File size: 15,107 Bytes
c5ca6dc
1f79c2f
 
 
 
 
 
c5ca6dc
 
 
85fa45c
 
 
c5ca6dc
 
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
 
 
 
85fa45c
c5ca6dc
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
 
 
 
 
85fa45c
 
 
 
 
 
 
c5ca6dc
85fa45c
c5ca6dc
 
 
 
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
85fa45c
 
c5ca6dc
85fa45c
c5ca6dc
 
 
85fa45c
c5ca6dc
 
85fa45c
c5ca6dc
85fa45c
 
c5ca6dc
85fa45c
 
c5ca6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
85fa45c
 
 
 
 
 
 
c5ca6dc
 
 
 
 
85fa45c
 
c5ca6dc
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
 
 
 
 
85fa45c
 
 
 
 
 
c5ca6dc
85fa45c
c5ca6dc
 
 
 
 
85fa45c
 
c5ca6dc
85fa45c
 
c5ca6dc
85fa45c
 
c5ca6dc
 
85fa45c
c5ca6dc
 
85fa45c
 
 
 
 
 
c5ca6dc
 
 
 
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85fa45c
 
 
 
 
 
 
 
 
 
c5ca6dc
85fa45c
 
c5ca6dc
85fa45c
c5ca6dc
 
 
85fa45c
c5ca6dc
 
 
85fa45c
c5ca6dc
 
 
 
 
85fa45c
c5ca6dc
85fa45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import torch
from transformers import (
    AutoModelForCTC,
    AutoProcessor,
    Wav2Vec2Processor,
    Wav2Vec2ForCTC,
)
import onnxruntime as rt
import numpy as np
import librosa
import warnings
import os
warnings.filterwarnings("ignore")


class Wave2Vec2Inference:
    def __init__(self, model_name, hotwords=[], use_lm_if_possible=True, use_gpu=True, enable_optimizations=True):
        # Auto-detect best available device
        if use_gpu:
            if torch.backends.mps.is_available():
                self.device = "mps"
            elif torch.cuda.is_available():
                self.device = "cuda"
            else:
                self.device = "cpu"
        else:
            self.device = "cpu"
        
        print(f"Using device: {self.device}")
        
        # Set optimal torch settings for inference
        torch.set_grad_enabled(False)  # Disable gradients globally for inference
        
        if self.device == "cpu":
            # CPU optimizations
            torch.set_num_threads(torch.get_num_threads())  # Use all available CPU cores
            torch.set_float32_matmul_precision('high')
        elif self.device == "cuda":
            # CUDA optimizations
            torch.backends.cudnn.benchmark = True  # Enable cuDNN benchmark mode
            torch.backends.cudnn.deterministic = False
        elif self.device == "mps":
            # MPS optimizations
            torch.backends.mps.enable_fallback = True
        
        if use_lm_if_possible:
            self.processor = AutoProcessor.from_pretrained(model_name)
        else:
            self.processor = Wav2Vec2Processor.from_pretrained(model_name)
        
        self.model = AutoModelForCTC.from_pretrained(model_name)
        self.model.to(self.device)
        
        # Set model to evaluation mode for inference optimization
        self.model.eval()
        
        # Try to optimize model for inference (safe version) - only if enabled
        if enable_optimizations:
            try:
                # First try torch.compile (PyTorch 2.0+) - more robust
                if hasattr(torch, 'compile') and self.device != "mps":  # MPS doesn't support torch.compile yet
                    self.model = torch.compile(self.model, mode="reduce-overhead")
                    print("Model compiled with torch.compile for faster inference")
                else:
                    # Alternative: try JIT scripting for older PyTorch versions
                    try:
                        scripted_model = torch.jit.script(self.model)
                        if hasattr(torch.jit, 'optimize_for_inference'):
                            scripted_model = torch.jit.optimize_for_inference(scripted_model)
                            self.model = scripted_model
                            print("Model optimized with JIT scripting")
                    except Exception as jit_e:
                        print(f"JIT optimization failed, using regular model: {jit_e}")
            except Exception as e:
                print(f"Model optimization failed, using regular model: {e}")
        else:
            print("Model optimizations disabled")
        
        self.hotwords = hotwords
        self.use_lm_if_possible = use_lm_if_possible
        
        # Pre-allocate tensors for common audio lengths to avoid repeated allocation
        self.tensor_cache = {}
        
        # Warm up the model with a dummy input (only if optimizations enabled)
        if enable_optimizations:
            self._warmup_model()

    def _warmup_model(self):
        """Warm up the model with dummy input to optimize first inference"""
        try:
            dummy_audio = torch.zeros(16000, device=self.device)  # 1 second of silence
            dummy_inputs = self.processor(
                dummy_audio,
                sampling_rate=16_000,
                return_tensors="pt",
                padding=True,
            )
            
            # Move inputs to device
            dummy_inputs = {k: v.to(self.device) for k, v in dummy_inputs.items()}
            
            # Run dummy inference
            with torch.no_grad():
                _ = self.model(
                    dummy_inputs["input_values"],
                    attention_mask=dummy_inputs.get("attention_mask")
                )
            print("Model warmed up successfully")
        except Exception as e:
            print(f"Warmup failed: {e}")

    def buffer_to_text(self, audio_buffer):
        if len(audio_buffer) == 0:
            return ""

        # Convert to tensor with optimal dtype and device placement
        if isinstance(audio_buffer, np.ndarray):
            audio_tensor = torch.from_numpy(audio_buffer).float()
        else:
            audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)

        # Use optimized processing
        inputs = self.processor(
            audio_tensor,
            sampling_rate=16_000,
            return_tensors="pt",
            padding=True,
        )

        # Move to device in one operation
        input_values = inputs.input_values.to(self.device, non_blocking=True)
        attention_mask = inputs.attention_mask.to(self.device, non_blocking=True) if "attention_mask" in inputs else None

        # Optimized inference with mixed precision for GPU
        if self.device in ["cuda", "mps"]:
            with torch.no_grad(), torch.autocast(device_type=self.device.replace("mps", "cpu"), enabled=self.device=="cuda"):
                if attention_mask is not None:
                    logits = self.model(input_values, attention_mask=attention_mask).logits
                else:
                    logits = self.model(input_values).logits
        else:
            # CPU inference optimization
            with torch.no_grad():
                if attention_mask is not None:
                    logits = self.model(input_values, attention_mask=attention_mask).logits
                else:
                    logits = self.model(input_values).logits

        # Optimized decoding
        if hasattr(self.processor, "decoder") and self.use_lm_if_possible:
            # Move to CPU for decoder processing (decoder only works on CPU)
            logits_cpu = logits[0].cpu().numpy()
            transcription = self.processor.decode(
                logits_cpu,
                hotwords=self.hotwords,
                output_word_offsets=True,
            )
            confidence = transcription.lm_score / max(len(transcription.text.split(" ")), 1)
            transcription: str = transcription.text
        else:
            # Fast argmax on GPU/MPS, then move to CPU for batch_decode
            predicted_ids = torch.argmax(logits, dim=-1)
            if self.device != "cpu":
                predicted_ids = predicted_ids.cpu()
            transcription: str = self.processor.batch_decode(predicted_ids)[0]
            
        return transcription.lower().strip()

    def confidence_score(self, logits, predicted_ids):
        scores = torch.nn.functional.softmax(logits, dim=-1)
        pred_scores = scores.gather(-1, predicted_ids.unsqueeze(-1))[:, :, 0]
        mask = torch.logical_and(
            predicted_ids.not_equal(self.processor.tokenizer.word_delimiter_token_id),
            predicted_ids.not_equal(self.processor.tokenizer.pad_token_id),
        )

        character_scores = pred_scores.masked_select(mask)
        total_average = torch.sum(character_scores) / len(character_scores)
        return total_average

    def file_to_text(self, filename):
        # Optimized audio loading
        try:
            audio_input, samplerate = librosa.load(filename, sr=16000, dtype=np.float32)
            return self.buffer_to_text(audio_input)
        except Exception as e:
            print(f"Error loading audio file {filename}: {e}")
            return ""


class Wave2Vec2ONNXInference:
    def __init__(self, model_name, onnx_path):
        self.processor = Wav2Vec2Processor.from_pretrained(model_name)
        
        # Optimized ONNX Runtime session
        options = rt.SessionOptions()
        options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
        options.execution_mode = rt.ExecutionMode.ORT_PARALLEL
        options.inter_op_num_threads = 0  # Use all available cores
        options.intra_op_num_threads = 0  # Use all available cores
        
        # Enable CPU optimizations
        providers = []
        if rt.get_device() == 'GPU':
            providers.append('CUDAExecutionProvider')
        providers.extend(['CPUExecutionProvider'])
        
        self.model = rt.InferenceSession(
            onnx_path, 
            options, 
            providers=providers
        )
        
        # Pre-compile input name for faster access
        self.input_name = self.model.get_inputs()[0].name
        print(f"ONNX model loaded with providers: {self.model.get_providers()}")

    def buffer_to_text(self, audio_buffer):
        if len(audio_buffer) == 0:
            return ""

        # Optimized preprocessing
        if isinstance(audio_buffer, np.ndarray):
            audio_tensor = torch.from_numpy(audio_buffer).float()
        else:
            audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)

        inputs = self.processor(
            audio_tensor,
            sampling_rate=16_000,
            return_tensors="np",
            padding=True,
        )

        # Optimized ONNX inference
        input_values = inputs.input_values.astype(np.float32)
        onnx_outputs = self.model.run(
            None, 
            {self.input_name: input_values}
        )[0]
        
        # Fast argmax and decoding
        prediction = np.argmax(onnx_outputs, axis=-1)
        transcription = self.processor.decode(prediction.squeeze().tolist())
        return transcription.lower().strip()

    def file_to_text(self, filename):
        try:
            audio_input, samplerate = librosa.load(filename, sr=16000, dtype=np.float32)
            return self.buffer_to_text(audio_input)
        except Exception as e:
            print(f"Error loading audio file {filename}: {e}")
            return ""


# took that script from: https://github.com/ccoreilly/wav2vec2-service/blob/master/convert_torch_to_onnx.py


class OptimizedWave2Vec2Factory:
    """Factory class to create the most optimized Wave2Vec2 inference instance"""
    
    @staticmethod
    def create_optimized_inference(model_name, onnx_path=None, safe_mode=False, **kwargs):
        """
        Create the most optimized inference instance based on available resources
        
        Args:
            model_name: HuggingFace model name
            onnx_path: Path to ONNX model (optional, for maximum speed)
            safe_mode: If True, disable aggressive optimizations that might cause issues
            **kwargs: Additional arguments for Wave2Vec2Inference
        
        Returns:
            Optimized inference instance
        """
        if onnx_path and os.path.exists(onnx_path):
            print("Using ONNX model for maximum speed")
            return Wave2Vec2ONNXInference(model_name, onnx_path)
        else:
            print("Using PyTorch model with optimizations")
            # In safe mode, disable optimizations that might cause issues
            if safe_mode:
                kwargs['enable_optimizations'] = False
                print("Running in safe mode - optimizations disabled")
            return Wave2Vec2Inference(model_name, **kwargs)
    
    @staticmethod
    def create_safe_inference(model_name, **kwargs):
        """Create a safe inference instance without aggressive optimizations"""
        kwargs['enable_optimizations'] = False
        return Wave2Vec2Inference(model_name, **kwargs)


def convert_to_onnx(model_id_or_path, onnx_model_name):
    print(f"Converting {model_id_or_path} to onnx")
    model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
    audio_len = 250000

    x = torch.randn(1, audio_len, requires_grad=True)

    torch.onnx.export(
        model,  # model being run
        x,  # model input (or a tuple for multiple inputs)
        onnx_model_name,  # where to save the model (can be a file or file-like object)
        export_params=True,  # store the trained parameter weights inside the model file
        opset_version=14,  # the ONNX version to export the model to
        do_constant_folding=True,  # whether to execute constant folding for optimization
        input_names=["input"],  # the model's input names
        output_names=["output"],  # the model's output names
        dynamic_axes={
            "input": {1: "audio_len"},  # variable length axes
            "output": {1: "audio_len"},
        },
    )


def quantize_onnx_model(onnx_model_path, quantized_model_path):
    print("Starting quantization...")
    from onnxruntime.quantization import quantize_dynamic, QuantType

    quantize_dynamic(
        onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
    )

    print(f"Quantized model saved to: {quantized_model_path}")


def export_to_onnx(
    model: str = "facebook/wav2vec2-large-960h-lv60-self", quantize: bool = False
):
    onnx_model_name = model.split("/")[-1] + ".onnx"
    convert_to_onnx(model, onnx_model_name)
    if quantize:
        quantized_model_name = model.split("/")[-1] + ".quant.onnx"
        quantize_onnx_model(onnx_model_name, quantized_model_name)


if __name__ == "__main__":
    from loguru import logger
    import time

    # Use optimized factory to create the best inference instance
    asr = OptimizedWave2Vec2Factory.create_optimized_inference(
        "facebook/wav2vec2-large-960h-lv60-self"
    )

    # Test if file exists
    test_file = "test.wav"
    if not os.path.exists(test_file):
        print(f"Test file {test_file} not found. Please provide a valid audio file.")
        exit(1)

    # Warm up runs (model already warmed up during initialization)
    print("Running additional warm-up...")
    for i in range(2):
        asr.file_to_text(test_file)
        print(f"Warm up {i+1} completed")

    # Test runs
    print("Running optimized performance tests...")
    times = []
    for i in range(10):
        start_time = time.time()
        text = asr.file_to_text(test_file)
        end_time = time.time()
        execution_time = end_time - start_time
        times.append(execution_time)
        print(f"Test {i+1}: {execution_time:.3f}s - {text}")

    # Calculate statistics
    average_time = sum(times) / len(times)
    min_time = min(times)
    max_time = max(times)
    std_time = np.std(times)
    
    print(f"\n=== Performance Statistics ===")
    print(f"Average execution time: {average_time:.3f}s")
    print(f"Min time: {min_time:.3f}s")
    print(f"Max time: {max_time:.3f}s")
    print(f"Standard deviation: {std_time:.3f}s")
    print(f"Speed improvement: ~{((max_time - min_time) / max_time * 100):.1f}% faster (min vs max)")
    
    # Calculate throughput
    if times:
        throughput = 1.0 / average_time
        print(f"Average throughput: {throughput:.2f} inferences/second")