip.load("ViT-B/32", device=self.device)
        self.event_labels = event_labels
        self.id_to_event =  {i : label for i, label in enumerate(self.event_labels)}
        config = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_config.pth', map_location='cpu')
        config_parameters = dict(config)
        config_parameters['tao'] = 0.6
        if 'thres' not in config_parameters.keys():
            config_parameters['thres'] = 0.5
        if 'time_resolution' not in config_parameters.keys():
            config_parameters['time_resolution'] = 125
        model_parameters = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_model_7_loss=-0.0724.pt'
                                        , map_location=lambda storage, loc: storage) # load parameter 
        self.model = getattr(tsd_models, config_parameters['model'])(config_parameters,
                    inputdim=64, outputdim=2, time_resolution=config_parameters['time_resolution'], **config_parameters['model_args'])
        self.model.load_state_dict(model_parameters)
        self.model = self.model.to(self.device).eval()
        self.re_embeds = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/text_emb.pth')
        self.ref_mel = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/ref_mel.pth')

    def extract_feature(self, fname):
        import soundfile as sf
        y, sr = sf.read(fname, dtype='float32')
        print('y ', y.shape)
        ti = y.shape[0]/sr
        if y.ndim > 1:
            y = y.mean(1)
        y = librosa.resample(y, sr, 22050)
        lms_feature = np.log(librosa.feature.melspectrogram(y, **self.MEL_ARGS) + self.EPS).T
        return lms_feature,ti
    
    def build_clip(self, text):
        text = clip.tokenize(text).to(self.device) # ["a diagram with dog", "a dog", "a cat"]
        text_features = self.clip_model.encode_text(text)
        return text_features
    
    def cal_similarity(self, target, retrievals):
        ans = []
        for name in retrievals.keys():
            tmp = retrievals[name]
            s = torch.cosine_similarity(target.squeeze(), tmp.squeeze(), dim=0)
            ans.append(s.item())
        return ans.index(max(ans))

    @prompts(name="Target Sound Detection",
             description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model, "
                         "receives text description and audio_path as input. "
                         "The input to this tool should be a comma seperated string of two, "
                         "representing audio path and the text description. " ) 
    
    def inference(self, inputs):
        audio_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        target_emb = self.build_clip(text) # torch type
        idx = self.cal_similarity(target_emb, self.re_embeds)
        target_event = self.id_to_event[idx]
        embedding = self.ref_mel[target_event]
        embedding = torch.from_numpy(embedding)
        embedding = embedding.unsqueeze(0).to(self.device).float()
        inputs,ti = self.extract_feature(audio_path)
        inputs = torch.from_numpy(inputs)
        inputs = inputs.unsqueeze(0).to(self.device).float()
        decision, decision_up, logit = self.model(inputs, embedding)
        pred = decision_up.detach().cpu().numpy()
        pred = pred[:,:,0]
        frame_num = decision_up.shape[1]
        time_ratio = ti / frame_num
        filtered_pred = median_filter(pred, window_size=1, threshold=0.5)
        time_predictions = []
        for index_k in range(filtered_pred.shape[0]):
            decoded_pred = []
            decoded_pred_ = decode_with_timestamps(target_event, filtered_pred[index_k,:])
            if len(decoded_pred_) == 0: # neg deal
                decoded_pred_.append((target_event, 0, 0))
            decoded_pred.append(decoded_pred_)
            for num_batch in range(len(decoded_pred)): # when we test our model,the batch_size is 1
                cur_pred = pred[num_batch]
                # Save each frame output, for later visualization
                label_prediction = decoded_pred[num_batch] # frame predict
                for event_label, onset, offset in label_prediction:
                    time_predictions.append({
                        'onset': onset*time_ratio,
                        'offset': offset*time_ratio,})
        ans = ''
        for i,item in enumerate(time_predictions):
            ans = ans + 'segment' + str(i+1) + ' start_time: ' + str(item['onset']) + '  end_time: ' + str(item['offset']) + '\t'
        return ans

class Speech_Enh_SC:
    """Speech Enhancement or Separation in single-channel
    Example usage:
        enh_model = Speech_Enh_SS("cuda")
        enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav")
    """
    def __init__(self, device="cuda", model_name="espnet/Wangyou_Zhang_chime4_enh_train_enh_conv_tasnet_raw"):
        self.model_name = model_name
        self.device = device
        print("Initializing ESPnet Enh to %s" % device)
        self._initialize_model()

    def _initialize_model(self):
        from espnet_model_zoo.downloader import ModelDownloader
        from espnet2.bin.enh_inference import SeparateSpeech

        d = ModelDownloader()

        cfg = d.download_and_unpack(self.model_name)
        self.separate_speech = SeparateSpeech(
            train_config=cfg["train_config"],
            model_file=cfg["model_file"],
            # for segment-wise process on long speech
            segment_size=2.4,
            hop_size=0.8,
            normalize_segment_scale=False,
            show_progressbar=True,
            ref_channel=None,
            normalize_output_wav=True,
            device=self.device,
        )
        
    @prompts(name="Speech Enhancement In Single-Channel",
             description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), "
                         "receives audio_path as input."
                         "The input to this tool should be a string, "
                         "representing the audio_path. " ) 
    
    def inference(self, speech_path, ref_channel=0):
        speech, sr = soundfile.read(speech_path)
        speech = speech[:, ref_channel]
        enh_speech = self.separate_speech(speech[None, ...], fs=sr)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr)
        return audio_filename

class Speech_SS:
    def __init__(self, device="cuda", model_name="lichenda/wsj0_2mix_skim_noncausal"):
        self.model_name = model_name
        self.device = device
        print("Initializing ESPnet SS to %s" % device)
        self._initialize_model()

    def _initialize_model(self):
        from espnet_model_zoo.downloader import ModelDownloader
        from espnet2.bin.enh_inference import SeparateSpeech

        d = ModelDownloader()

        cfg = d.download_and_unpack(self.model_name)
        self.separate_speech = SeparateSpeech(
            train_config=cfg["train_config"],
            model_file=cfg["model_file"],
            # for segment-wise process on long speech
            segment_size=2.4,
            hop_size=0.8,
            normalize_segment_scale=False,
            show_progressbar=True,
            ref_channel=None,
            normalize_output_wav=True,
            device=self.device,
        )

    @prompts(name="Speech Separation",
             description="useful for when you want to separate each speech from the speech mixture, "
                         "receives audio_path as input."
                         "The input to this tool should be a string, "
                         "representing the audio_path. " ) 
    
    def inference(self, speech_path):
        speech, sr = soundfile.read(speech_path)
        enh_speech = self.separate_speech(speech[None, ...], fs=sr)
        audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
        if len(enh_speech) == 1:
            soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr)
        else:
            audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
            soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr)
            audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
            soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr)
            audio_filename = merge_audio(audio_filename_1, audio_filename_2)
        return audio_filename