Spaces:
Running
Running
Refactor code structure for improved readability and maintainability
Browse files- src/AI_Models/wave2vec_inference.py +241 -37
- src/apis/__pycache__/create_app.cpython-311.pyc +0 -0
- src/apis/controllers/speaking_controller.py +1111 -938
- src/apis/create_app.py +18 -0
- src/apis/routes/ipa_route.py +1763 -0
- src/apis/routes/speaking_route.py +13 -3
src/AI_Models/wave2vec_inference.py
CHANGED
@@ -8,51 +8,164 @@ from transformers import (
|
|
8 |
import onnxruntime as rt
|
9 |
import numpy as np
|
10 |
import librosa
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
class Wave2Vec2Inference:
|
14 |
-
def __init__(self, model_name, hotwords=[], use_lm_if_possible=True, use_gpu=True):
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
if use_lm_if_possible:
|
17 |
self.processor = AutoProcessor.from_pretrained(model_name)
|
18 |
else:
|
19 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
|
|
20 |
self.model = AutoModelForCTC.from_pretrained(model_name)
|
21 |
self.model.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
self.hotwords = hotwords
|
23 |
self.use_lm_if_possible = use_lm_if_possible
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def buffer_to_text(self, audio_buffer):
|
26 |
if len(audio_buffer) == 0:
|
27 |
return ""
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
inputs = self.processor(
|
30 |
-
|
31 |
sampling_rate=16_000,
|
32 |
return_tensors="pt",
|
33 |
padding=True,
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if hasattr(self.processor, "decoder") and self.use_lm_if_possible:
|
|
|
|
|
43 |
transcription = self.processor.decode(
|
44 |
-
|
45 |
hotwords=self.hotwords,
|
46 |
-
# hotword_weight=self.hotword_weight,
|
47 |
output_word_offsets=True,
|
48 |
)
|
49 |
-
confidence = transcription.lm_score / len(transcription.text.split(" "))
|
50 |
transcription: str = transcription.text
|
51 |
else:
|
|
|
52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
|
|
53 |
transcription: str = self.processor.batch_decode(predicted_ids)[0]
|
54 |
-
|
55 |
-
return transcription.lower()
|
56 |
|
57 |
def confidence_score(self, logits, predicted_ids):
|
58 |
scores = torch.nn.functional.softmax(logits, dim=-1)
|
@@ -67,48 +180,118 @@ class Wave2Vec2Inference:
|
|
67 |
return total_average
|
68 |
|
69 |
def file_to_text(self, filename):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
class Wave2Vec2ONNXInference:
|
77 |
def __init__(self, model_name, onnx_path):
|
78 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
79 |
-
|
|
|
80 |
options = rt.SessionOptions()
|
81 |
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def buffer_to_text(self, audio_buffer):
|
85 |
if len(audio_buffer) == 0:
|
86 |
return ""
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
inputs = self.processor(
|
89 |
-
|
90 |
sampling_rate=16_000,
|
91 |
return_tensors="np",
|
92 |
padding=True,
|
93 |
)
|
94 |
|
95 |
-
|
|
|
96 |
onnx_outputs = self.model.run(
|
97 |
-
None,
|
|
|
98 |
)[0]
|
|
|
|
|
99 |
prediction = np.argmax(onnx_outputs, axis=-1)
|
100 |
-
|
101 |
transcription = self.processor.decode(prediction.squeeze().tolist())
|
102 |
-
return transcription.lower()
|
103 |
|
104 |
def file_to_text(self, filename):
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
# took that script from: https://github.com/ccoreilly/wav2vec2-service/blob/master/convert_torch_to_onnx.py
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def convert_to_onnx(model_id_or_path, onnx_model_name):
|
113 |
print(f"Converting {model_id_or_path} to onnx")
|
114 |
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
|
@@ -157,27 +340,48 @@ if __name__ == "__main__":
|
|
157 |
from loguru import logger
|
158 |
import time
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
# Warm up runs
|
163 |
-
print("
|
164 |
for i in range(2):
|
165 |
-
asr.file_to_text(
|
166 |
print(f"Warm up {i+1} completed")
|
167 |
|
168 |
# Test runs
|
169 |
-
print("Running tests...")
|
170 |
times = []
|
171 |
for i in range(10):
|
172 |
start_time = time.time()
|
173 |
-
text = asr.file_to_text(
|
174 |
end_time = time.time()
|
175 |
execution_time = end_time - start_time
|
176 |
times.append(execution_time)
|
177 |
print(f"Test {i+1}: {execution_time:.3f}s - {text}")
|
178 |
|
179 |
-
# Calculate
|
180 |
average_time = sum(times) / len(times)
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import onnxruntime as rt
|
9 |
import numpy as np
|
10 |
import librosa
|
11 |
+
import warnings
|
12 |
+
import os
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
|
15 |
|
16 |
class Wave2Vec2Inference:
|
17 |
+
def __init__(self, model_name, hotwords=[], use_lm_if_possible=True, use_gpu=True, enable_optimizations=True):
|
18 |
+
# Auto-detect best available device
|
19 |
+
if use_gpu:
|
20 |
+
if torch.backends.mps.is_available():
|
21 |
+
self.device = "mps"
|
22 |
+
elif torch.cuda.is_available():
|
23 |
+
self.device = "cuda"
|
24 |
+
else:
|
25 |
+
self.device = "cpu"
|
26 |
+
else:
|
27 |
+
self.device = "cpu"
|
28 |
+
|
29 |
+
print(f"Using device: {self.device}")
|
30 |
+
|
31 |
+
# Set optimal torch settings for inference
|
32 |
+
torch.set_grad_enabled(False) # Disable gradients globally for inference
|
33 |
+
|
34 |
+
if self.device == "cpu":
|
35 |
+
# CPU optimizations
|
36 |
+
torch.set_num_threads(torch.get_num_threads()) # Use all available CPU cores
|
37 |
+
torch.set_float32_matmul_precision('high')
|
38 |
+
elif self.device == "cuda":
|
39 |
+
# CUDA optimizations
|
40 |
+
torch.backends.cudnn.benchmark = True # Enable cuDNN benchmark mode
|
41 |
+
torch.backends.cudnn.deterministic = False
|
42 |
+
elif self.device == "mps":
|
43 |
+
# MPS optimizations
|
44 |
+
torch.backends.mps.enable_fallback = True
|
45 |
+
|
46 |
if use_lm_if_possible:
|
47 |
self.processor = AutoProcessor.from_pretrained(model_name)
|
48 |
else:
|
49 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
50 |
+
|
51 |
self.model = AutoModelForCTC.from_pretrained(model_name)
|
52 |
self.model.to(self.device)
|
53 |
+
|
54 |
+
# Set model to evaluation mode for inference optimization
|
55 |
+
self.model.eval()
|
56 |
+
|
57 |
+
# Try to optimize model for inference (safe version) - only if enabled
|
58 |
+
if enable_optimizations:
|
59 |
+
try:
|
60 |
+
# First try torch.compile (PyTorch 2.0+) - more robust
|
61 |
+
if hasattr(torch, 'compile') and self.device != "mps": # MPS doesn't support torch.compile yet
|
62 |
+
self.model = torch.compile(self.model, mode="reduce-overhead")
|
63 |
+
print("Model compiled with torch.compile for faster inference")
|
64 |
+
else:
|
65 |
+
# Alternative: try JIT scripting for older PyTorch versions
|
66 |
+
try:
|
67 |
+
scripted_model = torch.jit.script(self.model)
|
68 |
+
if hasattr(torch.jit, 'optimize_for_inference'):
|
69 |
+
scripted_model = torch.jit.optimize_for_inference(scripted_model)
|
70 |
+
self.model = scripted_model
|
71 |
+
print("Model optimized with JIT scripting")
|
72 |
+
except Exception as jit_e:
|
73 |
+
print(f"JIT optimization failed, using regular model: {jit_e}")
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Model optimization failed, using regular model: {e}")
|
76 |
+
else:
|
77 |
+
print("Model optimizations disabled")
|
78 |
+
|
79 |
self.hotwords = hotwords
|
80 |
self.use_lm_if_possible = use_lm_if_possible
|
81 |
+
|
82 |
+
# Pre-allocate tensors for common audio lengths to avoid repeated allocation
|
83 |
+
self.tensor_cache = {}
|
84 |
+
|
85 |
+
# Warm up the model with a dummy input (only if optimizations enabled)
|
86 |
+
if enable_optimizations:
|
87 |
+
self._warmup_model()
|
88 |
+
|
89 |
+
def _warmup_model(self):
|
90 |
+
"""Warm up the model with dummy input to optimize first inference"""
|
91 |
+
try:
|
92 |
+
dummy_audio = torch.zeros(16000, device=self.device) # 1 second of silence
|
93 |
+
dummy_inputs = self.processor(
|
94 |
+
dummy_audio,
|
95 |
+
sampling_rate=16_000,
|
96 |
+
return_tensors="pt",
|
97 |
+
padding=True,
|
98 |
+
)
|
99 |
+
|
100 |
+
# Move inputs to device
|
101 |
+
dummy_inputs = {k: v.to(self.device) for k, v in dummy_inputs.items()}
|
102 |
+
|
103 |
+
# Run dummy inference
|
104 |
+
with torch.no_grad():
|
105 |
+
_ = self.model(
|
106 |
+
dummy_inputs["input_values"],
|
107 |
+
attention_mask=dummy_inputs.get("attention_mask")
|
108 |
+
)
|
109 |
+
print("Model warmed up successfully")
|
110 |
+
except Exception as e:
|
111 |
+
print(f"Warmup failed: {e}")
|
112 |
|
113 |
def buffer_to_text(self, audio_buffer):
|
114 |
if len(audio_buffer) == 0:
|
115 |
return ""
|
116 |
|
117 |
+
# Convert to tensor with optimal dtype and device placement
|
118 |
+
if isinstance(audio_buffer, np.ndarray):
|
119 |
+
audio_tensor = torch.from_numpy(audio_buffer).float()
|
120 |
+
else:
|
121 |
+
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
122 |
+
|
123 |
+
# Use optimized processing
|
124 |
inputs = self.processor(
|
125 |
+
audio_tensor,
|
126 |
sampling_rate=16_000,
|
127 |
return_tensors="pt",
|
128 |
padding=True,
|
129 |
)
|
130 |
|
131 |
+
# Move to device in one operation
|
132 |
+
input_values = inputs.input_values.to(self.device, non_blocking=True)
|
133 |
+
attention_mask = inputs.attention_mask.to(self.device, non_blocking=True) if "attention_mask" in inputs else None
|
134 |
+
|
135 |
+
# Optimized inference with mixed precision for GPU
|
136 |
+
if self.device in ["cuda", "mps"]:
|
137 |
+
with torch.no_grad(), torch.autocast(device_type=self.device.replace("mps", "cpu"), enabled=self.device=="cuda"):
|
138 |
+
if attention_mask is not None:
|
139 |
+
logits = self.model(input_values, attention_mask=attention_mask).logits
|
140 |
+
else:
|
141 |
+
logits = self.model(input_values).logits
|
142 |
+
else:
|
143 |
+
# CPU inference optimization
|
144 |
+
with torch.no_grad():
|
145 |
+
if attention_mask is not None:
|
146 |
+
logits = self.model(input_values, attention_mask=attention_mask).logits
|
147 |
+
else:
|
148 |
+
logits = self.model(input_values).logits
|
149 |
+
|
150 |
+
# Optimized decoding
|
151 |
if hasattr(self.processor, "decoder") and self.use_lm_if_possible:
|
152 |
+
# Move to CPU for decoder processing (decoder only works on CPU)
|
153 |
+
logits_cpu = logits[0].cpu().numpy()
|
154 |
transcription = self.processor.decode(
|
155 |
+
logits_cpu,
|
156 |
hotwords=self.hotwords,
|
|
|
157 |
output_word_offsets=True,
|
158 |
)
|
159 |
+
confidence = transcription.lm_score / max(len(transcription.text.split(" ")), 1)
|
160 |
transcription: str = transcription.text
|
161 |
else:
|
162 |
+
# Fast argmax on GPU/MPS, then move to CPU for batch_decode
|
163 |
predicted_ids = torch.argmax(logits, dim=-1)
|
164 |
+
if self.device != "cpu":
|
165 |
+
predicted_ids = predicted_ids.cpu()
|
166 |
transcription: str = self.processor.batch_decode(predicted_ids)[0]
|
167 |
+
|
168 |
+
return transcription.lower().strip()
|
169 |
|
170 |
def confidence_score(self, logits, predicted_ids):
|
171 |
scores = torch.nn.functional.softmax(logits, dim=-1)
|
|
|
180 |
return total_average
|
181 |
|
182 |
def file_to_text(self, filename):
|
183 |
+
# Optimized audio loading
|
184 |
+
try:
|
185 |
+
audio_input, samplerate = librosa.load(filename, sr=16000, dtype=np.float32)
|
186 |
+
return self.buffer_to_text(audio_input)
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Error loading audio file {filename}: {e}")
|
189 |
+
return ""
|
190 |
|
191 |
|
192 |
class Wave2Vec2ONNXInference:
|
193 |
def __init__(self, model_name, onnx_path):
|
194 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
195 |
+
|
196 |
+
# Optimized ONNX Runtime session
|
197 |
options = rt.SessionOptions()
|
198 |
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
|
199 |
+
options.execution_mode = rt.ExecutionMode.ORT_PARALLEL
|
200 |
+
options.inter_op_num_threads = 0 # Use all available cores
|
201 |
+
options.intra_op_num_threads = 0 # Use all available cores
|
202 |
+
|
203 |
+
# Enable CPU optimizations
|
204 |
+
providers = []
|
205 |
+
if rt.get_device() == 'GPU':
|
206 |
+
providers.append('CUDAExecutionProvider')
|
207 |
+
providers.extend(['CPUExecutionProvider'])
|
208 |
+
|
209 |
+
self.model = rt.InferenceSession(
|
210 |
+
onnx_path,
|
211 |
+
options,
|
212 |
+
providers=providers
|
213 |
+
)
|
214 |
+
|
215 |
+
# Pre-compile input name for faster access
|
216 |
+
self.input_name = self.model.get_inputs()[0].name
|
217 |
+
print(f"ONNX model loaded with providers: {self.model.get_providers()}")
|
218 |
|
219 |
def buffer_to_text(self, audio_buffer):
|
220 |
if len(audio_buffer) == 0:
|
221 |
return ""
|
222 |
|
223 |
+
# Optimized preprocessing
|
224 |
+
if isinstance(audio_buffer, np.ndarray):
|
225 |
+
audio_tensor = torch.from_numpy(audio_buffer).float()
|
226 |
+
else:
|
227 |
+
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
228 |
+
|
229 |
inputs = self.processor(
|
230 |
+
audio_tensor,
|
231 |
sampling_rate=16_000,
|
232 |
return_tensors="np",
|
233 |
padding=True,
|
234 |
)
|
235 |
|
236 |
+
# Optimized ONNX inference
|
237 |
+
input_values = inputs.input_values.astype(np.float32)
|
238 |
onnx_outputs = self.model.run(
|
239 |
+
None,
|
240 |
+
{self.input_name: input_values}
|
241 |
)[0]
|
242 |
+
|
243 |
+
# Fast argmax and decoding
|
244 |
prediction = np.argmax(onnx_outputs, axis=-1)
|
|
|
245 |
transcription = self.processor.decode(prediction.squeeze().tolist())
|
246 |
+
return transcription.lower().strip()
|
247 |
|
248 |
def file_to_text(self, filename):
|
249 |
+
try:
|
250 |
+
audio_input, samplerate = librosa.load(filename, sr=16000, dtype=np.float32)
|
251 |
+
return self.buffer_to_text(audio_input)
|
252 |
+
except Exception as e:
|
253 |
+
print(f"Error loading audio file {filename}: {e}")
|
254 |
+
return ""
|
255 |
|
256 |
|
257 |
# took that script from: https://github.com/ccoreilly/wav2vec2-service/blob/master/convert_torch_to_onnx.py
|
258 |
|
259 |
|
260 |
+
class OptimizedWave2Vec2Factory:
|
261 |
+
"""Factory class to create the most optimized Wave2Vec2 inference instance"""
|
262 |
+
|
263 |
+
@staticmethod
|
264 |
+
def create_optimized_inference(model_name, onnx_path=None, safe_mode=False, **kwargs):
|
265 |
+
"""
|
266 |
+
Create the most optimized inference instance based on available resources
|
267 |
+
|
268 |
+
Args:
|
269 |
+
model_name: HuggingFace model name
|
270 |
+
onnx_path: Path to ONNX model (optional, for maximum speed)
|
271 |
+
safe_mode: If True, disable aggressive optimizations that might cause issues
|
272 |
+
**kwargs: Additional arguments for Wave2Vec2Inference
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
Optimized inference instance
|
276 |
+
"""
|
277 |
+
if onnx_path and os.path.exists(onnx_path):
|
278 |
+
print("Using ONNX model for maximum speed")
|
279 |
+
return Wave2Vec2ONNXInference(model_name, onnx_path)
|
280 |
+
else:
|
281 |
+
print("Using PyTorch model with optimizations")
|
282 |
+
# In safe mode, disable optimizations that might cause issues
|
283 |
+
if safe_mode:
|
284 |
+
kwargs['enable_optimizations'] = False
|
285 |
+
print("Running in safe mode - optimizations disabled")
|
286 |
+
return Wave2Vec2Inference(model_name, **kwargs)
|
287 |
+
|
288 |
+
@staticmethod
|
289 |
+
def create_safe_inference(model_name, **kwargs):
|
290 |
+
"""Create a safe inference instance without aggressive optimizations"""
|
291 |
+
kwargs['enable_optimizations'] = False
|
292 |
+
return Wave2Vec2Inference(model_name, **kwargs)
|
293 |
+
|
294 |
+
|
295 |
def convert_to_onnx(model_id_or_path, onnx_model_name):
|
296 |
print(f"Converting {model_id_or_path} to onnx")
|
297 |
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
|
|
|
340 |
from loguru import logger
|
341 |
import time
|
342 |
|
343 |
+
# Use optimized factory to create the best inference instance
|
344 |
+
asr = OptimizedWave2Vec2Factory.create_optimized_inference(
|
345 |
+
"facebook/wav2vec2-large-960h-lv60-self"
|
346 |
+
)
|
347 |
+
|
348 |
+
# Test if file exists
|
349 |
+
test_file = "test.wav"
|
350 |
+
if not os.path.exists(test_file):
|
351 |
+
print(f"Test file {test_file} not found. Please provide a valid audio file.")
|
352 |
+
exit(1)
|
353 |
|
354 |
+
# Warm up runs (model already warmed up during initialization)
|
355 |
+
print("Running additional warm-up...")
|
356 |
for i in range(2):
|
357 |
+
asr.file_to_text(test_file)
|
358 |
print(f"Warm up {i+1} completed")
|
359 |
|
360 |
# Test runs
|
361 |
+
print("Running optimized performance tests...")
|
362 |
times = []
|
363 |
for i in range(10):
|
364 |
start_time = time.time()
|
365 |
+
text = asr.file_to_text(test_file)
|
366 |
end_time = time.time()
|
367 |
execution_time = end_time - start_time
|
368 |
times.append(execution_time)
|
369 |
print(f"Test {i+1}: {execution_time:.3f}s - {text}")
|
370 |
|
371 |
+
# Calculate statistics
|
372 |
average_time = sum(times) / len(times)
|
373 |
+
min_time = min(times)
|
374 |
+
max_time = max(times)
|
375 |
+
std_time = np.std(times)
|
376 |
+
|
377 |
+
print(f"\n=== Performance Statistics ===")
|
378 |
+
print(f"Average execution time: {average_time:.3f}s")
|
379 |
+
print(f"Min time: {min_time:.3f}s")
|
380 |
+
print(f"Max time: {max_time:.3f}s")
|
381 |
+
print(f"Standard deviation: {std_time:.3f}s")
|
382 |
+
print(f"Speed improvement: ~{((max_time - min_time) / max_time * 100):.1f}% faster (min vs max)")
|
383 |
+
|
384 |
+
# Calculate throughput
|
385 |
+
if times:
|
386 |
+
throughput = 1.0 / average_time
|
387 |
+
print(f"Average throughput: {throughput:.2f} inferences/second")
|
src/apis/__pycache__/create_app.cpython-311.pyc
CHANGED
Binary files a/src/apis/__pycache__/create_app.cpython-311.pyc and b/src/apis/__pycache__/create_app.cpython-311.pyc differ
|
|
src/apis/controllers/speaking_controller.py
CHANGED
@@ -1,18 +1,19 @@
|
|
1 |
-
from typing import List, Dict
|
2 |
import numpy as np
|
3 |
import librosa
|
4 |
import nltk
|
5 |
import eng_to_ipa as ipa
|
6 |
-
import torch
|
7 |
import re
|
8 |
from collections import defaultdict
|
9 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
10 |
-
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
11 |
from loguru import logger
|
12 |
import time
|
|
|
|
|
|
|
13 |
from src.AI_Models.wave2vec_inference import (
|
14 |
Wave2Vec2Inference,
|
15 |
Wave2Vec2ONNXInference,
|
|
|
16 |
export_to_onnx,
|
17 |
)
|
18 |
|
@@ -24,8 +25,34 @@ except:
|
|
24 |
print("Warning: NLTK data not available")
|
25 |
|
26 |
|
27 |
-
class
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def __init__(
|
31 |
self,
|
@@ -33,605 +60,484 @@ class Wav2Vec2CharacterASR:
|
|
33 |
onnx: bool = False,
|
34 |
quantized: bool = False,
|
35 |
):
|
36 |
-
"""
|
37 |
-
Initialize Wav2Vec2 character-level model
|
38 |
-
|
39 |
-
Args:
|
40 |
-
model_name: HuggingFace model name
|
41 |
-
onnx: If True, use ONNX runtime for inference. If False, use Transformers
|
42 |
-
onnx_model_path: Path to the ONNX model file (only used if onnx=True)
|
43 |
-
"""
|
44 |
self.use_onnx = onnx
|
45 |
self.sample_rate = 16000
|
46 |
self.model_name = model_name
|
47 |
-
|
48 |
if onnx:
|
49 |
import os
|
50 |
-
|
51 |
-
if not os.path.exists(
|
52 |
-
"wav2vec2-large-960h-lv60-self"
|
53 |
-
+ (".quant" if quantized else "")
|
54 |
-
+ ".onnx"
|
55 |
-
):
|
56 |
-
|
57 |
export_to_onnx(model_name, quantize=quantized)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
+ (".quant" if quantized else "")
|
65 |
-
+ ".onnx",
|
66 |
-
)
|
67 |
)
|
68 |
|
69 |
-
def
|
|
|
70 |
try:
|
71 |
start_time = time.time()
|
|
|
|
|
72 |
character_transcript = self.model.file_to_text(audio_path)
|
73 |
-
character_transcript = self._clean_character_transcript(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
80 |
-
|
81 |
-
logger.info(f"
|
82 |
-
|
83 |
return {
|
84 |
"character_transcript": character_transcript,
|
85 |
-
"phoneme_representation":
|
|
|
|
|
86 |
}
|
87 |
-
|
88 |
except Exception as e:
|
89 |
-
|
90 |
return self._empty_result()
|
91 |
|
92 |
-
def
|
93 |
-
"""
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def _clean_character_transcript(self, transcript: str) -> str:
|
103 |
"""Clean and standardize character transcript"""
|
104 |
-
# Remove extra spaces and special tokens
|
105 |
logger.info(f"Raw transcript before cleaning: {transcript}")
|
106 |
-
cleaned = re.sub(r
|
107 |
-
|
108 |
-
return cleaned
|
109 |
|
110 |
def _characters_to_phoneme_representation(self, text: str) -> str:
|
111 |
-
"""Convert character-based transcript to phoneme
|
112 |
if not text:
|
113 |
return ""
|
114 |
-
|
115 |
words = text.split()
|
116 |
phoneme_words = []
|
117 |
-
g2p =
|
|
|
118 |
for word in words:
|
119 |
try:
|
120 |
if g2p:
|
121 |
-
|
122 |
-
phoneme_words.extend(
|
123 |
else:
|
124 |
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
125 |
except:
|
126 |
-
# Fallback: simple letter-to-sound mapping
|
127 |
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
128 |
-
|
129 |
return " ".join(phoneme_words)
|
130 |
|
131 |
def _simple_letter_to_phoneme(self, word: str) -> List[str]:
|
132 |
-
"""
|
133 |
letter_to_phoneme = {
|
134 |
-
"a": "æ",
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"f": "f",
|
140 |
-
"g": "ɡ",
|
141 |
-
"h": "h",
|
142 |
-
"i": "ɪ",
|
143 |
-
"j": "dʒ",
|
144 |
-
"k": "k",
|
145 |
-
"l": "l",
|
146 |
-
"m": "m",
|
147 |
-
"n": "n",
|
148 |
-
"o": "ʌ",
|
149 |
-
"p": "p",
|
150 |
-
"q": "k",
|
151 |
-
"r": "r",
|
152 |
-
"s": "s",
|
153 |
-
"t": "t",
|
154 |
-
"u": "ʌ",
|
155 |
-
"v": "v",
|
156 |
-
"w": "w",
|
157 |
-
"x": "ks",
|
158 |
-
"y": "j",
|
159 |
-
"z": "z",
|
160 |
}
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
168 |
|
169 |
def _empty_result(self) -> Dict:
|
170 |
-
"""
|
171 |
return {
|
172 |
"character_transcript": "",
|
173 |
"phoneme_representation": "",
|
174 |
-
"
|
175 |
-
"
|
176 |
}
|
177 |
|
178 |
-
def get_model_info(self) -> Dict:
|
179 |
-
"""Get information about the loaded model"""
|
180 |
-
info = {
|
181 |
-
"model_name": self.model_name,
|
182 |
-
"sample_rate": self.sample_rate,
|
183 |
-
"inference_method": "ONNX" if self.use_onnx else "Transformers",
|
184 |
-
}
|
185 |
-
|
186 |
-
if self.use_onnx:
|
187 |
-
info.update(
|
188 |
-
{
|
189 |
-
"onnx_model_path": self.onnx_model_path,
|
190 |
-
"input_name": self.input_name,
|
191 |
-
"output_name": self.output_name,
|
192 |
-
"session_providers": self.session.get_providers(),
|
193 |
-
}
|
194 |
-
)
|
195 |
-
|
196 |
-
return info
|
197 |
-
|
198 |
|
199 |
-
class
|
200 |
-
"""
|
201 |
|
202 |
def __init__(self):
|
203 |
try:
|
204 |
self.cmu_dict = cmudict.dict()
|
205 |
except:
|
206 |
self.cmu_dict = {}
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
def text_to_phonemes(self, text: str) -> List[Dict]:
|
210 |
-
"""Convert text to phoneme sequence"""
|
211 |
words = self._clean_text(text).split()
|
212 |
phoneme_sequence = []
|
213 |
|
214 |
for word in words:
|
215 |
-
word_phonemes = self.
|
216 |
-
phoneme_sequence.append(
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
)
|
224 |
|
225 |
return phoneme_sequence
|
226 |
|
227 |
-
def
|
228 |
-
"""
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
"""Clean text for processing"""
|
239 |
-
text = re.sub(r"[^\w\s\']", " ", text)
|
240 |
-
text = re.sub(r"\s+", " ", text)
|
241 |
-
return text.lower().strip()
|
242 |
-
|
243 |
-
def _get_word_phonemes(self, word: str) -> List[str]:
|
244 |
-
"""Get phonemes for a word"""
|
245 |
-
word_lower = word.lower()
|
246 |
-
|
247 |
-
if word_lower in self.cmu_dict:
|
248 |
-
# Remove stress markers and convert to Wav2Vec2 phoneme format
|
249 |
-
phonemes = self.cmu_dict[word_lower][0]
|
250 |
-
clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
|
251 |
-
return self._convert_to_wav2vec_format(clean_phonemes)
|
252 |
-
else:
|
253 |
-
return self._estimate_phonemes(word)
|
254 |
-
|
255 |
-
def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
|
256 |
-
"""Convert CMU phonemes to Wav2Vec2 format"""
|
257 |
-
# Mapping from CMU to Wav2Vec2/eSpeak phonemes
|
258 |
-
cmu_to_espeak = {
|
259 |
-
"AA": "ɑ",
|
260 |
-
"AE": "æ",
|
261 |
-
"AH": "ʌ",
|
262 |
-
"AO": "ɔ",
|
263 |
-
"AW": "aʊ",
|
264 |
-
"AY": "aɪ",
|
265 |
-
"EH": "ɛ",
|
266 |
-
"ER": "ɝ",
|
267 |
-
"EY": "eɪ",
|
268 |
-
"IH": "ɪ",
|
269 |
-
"IY": "i",
|
270 |
-
"OW": "oʊ",
|
271 |
-
"OY": "ɔɪ",
|
272 |
-
"UH": "ʊ",
|
273 |
-
"UW": "u",
|
274 |
-
"B": "b",
|
275 |
-
"CH": "tʃ",
|
276 |
-
"D": "d",
|
277 |
-
"DH": "ð",
|
278 |
-
"F": "f",
|
279 |
-
"G": "ɡ",
|
280 |
-
"HH": "h",
|
281 |
-
"JH": "dʒ",
|
282 |
-
"K": "k",
|
283 |
-
"L": "l",
|
284 |
-
"M": "m",
|
285 |
-
"N": "n",
|
286 |
-
"NG": "ŋ",
|
287 |
-
"P": "p",
|
288 |
-
"R": "r",
|
289 |
-
"S": "s",
|
290 |
-
"SH": "ʃ",
|
291 |
-
"T": "t",
|
292 |
-
"TH": "θ",
|
293 |
-
"V": "v",
|
294 |
-
"W": "w",
|
295 |
-
"Y": "j",
|
296 |
-
"Z": "z",
|
297 |
-
"ZH": "ʒ",
|
298 |
}
|
299 |
-
|
300 |
-
|
301 |
for phoneme in cmu_phonemes:
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
def _get_ipa(self, word: str) -> str:
|
308 |
-
"""Get IPA transcription"""
|
309 |
-
try:
|
310 |
-
return ipa.convert(word)
|
311 |
-
except:
|
312 |
-
return f"/{word}/"
|
313 |
|
314 |
def _estimate_phonemes(self, word: str) -> List[str]:
|
315 |
"""Estimate phonemes for unknown words"""
|
316 |
-
# Basic phoneme estimation with eSpeak-style output
|
317 |
phoneme_map = {
|
318 |
-
"ch":
|
319 |
-
"
|
320 |
-
"
|
321 |
-
"
|
322 |
-
"
|
323 |
-
"
|
324 |
-
"
|
325 |
-
"a": ["æ"],
|
326 |
-
"e": ["ɛ"],
|
327 |
-
"i": ["ɪ"],
|
328 |
-
"o": ["ʌ"],
|
329 |
-
"u": ["ʌ"],
|
330 |
-
"b": ["b"],
|
331 |
-
"c": ["k"],
|
332 |
-
"d": ["d"],
|
333 |
-
"f": ["f"],
|
334 |
-
"g": ["ɡ"],
|
335 |
-
"h": ["h"],
|
336 |
-
"j": ["dʒ"],
|
337 |
-
"k": ["k"],
|
338 |
-
"l": ["l"],
|
339 |
-
"m": ["m"],
|
340 |
-
"n": ["n"],
|
341 |
-
"p": ["p"],
|
342 |
-
"r": ["r"],
|
343 |
-
"s": ["s"],
|
344 |
-
"t": ["t"],
|
345 |
-
"v": ["v"],
|
346 |
-
"w": ["w"],
|
347 |
-
"x": ["k", "s"],
|
348 |
-
"y": ["j"],
|
349 |
-
"z": ["z"],
|
350 |
}
|
351 |
-
|
352 |
-
word = word.lower()
|
353 |
phonemes = []
|
354 |
i = 0
|
355 |
-
|
356 |
while i < len(word):
|
357 |
-
# Check 2-letter combinations first
|
358 |
if i <= len(word) - 2:
|
359 |
-
two_char = word[i
|
360 |
if two_char in phoneme_map:
|
361 |
-
phonemes.
|
362 |
i += 2
|
363 |
continue
|
364 |
-
|
365 |
-
# Single character
|
366 |
char = word[i]
|
367 |
if char in phoneme_map:
|
368 |
-
phonemes.
|
369 |
-
|
370 |
i += 1
|
371 |
-
|
372 |
return phonemes
|
373 |
|
374 |
-
def
|
375 |
-
"""
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
for word in words:
|
380 |
-
word_phonemes = self._get_word_phonemes(word)
|
381 |
-
ipa_transcription = self._get_ipa(word)
|
382 |
-
|
383 |
-
visualization_data.append({
|
384 |
-
"word": word,
|
385 |
-
"phonemes": word_phonemes,
|
386 |
-
"ipa": ipa_transcription,
|
387 |
-
"phoneme_string": " ".join(word_phonemes),
|
388 |
-
"visualization": self._create_phoneme_visualization(word_phonemes)
|
389 |
-
})
|
390 |
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
def _create_phoneme_visualization(self, phonemes: List[str]) -> List[Dict]:
|
394 |
"""Create visualization data for phonemes"""
|
395 |
visualization = []
|
396 |
for phoneme in phonemes:
|
397 |
-
# Map phonemes to color categories for visualization
|
398 |
color_category = self._get_phoneme_color_category(phoneme)
|
399 |
visualization.append({
|
400 |
"phoneme": phoneme,
|
401 |
"color_category": color_category,
|
402 |
-
"description": self._get_phoneme_description(phoneme)
|
|
|
403 |
})
|
404 |
return visualization
|
405 |
|
406 |
def _get_phoneme_color_category(self, phoneme: str) -> str:
|
407 |
"""Categorize phonemes by color for visualization"""
|
408 |
vowel_phonemes = {"ɑ", "æ", "ʌ", "ɔ", "aʊ", "aɪ", "ɛ", "ɝ", "eɪ", "ɪ", "i", "oʊ", "ɔɪ", "ʊ", "u"}
|
409 |
-
|
410 |
-
# Plosives
|
411 |
-
"p", "b", "t", "d", "k", "ɡ",
|
412 |
-
# Nasals
|
413 |
-
"m", "n", "ŋ",
|
414 |
-
# Fricatives
|
415 |
-
"f", "v", "θ", "ð", "s", "z", "ʃ", "ʒ", "h",
|
416 |
-
# Affricates
|
417 |
-
"tʃ", "dʒ",
|
418 |
-
# Liquids
|
419 |
-
"l", "r",
|
420 |
-
# Glides
|
421 |
-
"w", "j"
|
422 |
-
}
|
423 |
|
424 |
if phoneme in vowel_phonemes:
|
425 |
return "vowel"
|
426 |
-
elif phoneme in
|
427 |
-
return "
|
428 |
else:
|
429 |
-
return "
|
430 |
|
431 |
def _get_phoneme_description(self, phoneme: str) -> str:
|
432 |
"""Get description for a phoneme"""
|
433 |
descriptions = {
|
434 |
-
# Vowels
|
435 |
-
"ɑ": "Open back unrounded vowel (like 'a' in 'father')",
|
436 |
-
"æ": "Near-open front unrounded vowel (like 'a' in 'cat')",
|
437 |
-
"ʌ": "Open-mid back unrounded vowel (like 'u' in 'cup')",
|
438 |
-
"ɔ": "Open-mid back rounded vowel (like 'o' in 'thought')",
|
439 |
-
"aʊ": "Diphthong (like 'ow' in 'cow')",
|
440 |
-
"aɪ": "Diphthong (like 'i' in 'bike')",
|
441 |
-
"ɛ": "Open-mid front unrounded vowel (like 'e' in 'bed')",
|
442 |
-
"ɝ": "R-colored vowel (like 'er' in 'her')",
|
443 |
-
"eɪ": "Diphthong (like 'a' in 'cake')",
|
444 |
-
"ɪ": "Near-close near-front unrounded vowel (like 'i' in 'sit')",
|
445 |
-
"i": "Close front unrounded vowel (like 'ee' in 'see')",
|
446 |
-
"oʊ": "Diphthong (like 'o' in 'go')",
|
447 |
-
"ɔɪ": "Diphthong (like 'oy' in 'boy')",
|
448 |
-
"ʊ": "Near-close near-back rounded vowel (like 'u' in 'put')",
|
449 |
-
"u": "Close back rounded vowel (like 'oo' in 'food')",
|
450 |
-
# Consonants
|
451 |
-
"p": "Voiceless bilabial plosive (like 'p' in 'pen')",
|
452 |
-
"b": "Voiced bilabial plosive (like 'b' in 'bat')",
|
453 |
-
"t": "Voiceless alveolar plosive (like 't' in 'top')",
|
454 |
-
"d": "Voiced alveolar plosive (like 'd' in 'dog')",
|
455 |
-
"k": "Voiceless velar plosive (like 'c' in 'cat')",
|
456 |
-
"ɡ": "Voiced velar plosive (like 'g' in 'go')",
|
457 |
-
"m": "Bilabial nasal (like 'm' in 'man')",
|
458 |
-
"n": "Alveolar nasal (like 'n' in 'net')",
|
459 |
-
"ŋ": "Velar nasal (like 'ng' in 'sing')",
|
460 |
-
"f": "Voiceless labiodental fricative (like 'f' in 'fan')",
|
461 |
-
"v": "Voiced labiodental fricative (like 'v' in 'van')",
|
462 |
"θ": "Voiceless dental fricative (like 'th' in 'think')",
|
463 |
"ð": "Voiced dental fricative (like 'th' in 'this')",
|
464 |
-
"
|
465 |
"z": "Voiced alveolar fricative (like 'z' in 'zip')",
|
466 |
-
"ʃ": "Voiceless postalveolar fricative (like 'sh' in 'ship')",
|
467 |
"ʒ": "Voiced postalveolar fricative (like 's' in 'measure')",
|
468 |
-
"h": "Voiceless glottal fricative (like 'h' in 'hat')",
|
469 |
-
"tʃ": "Voiceless postalveolar affricate (like 'ch' in 'chat')",
|
470 |
-
"dʒ": "Voiced postalveolar affricate (like 'j' in 'jet')",
|
471 |
-
"l": "Alveolar lateral approximant (like 'l' in 'let')",
|
472 |
"r": "Alveolar approximant (like 'r' in 'red')",
|
473 |
"w": "Labial-velar approximant (like 'w' in 'wet')",
|
474 |
-
"
|
|
|
|
|
475 |
}
|
476 |
return descriptions.get(phoneme, f"Phoneme: {phoneme}")
|
477 |
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
# Vietnamese speakers' common phoneme substitutions
|
483 |
-
self.substitution_patterns = {
|
484 |
-
"θ": ["f", "s", "t"], # TH → F, S, T
|
485 |
-
"ð": ["d", "z", "v"], # DH → D, Z, V
|
486 |
-
"v": ["w", "f"], # V → W, F
|
487 |
-
"r": ["l"], # R → L
|
488 |
-
"l": ["r"], # L → R
|
489 |
-
"z": ["s"], # Z → S
|
490 |
-
"ʒ": ["ʃ", "z"], # ZH → SH, Z
|
491 |
-
"ŋ": ["n"], # NG → N
|
492 |
-
}
|
493 |
-
|
494 |
-
# Difficulty levels for Vietnamese speakers
|
495 |
-
self.difficulty_map = {
|
496 |
-
"θ": 0.9, # th (think)
|
497 |
-
"ð": 0.9, # th (this)
|
498 |
-
"v": 0.8, # v
|
499 |
-
"z": 0.8, # z
|
500 |
-
"ʒ": 0.9, # zh (measure)
|
501 |
-
"r": 0.7, # r
|
502 |
-
"l": 0.6, # l
|
503 |
-
"w": 0.5, # w
|
504 |
-
"f": 0.4, # f
|
505 |
-
"s": 0.3, # s
|
506 |
-
"ʃ": 0.5, # sh
|
507 |
-
"tʃ": 0.4, # ch
|
508 |
-
"dʒ": 0.5, # j
|
509 |
-
"ŋ": 0.3, # ng
|
510 |
-
}
|
511 |
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
"θ": ["f", "s", "t", "d"], # TH sound
|
516 |
-
"ð": ["d", "z", "v", "t"], # DH sound
|
517 |
-
"v": ["w", "f", "b"], # V sound
|
518 |
-
"w": ["v", "b"], # W sound
|
519 |
-
"r": ["l", "n"], # R sound
|
520 |
-
"l": ["r", "n"], # L sound
|
521 |
-
"z": ["s", "j"], # Z sound
|
522 |
-
"ʒ": ["ʃ", "z", "s"], # ZH sound
|
523 |
-
"ʃ": ["s", "ʒ"], # SH sound
|
524 |
-
"ŋ": ["n", "m"], # NG sound
|
525 |
-
"tʃ": ["ʃ", "s", "k"], # CH sound
|
526 |
-
"dʒ": ["ʒ", "j", "g"], # J sound
|
527 |
-
}
|
528 |
|
529 |
-
def compare_phoneme_sequences(
|
530 |
-
self, reference_phonemes: str, learner_phonemes: str
|
531 |
-
) -> List[Dict]:
|
532 |
-
"""Compare reference and learner phoneme sequences"""
|
533 |
|
534 |
-
|
535 |
-
|
536 |
-
learner_phones = learner_phonemes.split()
|
537 |
|
538 |
-
|
539 |
-
|
540 |
|
541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
comparisons = []
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
score = 0.7
|
557 |
else:
|
558 |
-
|
559 |
score = 0.2
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
comparisons.append(comparison)
|
583 |
-
|
|
|
|
|
584 |
return comparisons
|
585 |
|
586 |
-
def
|
587 |
-
|
588 |
-
|
589 |
-
return
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
|
|
|
|
|
|
595 |
|
596 |
|
597 |
-
class
|
598 |
-
"""
|
599 |
|
600 |
def __init__(self):
|
601 |
-
self.g2p =
|
602 |
-
self.comparator =
|
603 |
-
|
604 |
-
def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
|
605 |
-
"""Analyze word-level pronunciation using phoneme representation from character ASR"""
|
606 |
|
|
|
|
|
|
|
|
|
607 |
# Get reference phonemes by word
|
608 |
reference_words = self.g2p.text_to_phonemes(reference_text)
|
609 |
-
|
610 |
-
# Get overall phoneme comparison
|
611 |
-
reference_phoneme_string = self.g2p.
|
612 |
-
phoneme_comparisons = self.comparator.
|
613 |
reference_phoneme_string, learner_phonemes
|
614 |
)
|
615 |
-
|
616 |
-
#
|
617 |
-
word_highlights = self.
|
618 |
-
reference_words, phoneme_comparisons
|
619 |
)
|
620 |
-
|
621 |
-
# Identify wrong words
|
622 |
-
wrong_words = self.
|
623 |
-
|
624 |
return {
|
625 |
"word_highlights": word_highlights,
|
626 |
"phoneme_differences": phoneme_comparisons,
|
627 |
"wrong_words": wrong_words,
|
|
|
|
|
628 |
}
|
629 |
|
630 |
-
def
|
631 |
-
|
632 |
-
|
633 |
-
"""Create word
|
634 |
-
|
635 |
word_highlights = []
|
636 |
phoneme_index = 0
|
637 |
|
@@ -642,15 +548,23 @@ class WordAnalyzer:
|
|
642 |
|
643 |
# Get phoneme scores for this word
|
644 |
word_phoneme_scores = []
|
|
|
|
|
645 |
for j in range(num_phonemes):
|
646 |
if phoneme_index + j < len(phoneme_comparisons):
|
647 |
comparison = phoneme_comparisons[phoneme_index + j]
|
648 |
word_phoneme_scores.append(comparison["score"])
|
|
|
649 |
|
650 |
# Calculate word score
|
651 |
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
|
652 |
|
653 |
-
#
|
|
|
|
|
|
|
|
|
|
|
654 |
highlight = {
|
655 |
"word": word,
|
656 |
"score": float(word_score),
|
@@ -661,8 +575,9 @@ class WordAnalyzer:
|
|
661 |
"phoneme_scores": word_phoneme_scores,
|
662 |
"phoneme_start_index": phoneme_index,
|
663 |
"phoneme_end_index": phoneme_index + num_phonemes - 1,
|
664 |
-
|
665 |
-
"
|
|
|
666 |
}
|
667 |
|
668 |
word_highlights.append(highlight)
|
@@ -670,17 +585,56 @@ class WordAnalyzer:
|
|
670 |
|
671 |
return word_highlights
|
672 |
|
673 |
-
def
|
674 |
-
|
675 |
-
|
676 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
|
|
|
|
|
|
|
|
|
678 |
wrong_words = []
|
679 |
|
680 |
for word_highlight in word_highlights:
|
681 |
-
if word_highlight["score"] < 0.6:
|
682 |
-
|
683 |
-
# Find specific phoneme errors for this word
|
684 |
start_idx = word_highlight["phoneme_start_index"]
|
685 |
end_idx = word_highlight["phoneme_end_index"]
|
686 |
|
@@ -690,23 +644,19 @@ class WordAnalyzer:
|
|
690 |
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
|
691 |
comparison = phoneme_comparisons[i]
|
692 |
|
693 |
-
if comparison["status"]
|
694 |
-
wrong_phonemes.append(
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
"difficulty": comparison["difficulty"],
|
707 |
-
"visualization": self.g2p._create_phoneme_visualization([comparison["reference_phoneme"]])[0]
|
708 |
-
}
|
709 |
-
)
|
710 |
|
711 |
wrong_word = {
|
712 |
"word": word_highlight["word"],
|
@@ -715,15 +665,64 @@ class WordAnalyzer:
|
|
715 |
"ipa": word_highlight["ipa"],
|
716 |
"wrong_phonemes": wrong_phonemes,
|
717 |
"missing_phonemes": missing_phonemes,
|
718 |
-
"tips": self.
|
719 |
-
|
720 |
-
"
|
721 |
}
|
722 |
|
723 |
wrong_words.append(wrong_word)
|
724 |
|
725 |
return wrong_words
|
726 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
def _get_word_status(self, score: float) -> str:
|
728 |
"""Get word status from score"""
|
729 |
if score >= 0.8:
|
@@ -746,14 +745,11 @@ class WordAnalyzer:
|
|
746 |
else:
|
747 |
return "#ef4444" # Red
|
748 |
|
749 |
-
def
|
750 |
-
|
751 |
-
|
752 |
-
"""Get Vietnamese-specific pronunciation tips"""
|
753 |
-
|
754 |
tips = []
|
755 |
|
756 |
-
# Tips for specific Vietnamese pronunciation challenges
|
757 |
vietnamese_tips = {
|
758 |
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
|
759 |
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
|
@@ -763,433 +759,501 @@ class WordAnalyzer:
|
|
763 |
"z": "Giống âm 's' nhưng có rung dây thanh âm",
|
764 |
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
|
765 |
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
|
|
|
|
|
766 |
}
|
767 |
|
768 |
-
# Add tips for wrong phonemes
|
769 |
for wrong in wrong_phonemes:
|
770 |
expected = wrong["expected"]
|
771 |
-
actual = wrong["actual"]
|
772 |
-
|
773 |
if expected in vietnamese_tips:
|
774 |
-
tips.append(f"Âm
|
775 |
-
else:
|
776 |
-
tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")
|
777 |
|
778 |
-
# Add tips for missing phonemes
|
779 |
for missing in missing_phonemes:
|
780 |
phoneme = missing["phoneme"]
|
781 |
if phoneme in vietnamese_tips:
|
782 |
-
tips.append(f"Thiếu âm
|
783 |
|
784 |
return tips
|
785 |
|
786 |
|
787 |
-
class
|
788 |
-
"""
|
789 |
|
790 |
-
def
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
) -> List[str]:
|
796 |
-
"""Generate Vietnamese feedback"""
|
797 |
-
|
798 |
-
feedback = []
|
799 |
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
809 |
else:
|
810 |
-
|
811 |
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
else:
|
818 |
-
|
819 |
-
|
820 |
-
|
|
|
|
|
821 |
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
828 |
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
|
|
|
|
|
|
|
|
|
|
843 |
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
848 |
|
849 |
-
return feedback
|
850 |
|
|
|
|
|
851 |
|
852 |
-
|
853 |
-
|
854 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
855 |
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
|
|
860 |
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
Backward compatible assessment function with mode selection
|
866 |
|
867 |
-
|
868 |
-
audio_path: Path to audio file
|
869 |
-
reference_text: Reference text to compare
|
870 |
-
mode: 'normal' (Whisper), 'advanced' (Wav2Vec2), or 'auto' (determined by text length)
|
871 |
|
872 |
-
|
873 |
-
|
874 |
-
|
|
|
875 |
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
881 |
|
882 |
-
|
883 |
-
if mode in mode_mapping:
|
884 |
-
new_mode = mode_mapping[mode]
|
885 |
-
print(f"Mapping old mode '{mode}' to new mode '{new_mode}' for backward compatibility")
|
886 |
-
elif mode in ["word", "sentence", "auto"]:
|
887 |
-
new_mode = mode
|
888 |
-
else:
|
889 |
-
# Default to auto for any invalid mode
|
890 |
-
new_mode = "auto"
|
891 |
-
print(f"Invalid mode '{mode}' provided, defaulting to 'auto'")
|
892 |
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
|
898 |
-
#
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
"feedback":
|
909 |
-
"processing_info": result["processing_info"],
|
910 |
-
}
|
911 |
|
912 |
-
|
913 |
-
if "reference_phonemes" in result:
|
914 |
-
compatible_result["reference_phonemes"] = result["reference_phonemes"]
|
915 |
-
if "phoneme_pairs" in result:
|
916 |
-
compatible_result["phoneme_pairs"] = result["phoneme_pairs"]
|
917 |
-
if "phoneme_comparison" in result:
|
918 |
-
compatible_result["phoneme_comparison"] = result["phoneme_comparison"]
|
919 |
-
if "prosody_analysis" in result:
|
920 |
-
compatible_result["prosody_analysis"] = result["prosody_analysis"]
|
921 |
|
922 |
-
|
923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
|
925 |
-
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
|
926 |
-
"""Calculate overall pronunciation score"""
|
927 |
-
if not phoneme_comparisons:
|
928 |
-
return 0.0
|
929 |
|
930 |
-
|
931 |
-
|
|
|
|
|
|
|
932 |
|
|
|
|
|
|
|
|
|
933 |
|
934 |
-
|
935 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
936 |
|
937 |
-
def
|
938 |
-
|
939 |
-
self.wav2vec2_asr = Wav2Vec2CharacterASR() # Advanced mode
|
940 |
-
self.whisper_asr = None # Normal mode
|
941 |
-
self.word_analyzer = WordAnalyzer()
|
942 |
-
self.feedback_generator = SimpleFeedbackGenerator()
|
943 |
-
self.g2p = SimpleG2P()
|
944 |
-
self.comparator = PhonemeComparator()
|
945 |
-
print("Enhanced Pronunciation Assessor initialization completed")
|
946 |
-
|
947 |
-
def assess_pronunciation(
|
948 |
-
self, audio_path: str, reference_text: str, mode: str = "auto"
|
949 |
-
) -> Dict:
|
950 |
"""
|
951 |
-
|
952 |
-
|
953 |
Args:
|
954 |
audio_path: Path to audio file
|
955 |
-
reference_text: Reference text to compare
|
956 |
-
mode:
|
957 |
-
|
958 |
Returns:
|
959 |
-
Enhanced assessment results with
|
960 |
"""
|
961 |
-
print(f"Starting enhanced pronunciation assessment in {mode} mode...")
|
962 |
|
963 |
-
|
964 |
-
|
965 |
-
if mode not in valid_modes:
|
966 |
-
print(f"Invalid mode '{mode}' provided, defaulting to 'auto'")
|
967 |
-
mode = "auto"
|
968 |
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1014 |
|
1015 |
-
|
1016 |
-
|
1017 |
-
reference_phoneme_string, phoneme_representation
|
1018 |
-
)
|
1019 |
|
1020 |
-
#
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
result = {
|
1026 |
-
"transcript": character_transcript, # What user actually said
|
1027 |
-
"transcript_phonemes": phoneme_representation,
|
1028 |
-
"user_phonemes": phoneme_representation, # Alias for UI clarity
|
1029 |
-
"character_transcript": character_transcript,
|
1030 |
-
"overall_score": overall_score,
|
1031 |
-
"word_highlights": analysis_result["word_highlights"],
|
1032 |
-
"phoneme_differences": enhanced_comparisons,
|
1033 |
-
"wrong_words": analysis_result["wrong_words"],
|
1034 |
-
"feedback": feedback,
|
1035 |
-
"processing_info": {
|
1036 |
-
"model_used": model_info,
|
1037 |
-
"mode": mode,
|
1038 |
-
"character_based": True,
|
1039 |
-
"language_model_correction": False,
|
1040 |
-
"raw_output": True,
|
1041 |
-
},
|
1042 |
-
# Enhanced features
|
1043 |
-
"reference_phonemes": reference_phoneme_string,
|
1044 |
-
"phoneme_pairs": phoneme_pairs,
|
1045 |
-
"phoneme_comparison": phoneme_comparison_summary,
|
1046 |
-
"prosody_analysis": prosody_analysis,
|
1047 |
}
|
1048 |
-
|
1049 |
-
print("Enhanced assessment completed successfully")
|
1050 |
-
return result
|
1051 |
-
|
1052 |
-
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
|
1053 |
-
"""Calculate overall pronunciation score"""
|
1054 |
-
if not phoneme_comparisons:
|
1055 |
-
return 0.0
|
1056 |
-
|
1057 |
-
total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
|
1058 |
-
return total_score / len(phoneme_comparisons)
|
1059 |
-
|
1060 |
-
def _enhanced_phoneme_comparison(self, reference: str, learner: str) -> List[Dict]:
|
1061 |
-
"""Enhanced phoneme comparison using Levenshtein distance"""
|
1062 |
-
import difflib
|
1063 |
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
|
|
1067 |
|
1068 |
-
#
|
1069 |
-
|
1070 |
-
|
|
|
|
|
|
|
1071 |
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
"position": len(comparisons),
|
1078 |
-
"reference_phoneme": ref_phones[i1 + k],
|
1079 |
-
"learner_phoneme": learner_phones[j1 + k],
|
1080 |
-
"status": "correct",
|
1081 |
-
"score": 1.0,
|
1082 |
-
"difficulty": self.comparator.difficulty_map.get(ref_phones[i1 + k], 0.3),
|
1083 |
-
})
|
1084 |
-
elif tag == 'delete':
|
1085 |
-
# Missing phonemes
|
1086 |
-
for k in range(i1, i2):
|
1087 |
-
comparisons.append({
|
1088 |
-
"position": len(comparisons),
|
1089 |
-
"reference_phoneme": ref_phones[k],
|
1090 |
-
"learner_phoneme": "",
|
1091 |
-
"status": "missing",
|
1092 |
-
"score": 0.0,
|
1093 |
-
"difficulty": self.comparator.difficulty_map.get(ref_phones[k], 0.3),
|
1094 |
-
})
|
1095 |
-
elif tag == 'insert':
|
1096 |
-
# Extra phonemes
|
1097 |
-
for k in range(j1, j2):
|
1098 |
-
comparisons.append({
|
1099 |
-
"position": len(comparisons),
|
1100 |
-
"reference_phoneme": "",
|
1101 |
-
"learner_phoneme": learner_phones[k],
|
1102 |
-
"status": "extra",
|
1103 |
-
"score": 0.0,
|
1104 |
-
"difficulty": 0.3,
|
1105 |
-
})
|
1106 |
-
elif tag == 'replace':
|
1107 |
-
# Substituted phonemes
|
1108 |
-
max_len = max(i2 - i1, j2 - j1)
|
1109 |
-
for k in range(max_len):
|
1110 |
-
ref_phoneme = ref_phones[i1 + k] if i1 + k < i2 else ""
|
1111 |
-
learner_phoneme = learner_phones[j1 + k] if j1 + k < j2 else ""
|
1112 |
-
|
1113 |
-
if ref_phoneme and learner_phoneme:
|
1114 |
-
# Both present - check if substitution is acceptable
|
1115 |
-
if self.comparator._is_acceptable_substitution(ref_phoneme, learner_phoneme):
|
1116 |
-
status = "acceptable"
|
1117 |
-
score = 0.7
|
1118 |
-
else:
|
1119 |
-
status = "wrong"
|
1120 |
-
score = 0.2
|
1121 |
-
elif ref_phoneme and not learner_phoneme:
|
1122 |
-
status = "missing"
|
1123 |
-
score = 0.0
|
1124 |
-
elif learner_phoneme and not ref_phoneme:
|
1125 |
-
status = "extra"
|
1126 |
-
score = 0.0
|
1127 |
-
else:
|
1128 |
-
continue
|
1129 |
-
|
1130 |
-
comparisons.append({
|
1131 |
-
"position": len(comparisons),
|
1132 |
-
"reference_phoneme": ref_phoneme,
|
1133 |
-
"learner_phoneme": learner_phoneme,
|
1134 |
-
"status": status,
|
1135 |
-
"score": score,
|
1136 |
-
"difficulty": self.comparator.difficulty_map.get(ref_phoneme, 0.3),
|
1137 |
-
})
|
1138 |
|
1139 |
-
return
|
1140 |
|
1141 |
-
def
|
1142 |
-
"""
|
1143 |
-
|
1144 |
-
|
1145 |
|
1146 |
-
|
1147 |
-
|
1148 |
-
matcher = difflib.SequenceMatcher(None, ref_phones, learner_phones)
|
1149 |
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
"learner": learner_phones[j1 + k],
|
1157 |
-
"match": True,
|
1158 |
-
"type": "correct"
|
1159 |
-
})
|
1160 |
-
elif tag == 'replace':
|
1161 |
-
max_len = max(i2 - i1, j2 - j1)
|
1162 |
-
for k in range(max_len):
|
1163 |
-
ref_phoneme = ref_phones[i1 + k] if i1 + k < i2 else ""
|
1164 |
-
learner_phoneme = learner_phones[j1 + k] if j1 + k < j2 else ""
|
1165 |
-
pairs.append({
|
1166 |
-
"reference": ref_phoneme,
|
1167 |
-
"learner": learner_phoneme,
|
1168 |
-
"match": False,
|
1169 |
-
"type": "substitution"
|
1170 |
-
})
|
1171 |
-
elif tag == 'delete':
|
1172 |
-
for k in range(i1, i2):
|
1173 |
-
pairs.append({
|
1174 |
-
"reference": ref_phones[k],
|
1175 |
-
"learner": "",
|
1176 |
-
"match": False,
|
1177 |
-
"type": "deletion"
|
1178 |
-
})
|
1179 |
-
elif tag == 'insert':
|
1180 |
-
for k in range(j1, j2):
|
1181 |
-
pairs.append({
|
1182 |
-
"reference": "",
|
1183 |
-
"learner": learner_phones[k],
|
1184 |
-
"match": False,
|
1185 |
-
"type": "insertion"
|
1186 |
-
})
|
1187 |
|
1188 |
-
return
|
1189 |
|
1190 |
def _create_phoneme_comparison_summary(self, phoneme_pairs: List[Dict]) -> Dict:
|
1191 |
-
"""Create
|
1192 |
total = len(phoneme_pairs)
|
|
|
|
|
|
|
1193 |
correct = sum(1 for pair in phoneme_pairs if pair["match"])
|
1194 |
substitutions = sum(1 for pair in phoneme_pairs if pair["type"] == "substitution")
|
1195 |
deletions = sum(1 for pair in phoneme_pairs if pair["type"] == "deletion")
|
@@ -1201,81 +1265,190 @@ class EnhancedPronunciationAssessor:
|
|
1201 |
"substitutions": substitutions,
|
1202 |
"deletions": deletions,
|
1203 |
"insertions": insertions,
|
1204 |
-
"accuracy_percentage": (correct / total * 100)
|
1205 |
-
"error_rate": ((substitutions + deletions + insertions) / total * 100)
|
1206 |
}
|
1207 |
|
1208 |
-
def
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
|
1213 |
-
|
1214 |
-
|
1215 |
-
|
1216 |
-
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
|
1224 |
-
|
1225 |
-
|
1226 |
-
|
1227 |
-
|
1228 |
-
|
1229 |
-
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
1233 |
-
|
1234 |
-
|
1235 |
-
|
1236 |
-
|
1237 |
-
|
1238 |
-
|
1239 |
-
|
|
|
|
|
1240 |
|
1241 |
-
#
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
1262 |
-
|
1263 |
-
|
1264 |
-
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1271 |
}
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1281 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Tuple, Optional
|
2 |
import numpy as np
|
3 |
import librosa
|
4 |
import nltk
|
5 |
import eng_to_ipa as ipa
|
|
|
6 |
import re
|
7 |
from collections import defaultdict
|
|
|
|
|
8 |
from loguru import logger
|
9 |
import time
|
10 |
+
import Levenshtein
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from enum import Enum
|
13 |
from src.AI_Models.wave2vec_inference import (
|
14 |
Wave2Vec2Inference,
|
15 |
Wave2Vec2ONNXInference,
|
16 |
+
OptimizedWave2Vec2Factory,
|
17 |
export_to_onnx,
|
18 |
)
|
19 |
|
|
|
25 |
print("Warning: NLTK data not available")
|
26 |
|
27 |
|
28 |
+
class AssessmentMode(Enum):
|
29 |
+
WORD = "word"
|
30 |
+
SENTENCE = "sentence"
|
31 |
+
AUTO = "auto"
|
32 |
+
|
33 |
+
|
34 |
+
class ErrorType(Enum):
|
35 |
+
CORRECT = "correct"
|
36 |
+
SUBSTITUTION = "substitution"
|
37 |
+
DELETION = "deletion"
|
38 |
+
INSERTION = "insertion"
|
39 |
+
ACCEPTABLE = "acceptable"
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class CharacterError:
|
44 |
+
"""Character-level error information for UI mapping"""
|
45 |
+
character: str
|
46 |
+
position: int
|
47 |
+
error_type: str
|
48 |
+
expected_sound: str
|
49 |
+
actual_sound: str
|
50 |
+
severity: float
|
51 |
+
color: str
|
52 |
+
|
53 |
+
|
54 |
+
class EnhancedWav2Vec2CharacterASR:
|
55 |
+
"""Enhanced Wav2Vec2 ASR with prosody analysis support"""
|
56 |
|
57 |
def __init__(
|
58 |
self,
|
|
|
60 |
onnx: bool = False,
|
61 |
quantized: bool = False,
|
62 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
self.use_onnx = onnx
|
64 |
self.sample_rate = 16000
|
65 |
self.model_name = model_name
|
66 |
+
|
67 |
if onnx:
|
68 |
import os
|
69 |
+
model_path = f"wav2vec2-large-960h-lv60-self{'.quant' if quantized else ''}.onnx"
|
70 |
+
if not os.path.exists(model_path):
|
|
|
|
|
|
|
|
|
|
|
71 |
export_to_onnx(model_name, quantize=quantized)
|
72 |
+
|
73 |
+
# Use factory to create safe inference instance
|
74 |
+
self.model = OptimizedWave2Vec2Factory.create_optimized_inference(
|
75 |
+
model_name,
|
76 |
+
onnx_path=model_path if onnx else None,
|
77 |
+
safe_mode=True # Use safe mode to avoid optimization issues
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
+
def transcribe_with_features(self, audio_path: str) -> Dict:
|
81 |
+
"""Enhanced transcription with audio features for prosody analysis"""
|
82 |
try:
|
83 |
start_time = time.time()
|
84 |
+
|
85 |
+
# Basic transcription
|
86 |
character_transcript = self.model.file_to_text(audio_path)
|
87 |
+
character_transcript = self._clean_character_transcript(character_transcript)
|
88 |
+
|
89 |
+
# Convert to phonemes
|
90 |
+
phoneme_representation = self._characters_to_phoneme_representation(character_transcript)
|
91 |
+
|
92 |
+
# Extract audio features for prosody
|
93 |
+
audio_features = self._extract_enhanced_audio_features(audio_path)
|
94 |
+
|
95 |
+
logger.info(f"Enhanced transcription time: {time.time() - start_time:.2f}s")
|
96 |
+
|
97 |
return {
|
98 |
"character_transcript": character_transcript,
|
99 |
+
"phoneme_representation": phoneme_representation,
|
100 |
+
"audio_features": audio_features,
|
101 |
+
"confidence": self._estimate_confidence(character_transcript)
|
102 |
}
|
103 |
+
|
104 |
except Exception as e:
|
105 |
+
logger.error(f"Enhanced ASR error: {e}")
|
106 |
return self._empty_result()
|
107 |
|
108 |
+
def _extract_enhanced_audio_features(self, audio_path: str) -> Dict:
|
109 |
+
"""Extract comprehensive audio features for prosody analysis"""
|
110 |
+
try:
|
111 |
+
y, sr = librosa.load(audio_path, sr=self.sample_rate)
|
112 |
+
duration = len(y) / sr
|
113 |
+
|
114 |
+
# Pitch analysis
|
115 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
116 |
+
pitch_values = []
|
117 |
+
for t in range(pitches.shape[1]):
|
118 |
+
index = magnitudes[:, t].argmax()
|
119 |
+
pitch = pitches[index, t]
|
120 |
+
if pitch > 0:
|
121 |
+
pitch_values.append(pitch)
|
122 |
+
|
123 |
+
# Rhythm and timing features
|
124 |
+
tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
|
125 |
+
|
126 |
+
# Intensity features
|
127 |
+
rms = librosa.feature.rms(y=y)[0]
|
128 |
+
zcr = librosa.feature.zero_crossing_rate(y)[0]
|
129 |
+
|
130 |
+
# Spectral features
|
131 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
132 |
+
|
133 |
+
return {
|
134 |
+
"duration": duration,
|
135 |
+
"pitch": {
|
136 |
+
"values": pitch_values,
|
137 |
+
"mean": np.mean(pitch_values) if pitch_values else 0,
|
138 |
+
"std": np.std(pitch_values) if pitch_values else 0,
|
139 |
+
"range": np.max(pitch_values) - np.min(pitch_values) if pitch_values else 0,
|
140 |
+
"cv": np.std(pitch_values) / np.mean(pitch_values) if pitch_values and np.mean(pitch_values) > 0 else 0
|
141 |
+
},
|
142 |
+
"rhythm": {
|
143 |
+
"tempo": tempo,
|
144 |
+
"beats_per_second": len(beats) / duration if duration > 0 else 0
|
145 |
+
},
|
146 |
+
"intensity": {
|
147 |
+
"rms_mean": np.mean(rms),
|
148 |
+
"rms_std": np.std(rms),
|
149 |
+
"zcr_mean": np.mean(zcr)
|
150 |
+
},
|
151 |
+
"spectral": {
|
152 |
+
"centroid_mean": np.mean(spectral_centroids),
|
153 |
+
"centroid_std": np.std(spectral_centroids)
|
154 |
+
}
|
155 |
+
}
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"Audio feature extraction error: {e}")
|
159 |
+
return {"duration": 0, "error": str(e)}
|
160 |
|
161 |
def _clean_character_transcript(self, transcript: str) -> str:
|
162 |
"""Clean and standardize character transcript"""
|
|
|
163 |
logger.info(f"Raw transcript before cleaning: {transcript}")
|
164 |
+
cleaned = re.sub(r'\s+', ' ', transcript)
|
165 |
+
return cleaned.strip().lower()
|
|
|
166 |
|
167 |
def _characters_to_phoneme_representation(self, text: str) -> str:
|
168 |
+
"""Convert character-based transcript to phoneme representation"""
|
169 |
if not text:
|
170 |
return ""
|
171 |
+
|
172 |
words = text.split()
|
173 |
phoneme_words = []
|
174 |
+
g2p = EnhancedG2P()
|
175 |
+
|
176 |
for word in words:
|
177 |
try:
|
178 |
if g2p:
|
179 |
+
word_phonemes = g2p.word_to_phonemes(word)
|
180 |
+
phoneme_words.extend(word_phonemes)
|
181 |
else:
|
182 |
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
183 |
except:
|
|
|
184 |
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
185 |
+
|
186 |
return " ".join(phoneme_words)
|
187 |
|
188 |
def _simple_letter_to_phoneme(self, word: str) -> List[str]:
|
189 |
+
"""Fallback letter-to-phoneme conversion"""
|
190 |
letter_to_phoneme = {
|
191 |
+
"a": "æ", "b": "b", "c": "k", "d": "d", "e": "ɛ", "f": "f",
|
192 |
+
"g": "ɡ", "h": "h", "i": "ɪ", "j": "dʒ", "k": "k", "l": "l",
|
193 |
+
"m": "m", "n": "n", "o": "ʌ", "p": "p", "q": "k", "r": "r",
|
194 |
+
"s": "s", "t": "t", "u": "ʌ", "v": "v", "w": "w", "x": "ks",
|
195 |
+
"y": "j", "z": "z"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
}
|
197 |
+
|
198 |
+
return [letter_to_phoneme.get(letter, letter) for letter in word.lower() if letter in letter_to_phoneme]
|
199 |
|
200 |
+
def _estimate_confidence(self, transcript: str) -> float:
|
201 |
+
"""Estimate transcription confidence"""
|
202 |
+
if not transcript or len(transcript.strip()) < 2:
|
203 |
+
return 0.0
|
204 |
+
|
205 |
+
repeated_chars = len(re.findall(r'(.)\1{2,}', transcript))
|
206 |
+
return max(0.0, 1.0 - (repeated_chars * 0.2))
|
207 |
|
208 |
def _empty_result(self) -> Dict:
|
209 |
+
"""Empty result for error cases"""
|
210 |
return {
|
211 |
"character_transcript": "",
|
212 |
"phoneme_representation": "",
|
213 |
+
"audio_features": {"duration": 0},
|
214 |
+
"confidence": 0.0
|
215 |
}
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
class EnhancedG2P:
|
219 |
+
"""Enhanced Grapheme-to-Phoneme converter with visualization support"""
|
220 |
|
221 |
def __init__(self):
|
222 |
try:
|
223 |
self.cmu_dict = cmudict.dict()
|
224 |
except:
|
225 |
self.cmu_dict = {}
|
226 |
+
logger.warning("CMU dictionary not available")
|
227 |
+
|
228 |
+
# Vietnamese speaker substitution patterns (enhanced)
|
229 |
+
self.vn_substitutions = {
|
230 |
+
"θ": ["f", "s", "t", "d"],
|
231 |
+
"ð": ["d", "z", "v", "t"],
|
232 |
+
"v": ["w", "f", "b"],
|
233 |
+
"w": ["v", "b"],
|
234 |
+
"r": ["l", "n"],
|
235 |
+
"l": ["r", "n"],
|
236 |
+
"z": ["s", "j"],
|
237 |
+
"ʒ": ["ʃ", "z", "s"],
|
238 |
+
"ʃ": ["s", "ʒ"],
|
239 |
+
"ŋ": ["n", "m"],
|
240 |
+
"tʃ": ["ʃ", "s", "k"],
|
241 |
+
"dʒ": ["ʒ", "j", "g"],
|
242 |
+
"æ": ["ɛ", "a"],
|
243 |
+
"ɪ": ["i"],
|
244 |
+
"ʊ": ["u"]
|
245 |
+
}
|
246 |
+
|
247 |
+
# Difficulty scores for Vietnamese speakers
|
248 |
+
self.difficulty_scores = {
|
249 |
+
"θ": 0.9, "ð": 0.9, "v": 0.8, "z": 0.8, "ʒ": 0.9,
|
250 |
+
"r": 0.7, "l": 0.6, "w": 0.5, "æ": 0.7, "ɪ": 0.6,
|
251 |
+
"ʊ": 0.6, "ŋ": 0.3, "f": 0.2, "s": 0.2, "ʃ": 0.5,
|
252 |
+
"tʃ": 0.4, "dʒ": 0.5
|
253 |
+
}
|
254 |
+
|
255 |
+
def word_to_phonemes(self, word: str) -> List[str]:
|
256 |
+
"""Convert word to phoneme list"""
|
257 |
+
word_lower = word.lower().strip()
|
258 |
+
|
259 |
+
if word_lower in self.cmu_dict:
|
260 |
+
cmu_phonemes = self.cmu_dict[word_lower][0]
|
261 |
+
return self._convert_cmu_to_ipa(cmu_phonemes)
|
262 |
+
else:
|
263 |
+
return self._estimate_phonemes(word_lower)
|
264 |
+
|
265 |
+
def get_phoneme_string(self, text: str) -> str:
|
266 |
+
"""Get space-separated phoneme string"""
|
267 |
+
words = self._clean_text(text).split()
|
268 |
+
all_phonemes = []
|
269 |
+
|
270 |
+
for word in words:
|
271 |
+
if word:
|
272 |
+
phonemes = self.word_to_phonemes(word)
|
273 |
+
all_phonemes.extend(phonemes)
|
274 |
+
|
275 |
+
return " ".join(all_phonemes)
|
276 |
|
277 |
def text_to_phonemes(self, text: str) -> List[Dict]:
|
278 |
+
"""Convert text to phoneme sequence with visualization data"""
|
279 |
words = self._clean_text(text).split()
|
280 |
phoneme_sequence = []
|
281 |
|
282 |
for word in words:
|
283 |
+
word_phonemes = self.word_to_phonemes(word)
|
284 |
+
phoneme_sequence.append({
|
285 |
+
"word": word,
|
286 |
+
"phonemes": word_phonemes,
|
287 |
+
"ipa": self._get_ipa(word),
|
288 |
+
"phoneme_string": " ".join(word_phonemes),
|
289 |
+
"visualization": self._create_phoneme_visualization(word_phonemes)
|
290 |
+
})
|
|
|
291 |
|
292 |
return phoneme_sequence
|
293 |
|
294 |
+
def _convert_cmu_to_ipa(self, cmu_phonemes: List[str]) -> List[str]:
|
295 |
+
"""Convert CMU phonemes to IPA"""
|
296 |
+
cmu_to_ipa = {
|
297 |
+
"AA": "ɑ", "AE": "æ", "AH": "ʌ", "AO": "ɔ", "AW": "aʊ",
|
298 |
+
"AY": "aɪ", "EH": "ɛ", "ER": "ɝ", "EY": "eɪ", "IH": "ɪ",
|
299 |
+
"IY": "i", "OW": "oʊ", "OY": "ɔɪ", "UH": "ʊ", "UW": "u",
|
300 |
+
"B": "b", "CH": "tʃ", "D": "d", "DH": "ð", "F": "f",
|
301 |
+
"G": "ɡ", "HH": "h", "JH": "dʒ", "K": "k", "L": "l",
|
302 |
+
"M": "m", "N": "n", "NG": "ŋ", "P": "p", "R": "r",
|
303 |
+
"S": "s", "SH": "ʃ", "T": "t", "TH": "θ", "V": "v",
|
304 |
+
"W": "w", "Y": "j", "Z": "z", "ZH": "ʒ"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
}
|
306 |
+
|
307 |
+
ipa_phonemes = []
|
308 |
for phoneme in cmu_phonemes:
|
309 |
+
clean_phoneme = re.sub(r'[0-9]', '', phoneme)
|
310 |
+
ipa_phoneme = cmu_to_ipa.get(clean_phoneme, clean_phoneme.lower())
|
311 |
+
ipa_phonemes.append(ipa_phoneme)
|
312 |
+
|
313 |
+
return ipa_phonemes
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
def _estimate_phonemes(self, word: str) -> List[str]:
|
316 |
"""Estimate phonemes for unknown words"""
|
|
|
317 |
phoneme_map = {
|
318 |
+
"ch": "tʃ", "sh": "ʃ", "th": "θ", "ph": "f", "ck": "k",
|
319 |
+
"ng": "ŋ", "qu": "kw", "a": "æ", "e": "ɛ", "i": "ɪ",
|
320 |
+
"o": "ʌ", "u": "ʌ", "b": "b", "c": "k", "d": "d",
|
321 |
+
"f": "f", "g": "ɡ", "h": "h", "j": "dʒ", "k": "k",
|
322 |
+
"l": "l", "m": "m", "n": "n", "p": "p", "r": "r",
|
323 |
+
"s": "s", "t": "t", "v": "v", "w": "w", "x": "ks",
|
324 |
+
"y": "j", "z": "z"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
}
|
326 |
+
|
|
|
327 |
phonemes = []
|
328 |
i = 0
|
|
|
329 |
while i < len(word):
|
|
|
330 |
if i <= len(word) - 2:
|
331 |
+
two_char = word[i:i+2]
|
332 |
if two_char in phoneme_map:
|
333 |
+
phonemes.append(phoneme_map[two_char])
|
334 |
i += 2
|
335 |
continue
|
336 |
+
|
|
|
337 |
char = word[i]
|
338 |
if char in phoneme_map:
|
339 |
+
phonemes.append(phoneme_map[char])
|
|
|
340 |
i += 1
|
341 |
+
|
342 |
return phonemes
|
343 |
|
344 |
+
def _clean_text(self, text: str) -> str:
|
345 |
+
"""Clean text for processing"""
|
346 |
+
text = re.sub(r"[^\w\s']", " ", text)
|
347 |
+
text = re.sub(r'\s+', ' ', text)
|
348 |
+
return text.lower().strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
+
def _get_ipa(self, word: str) -> str:
|
351 |
+
"""Get IPA transcription"""
|
352 |
+
try:
|
353 |
+
return ipa.convert(word)
|
354 |
+
except:
|
355 |
+
return f"/{word}/"
|
356 |
|
357 |
def _create_phoneme_visualization(self, phonemes: List[str]) -> List[Dict]:
|
358 |
"""Create visualization data for phonemes"""
|
359 |
visualization = []
|
360 |
for phoneme in phonemes:
|
|
|
361 |
color_category = self._get_phoneme_color_category(phoneme)
|
362 |
visualization.append({
|
363 |
"phoneme": phoneme,
|
364 |
"color_category": color_category,
|
365 |
+
"description": self._get_phoneme_description(phoneme),
|
366 |
+
"difficulty": self.difficulty_scores.get(phoneme, 0.3)
|
367 |
})
|
368 |
return visualization
|
369 |
|
370 |
def _get_phoneme_color_category(self, phoneme: str) -> str:
|
371 |
"""Categorize phonemes by color for visualization"""
|
372 |
vowel_phonemes = {"ɑ", "æ", "ʌ", "ɔ", "aʊ", "aɪ", "ɛ", "ɝ", "eɪ", "ɪ", "i", "oʊ", "ɔɪ", "ʊ", "u"}
|
373 |
+
difficult_consonants = {"θ", "ð", "v", "z", "ʒ", "r", "w"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
if phoneme in vowel_phonemes:
|
376 |
return "vowel"
|
377 |
+
elif phoneme in difficult_consonants:
|
378 |
+
return "difficult"
|
379 |
else:
|
380 |
+
return "consonant"
|
381 |
|
382 |
def _get_phoneme_description(self, phoneme: str) -> str:
|
383 |
"""Get description for a phoneme"""
|
384 |
descriptions = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
"θ": "Voiceless dental fricative (like 'th' in 'think')",
|
386 |
"ð": "Voiced dental fricative (like 'th' in 'this')",
|
387 |
+
"v": "Voiced labiodental fricative (like 'v' in 'van')",
|
388 |
"z": "Voiced alveolar fricative (like 'z' in 'zip')",
|
|
|
389 |
"ʒ": "Voiced postalveolar fricative (like 's' in 'measure')",
|
|
|
|
|
|
|
|
|
390 |
"r": "Alveolar approximant (like 'r' in 'red')",
|
391 |
"w": "Labial-velar approximant (like 'w' in 'wet')",
|
392 |
+
"æ": "Near-open front unrounded vowel (like 'a' in 'cat')",
|
393 |
+
"ɪ": "Near-close near-front unrounded vowel (like 'i' in 'sit')",
|
394 |
+
"ʊ": "Near-close near-back rounded vowel (like 'u' in 'put')"
|
395 |
}
|
396 |
return descriptions.get(phoneme, f"Phoneme: {phoneme}")
|
397 |
|
398 |
+
def is_acceptable_substitution(self, reference: str, predicted: str) -> bool:
|
399 |
+
"""Check if substitution is acceptable for Vietnamese speakers"""
|
400 |
+
acceptable = self.vn_substitutions.get(reference, [])
|
401 |
+
return predicted in acceptable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
+
def get_difficulty_score(self, phoneme: str) -> float:
|
404 |
+
"""Get difficulty score for phoneme"""
|
405 |
+
return self.difficulty_scores.get(phoneme, 0.3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
|
|
|
|
|
|
|
|
407 |
|
408 |
+
class AdvancedPhonemeComparator:
|
409 |
+
"""Enhanced phoneme comparator using Levenshtein distance"""
|
|
|
410 |
|
411 |
+
def __init__(self):
|
412 |
+
self.g2p = EnhancedG2P()
|
413 |
|
414 |
+
def compare_with_levenshtein(self, reference: str, predicted: str) -> List[Dict]:
|
415 |
+
"""Compare phonemes using Levenshtein distance for accurate alignment"""
|
416 |
+
ref_phones = reference.split() if reference else []
|
417 |
+
pred_phones = predicted.split() if predicted else []
|
418 |
+
|
419 |
+
if not ref_phones:
|
420 |
+
return []
|
421 |
+
|
422 |
+
# Use Levenshtein editops for precise alignment
|
423 |
+
ops = Levenshtein.editops(ref_phones, pred_phones)
|
424 |
+
|
425 |
comparisons = []
|
426 |
+
ref_idx = 0
|
427 |
+
pred_idx = 0
|
428 |
+
|
429 |
+
# Process equal parts first
|
430 |
+
for op_type, ref_pos, pred_pos in ops:
|
431 |
+
# Add equal characters before this operation
|
432 |
+
while ref_idx < ref_pos and pred_idx < pred_pos:
|
433 |
+
comparison = self._create_comparison(
|
434 |
+
ref_phones[ref_idx], pred_phones[pred_idx],
|
435 |
+
ErrorType.CORRECT, 1.0, len(comparisons)
|
436 |
+
)
|
437 |
+
comparisons.append(comparison)
|
438 |
+
ref_idx += 1
|
439 |
+
pred_idx += 1
|
440 |
+
|
441 |
+
# Process the operation
|
442 |
+
if op_type == 'replace':
|
443 |
+
ref_phoneme = ref_phones[ref_pos]
|
444 |
+
pred_phoneme = pred_phones[pred_pos]
|
445 |
+
|
446 |
+
if self.g2p.is_acceptable_substitution(ref_phoneme, pred_phoneme):
|
447 |
+
error_type = ErrorType.ACCEPTABLE
|
448 |
score = 0.7
|
449 |
else:
|
450 |
+
error_type = ErrorType.SUBSTITUTION
|
451 |
score = 0.2
|
452 |
+
|
453 |
+
comparison = self._create_comparison(
|
454 |
+
ref_phoneme, pred_phoneme, error_type, score, len(comparisons)
|
455 |
+
)
|
456 |
+
comparisons.append(comparison)
|
457 |
+
ref_idx = ref_pos + 1
|
458 |
+
pred_idx = pred_pos + 1
|
459 |
+
|
460 |
+
elif op_type == 'delete':
|
461 |
+
comparison = self._create_comparison(
|
462 |
+
ref_phones[ref_pos], "", ErrorType.DELETION, 0.0, len(comparisons)
|
463 |
+
)
|
464 |
+
comparisons.append(comparison)
|
465 |
+
ref_idx = ref_pos + 1
|
466 |
+
|
467 |
+
elif op_type == 'insert':
|
468 |
+
comparison = self._create_comparison(
|
469 |
+
"", pred_phones[pred_pos], ErrorType.INSERTION, 0.0, len(comparisons)
|
470 |
+
)
|
471 |
+
comparisons.append(comparison)
|
472 |
+
pred_idx = pred_pos + 1
|
473 |
+
|
474 |
+
# Add remaining equal characters
|
475 |
+
while ref_idx < len(ref_phones) and pred_idx < len(pred_phones):
|
476 |
+
comparison = self._create_comparison(
|
477 |
+
ref_phones[ref_idx], pred_phones[pred_idx],
|
478 |
+
ErrorType.CORRECT, 1.0, len(comparisons)
|
479 |
+
)
|
480 |
comparisons.append(comparison)
|
481 |
+
ref_idx += 1
|
482 |
+
pred_idx += 1
|
483 |
+
|
484 |
return comparisons
|
485 |
|
486 |
+
def _create_comparison(self, ref_phoneme: str, pred_phoneme: str,
|
487 |
+
error_type: ErrorType, score: float, position: int) -> Dict:
|
488 |
+
"""Create comparison dictionary"""
|
489 |
+
return {
|
490 |
+
"position": position,
|
491 |
+
"reference_phoneme": ref_phoneme,
|
492 |
+
"learner_phoneme": pred_phoneme,
|
493 |
+
"status": error_type.value,
|
494 |
+
"score": score,
|
495 |
+
"difficulty": self.g2p.get_difficulty_score(ref_phoneme),
|
496 |
+
"error_type": error_type.value
|
497 |
+
}
|
498 |
|
499 |
|
500 |
+
class EnhancedWordAnalyzer:
|
501 |
+
"""Enhanced word analyzer with character-level error mapping"""
|
502 |
|
503 |
def __init__(self):
|
504 |
+
self.g2p = EnhancedG2P()
|
505 |
+
self.comparator = AdvancedPhonemeComparator()
|
|
|
|
|
|
|
506 |
|
507 |
+
def analyze_words_enhanced(self, reference_text: str, learner_phonemes: str,
|
508 |
+
mode: AssessmentMode) -> Dict:
|
509 |
+
"""Enhanced word analysis with character-level mapping"""
|
510 |
+
|
511 |
# Get reference phonemes by word
|
512 |
reference_words = self.g2p.text_to_phonemes(reference_text)
|
513 |
+
|
514 |
+
# Get overall phoneme comparison using Levenshtein
|
515 |
+
reference_phoneme_string = self.g2p.get_phoneme_string(reference_text)
|
516 |
+
phoneme_comparisons = self.comparator.compare_with_levenshtein(
|
517 |
reference_phoneme_string, learner_phonemes
|
518 |
)
|
519 |
+
|
520 |
+
# Create enhanced word highlights
|
521 |
+
word_highlights = self._create_enhanced_word_highlights(
|
522 |
+
reference_words, phoneme_comparisons, mode
|
523 |
)
|
524 |
+
|
525 |
+
# Identify wrong words with character-level errors
|
526 |
+
wrong_words = self._identify_wrong_words_enhanced(word_highlights, phoneme_comparisons)
|
527 |
+
|
528 |
return {
|
529 |
"word_highlights": word_highlights,
|
530 |
"phoneme_differences": phoneme_comparisons,
|
531 |
"wrong_words": wrong_words,
|
532 |
+
"reference_phonemes": reference_phoneme_string,
|
533 |
+
"phoneme_pairs": self._create_phoneme_pairs(reference_phoneme_string, learner_phonemes)
|
534 |
}
|
535 |
|
536 |
+
def _create_enhanced_word_highlights(self, reference_words: List[Dict],
|
537 |
+
phoneme_comparisons: List[Dict],
|
538 |
+
mode: AssessmentMode) -> List[Dict]:
|
539 |
+
"""Create enhanced word highlights with character-level error mapping"""
|
540 |
+
|
541 |
word_highlights = []
|
542 |
phoneme_index = 0
|
543 |
|
|
|
548 |
|
549 |
# Get phoneme scores for this word
|
550 |
word_phoneme_scores = []
|
551 |
+
word_comparisons = []
|
552 |
+
|
553 |
for j in range(num_phonemes):
|
554 |
if phoneme_index + j < len(phoneme_comparisons):
|
555 |
comparison = phoneme_comparisons[phoneme_index + j]
|
556 |
word_phoneme_scores.append(comparison["score"])
|
557 |
+
word_comparisons.append(comparison)
|
558 |
|
559 |
# Calculate word score
|
560 |
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
|
561 |
|
562 |
+
# Map phoneme errors to character positions (enhanced for word mode)
|
563 |
+
character_errors = []
|
564 |
+
if mode == AssessmentMode.WORD:
|
565 |
+
character_errors = self._map_phonemes_to_characters(word, word_comparisons)
|
566 |
+
|
567 |
+
# Create enhanced word highlight
|
568 |
highlight = {
|
569 |
"word": word,
|
570 |
"score": float(word_score),
|
|
|
575 |
"phoneme_scores": word_phoneme_scores,
|
576 |
"phoneme_start_index": phoneme_index,
|
577 |
"phoneme_end_index": phoneme_index + num_phonemes - 1,
|
578 |
+
"phoneme_visualization": word_data["visualization"],
|
579 |
+
"character_errors": character_errors, # New feature
|
580 |
+
"detailed_analysis": mode == AssessmentMode.WORD # Flag for UI
|
581 |
}
|
582 |
|
583 |
word_highlights.append(highlight)
|
|
|
585 |
|
586 |
return word_highlights
|
587 |
|
588 |
+
def _map_phonemes_to_characters(self, word: str, phoneme_comparisons: List[Dict]) -> List[CharacterError]:
|
589 |
+
"""Map phoneme errors to character positions in word"""
|
590 |
+
character_errors = []
|
591 |
+
|
592 |
+
# Simple mapping strategy: distribute phonemes across characters
|
593 |
+
if not phoneme_comparisons or not word:
|
594 |
+
return character_errors
|
595 |
+
|
596 |
+
chars_per_phoneme = len(word) / len(phoneme_comparisons)
|
597 |
+
|
598 |
+
for i, comparison in enumerate(phoneme_comparisons):
|
599 |
+
if comparison["status"] in ["substitution", "deletion", "wrong"]:
|
600 |
+
# Calculate character position
|
601 |
+
char_pos = min(int(i * chars_per_phoneme), len(word) - 1)
|
602 |
+
|
603 |
+
severity = 1.0 - comparison["score"]
|
604 |
+
color = self._get_error_color(severity)
|
605 |
+
|
606 |
+
error = CharacterError(
|
607 |
+
character=word[char_pos],
|
608 |
+
position=char_pos,
|
609 |
+
error_type=comparison["status"],
|
610 |
+
expected_sound=comparison["reference_phoneme"],
|
611 |
+
actual_sound=comparison["learner_phoneme"],
|
612 |
+
severity=severity,
|
613 |
+
color=color
|
614 |
+
)
|
615 |
+
character_errors.append(error)
|
616 |
+
|
617 |
+
return character_errors
|
618 |
+
|
619 |
+
def _get_error_color(self, severity: float) -> str:
|
620 |
+
"""Get color code for character errors"""
|
621 |
+
if severity >= 0.8:
|
622 |
+
return "#ef4444" # Red - severe error
|
623 |
+
elif severity >= 0.6:
|
624 |
+
return "#f97316" # Orange - moderate error
|
625 |
+
elif severity >= 0.4:
|
626 |
+
return "#eab308" # Yellow - mild error
|
627 |
+
else:
|
628 |
+
return "#84cc16" # Light green - minor error
|
629 |
|
630 |
+
def _identify_wrong_words_enhanced(self, word_highlights: List[Dict],
|
631 |
+
phoneme_comparisons: List[Dict]) -> List[Dict]:
|
632 |
+
"""Enhanced wrong word identification with detailed error analysis"""
|
633 |
+
|
634 |
wrong_words = []
|
635 |
|
636 |
for word_highlight in word_highlights:
|
637 |
+
if word_highlight["score"] < 0.6:
|
|
|
|
|
638 |
start_idx = word_highlight["phoneme_start_index"]
|
639 |
end_idx = word_highlight["phoneme_end_index"]
|
640 |
|
|
|
644 |
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
|
645 |
comparison = phoneme_comparisons[i]
|
646 |
|
647 |
+
if comparison["status"] in ["wrong", "substitution"]:
|
648 |
+
wrong_phonemes.append({
|
649 |
+
"expected": comparison["reference_phoneme"],
|
650 |
+
"actual": comparison["learner_phoneme"],
|
651 |
+
"difficulty": comparison["difficulty"],
|
652 |
+
"description": self.g2p._get_phoneme_description(comparison["reference_phoneme"])
|
653 |
+
})
|
654 |
+
elif comparison["status"] in ["missing", "deletion"]:
|
655 |
+
missing_phonemes.append({
|
656 |
+
"phoneme": comparison["reference_phoneme"],
|
657 |
+
"difficulty": comparison["difficulty"],
|
658 |
+
"description": self.g2p._get_phoneme_description(comparison["reference_phoneme"])
|
659 |
+
})
|
|
|
|
|
|
|
|
|
660 |
|
661 |
wrong_word = {
|
662 |
"word": word_highlight["word"],
|
|
|
665 |
"ipa": word_highlight["ipa"],
|
666 |
"wrong_phonemes": wrong_phonemes,
|
667 |
"missing_phonemes": missing_phonemes,
|
668 |
+
"tips": self._get_enhanced_vietnamese_tips(wrong_phonemes, missing_phonemes),
|
669 |
+
"phoneme_visualization": word_highlight["phoneme_visualization"],
|
670 |
+
"character_errors": word_highlight.get("character_errors", [])
|
671 |
}
|
672 |
|
673 |
wrong_words.append(wrong_word)
|
674 |
|
675 |
return wrong_words
|
676 |
|
677 |
+
def _create_phoneme_pairs(self, reference: str, learner: str) -> List[Dict]:
|
678 |
+
"""Create phoneme pairs for visualization"""
|
679 |
+
ref_phones = reference.split() if reference else []
|
680 |
+
learner_phones = learner.split() if learner else []
|
681 |
+
|
682 |
+
# Use difflib for alignment visualization
|
683 |
+
import difflib
|
684 |
+
matcher = difflib.SequenceMatcher(None, ref_phones, learner_phones)
|
685 |
+
|
686 |
+
pairs = []
|
687 |
+
for tag, i1, i2, j1, j2 in matcher.get_opcodes():
|
688 |
+
if tag == 'equal':
|
689 |
+
for k in range(i2 - i1):
|
690 |
+
pairs.append({
|
691 |
+
"reference": ref_phones[i1 + k],
|
692 |
+
"learner": learner_phones[j1 + k],
|
693 |
+
"match": True,
|
694 |
+
"type": "correct"
|
695 |
+
})
|
696 |
+
elif tag == 'replace':
|
697 |
+
max_len = max(i2 - i1, j2 - j1)
|
698 |
+
for k in range(max_len):
|
699 |
+
ref_phoneme = ref_phones[i1 + k] if i1 + k < i2 else ""
|
700 |
+
learner_phoneme = learner_phones[j1 + k] if j1 + k < j2 else ""
|
701 |
+
pairs.append({
|
702 |
+
"reference": ref_phoneme,
|
703 |
+
"learner": learner_phoneme,
|
704 |
+
"match": False,
|
705 |
+
"type": "substitution"
|
706 |
+
})
|
707 |
+
elif tag == 'delete':
|
708 |
+
for k in range(i1, i2):
|
709 |
+
pairs.append({
|
710 |
+
"reference": ref_phones[k],
|
711 |
+
"learner": "",
|
712 |
+
"match": False,
|
713 |
+
"type": "deletion"
|
714 |
+
})
|
715 |
+
elif tag == 'insert':
|
716 |
+
for k in range(j1, j2):
|
717 |
+
pairs.append({
|
718 |
+
"reference": "",
|
719 |
+
"learner": learner_phones[k],
|
720 |
+
"match": False,
|
721 |
+
"type": "insertion"
|
722 |
+
})
|
723 |
+
|
724 |
+
return pairs
|
725 |
+
|
726 |
def _get_word_status(self, score: float) -> str:
|
727 |
"""Get word status from score"""
|
728 |
if score >= 0.8:
|
|
|
745 |
else:
|
746 |
return "#ef4444" # Red
|
747 |
|
748 |
+
def _get_enhanced_vietnamese_tips(self, wrong_phonemes: List[Dict],
|
749 |
+
missing_phonemes: List[Dict]) -> List[str]:
|
750 |
+
"""Enhanced Vietnamese-specific pronunciation tips"""
|
|
|
|
|
751 |
tips = []
|
752 |
|
|
|
753 |
vietnamese_tips = {
|
754 |
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
|
755 |
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
|
|
|
759 |
"z": "Giống âm 's' nhưng có rung dây thanh âm",
|
760 |
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
|
761 |
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
|
762 |
+
"æ": "Mở miệng rộng hơn khi phát âm 'a'",
|
763 |
+
"ɪ": "Âm 'i' ngắn, không kéo dài như tiếng Việt"
|
764 |
}
|
765 |
|
|
|
766 |
for wrong in wrong_phonemes:
|
767 |
expected = wrong["expected"]
|
|
|
|
|
768 |
if expected in vietnamese_tips:
|
769 |
+
tips.append(f"Âm /{expected}/: {vietnamese_tips[expected]}")
|
|
|
|
|
770 |
|
|
|
771 |
for missing in missing_phonemes:
|
772 |
phoneme = missing["phoneme"]
|
773 |
if phoneme in vietnamese_tips:
|
774 |
+
tips.append(f"Thiếu âm /{phoneme}/: {vietnamese_tips[phoneme]}")
|
775 |
|
776 |
return tips
|
777 |
|
778 |
|
779 |
+
class EnhancedProsodyAnalyzer:
|
780 |
+
"""Enhanced prosody analyzer for sentence-level assessment"""
|
781 |
|
782 |
+
def __init__(self):
|
783 |
+
# Expected values for English prosody
|
784 |
+
self.expected_speech_rate = 4.0 # syllables per second
|
785 |
+
self.expected_pitch_range = 100 # Hz
|
786 |
+
self.expected_pitch_cv = 0.3 # coefficient of variation
|
|
|
|
|
|
|
|
|
787 |
|
788 |
+
def analyze_prosody_enhanced(self, audio_features: Dict, reference_text: str) -> Dict:
|
789 |
+
"""Enhanced prosody analysis with detailed scoring"""
|
790 |
+
|
791 |
+
if "error" in audio_features:
|
792 |
+
return self._empty_prosody_result()
|
793 |
+
|
794 |
+
duration = audio_features.get("duration", 1)
|
795 |
+
pitch_data = audio_features.get("pitch", {})
|
796 |
+
rhythm_data = audio_features.get("rhythm", {})
|
797 |
+
intensity_data = audio_features.get("intensity", {})
|
798 |
+
|
799 |
+
# Calculate syllables
|
800 |
+
num_syllables = self._estimate_syllables(reference_text)
|
801 |
+
actual_speech_rate = num_syllables / duration if duration > 0 else 0
|
802 |
+
|
803 |
+
# Calculate individual prosody scores
|
804 |
+
pace_score = self._calculate_pace_score(actual_speech_rate)
|
805 |
+
intonation_score = self._calculate_intonation_score(pitch_data)
|
806 |
+
rhythm_score = self._calculate_rhythm_score(rhythm_data, intensity_data)
|
807 |
+
stress_score = self._calculate_stress_score(pitch_data, intensity_data)
|
808 |
+
|
809 |
+
# Overall prosody score
|
810 |
+
overall_prosody = (pace_score + intonation_score + rhythm_score + stress_score) / 4
|
811 |
+
|
812 |
+
# Generate prosody feedback
|
813 |
+
feedback = self._generate_prosody_feedback(
|
814 |
+
pace_score, intonation_score, rhythm_score, stress_score,
|
815 |
+
actual_speech_rate, pitch_data
|
816 |
+
)
|
817 |
+
|
818 |
+
return {
|
819 |
+
"pace_score": pace_score,
|
820 |
+
"intonation_score": intonation_score,
|
821 |
+
"rhythm_score": rhythm_score,
|
822 |
+
"stress_score": stress_score,
|
823 |
+
"overall_prosody": overall_prosody,
|
824 |
+
"details": {
|
825 |
+
"speech_rate": actual_speech_rate,
|
826 |
+
"expected_speech_rate": self.expected_speech_rate,
|
827 |
+
"syllable_count": num_syllables,
|
828 |
+
"duration": duration,
|
829 |
+
"pitch_analysis": pitch_data,
|
830 |
+
"rhythm_analysis": rhythm_data,
|
831 |
+
"intensity_analysis": intensity_data
|
832 |
+
},
|
833 |
+
"feedback": feedback
|
834 |
+
}
|
835 |
+
|
836 |
+
def _calculate_pace_score(self, actual_rate: float) -> float:
|
837 |
+
"""Calculate pace score based on speech rate"""
|
838 |
+
if self.expected_speech_rate == 0:
|
839 |
+
return 0.5
|
840 |
+
|
841 |
+
ratio = actual_rate / self.expected_speech_rate
|
842 |
+
|
843 |
+
if 0.8 <= ratio <= 1.2:
|
844 |
+
return 1.0
|
845 |
+
elif 0.6 <= ratio < 0.8 or 1.2 < ratio <= 1.5:
|
846 |
+
return 0.7
|
847 |
+
elif 0.4 <= ratio < 0.6 or 1.5 < ratio <= 2.0:
|
848 |
+
return 0.4
|
849 |
else:
|
850 |
+
return 0.1
|
851 |
|
852 |
+
def _calculate_intonation_score(self, pitch_data: Dict) -> float:
|
853 |
+
"""Calculate intonation score based on pitch variation"""
|
854 |
+
pitch_range = pitch_data.get("range", 0)
|
855 |
+
|
856 |
+
if self.expected_pitch_range == 0:
|
857 |
+
return 0.5
|
858 |
+
|
859 |
+
ratio = pitch_range / self.expected_pitch_range
|
860 |
+
|
861 |
+
if 0.7 <= ratio <= 1.3:
|
862 |
+
return 1.0
|
863 |
+
elif 0.5 <= ratio < 0.7 or 1.3 < ratio <= 1.8:
|
864 |
+
return 0.7
|
865 |
+
elif 0.3 <= ratio < 0.5 or 1.8 < ratio <= 2.5:
|
866 |
+
return 0.4
|
867 |
+
else:
|
868 |
+
return 0.2
|
869 |
+
|
870 |
+
def _calculate_rhythm_score(self, rhythm_data: Dict, intensity_data: Dict) -> float:
|
871 |
+
"""Calculate rhythm score based on tempo and intensity patterns"""
|
872 |
+
tempo = rhythm_data.get("tempo", 120)
|
873 |
+
intensity_std = intensity_data.get("rms_std", 0)
|
874 |
+
intensity_mean = intensity_data.get("rms_mean", 0)
|
875 |
+
|
876 |
+
# Tempo score (60-180 BPM is good for speech)
|
877 |
+
if 60 <= tempo <= 180:
|
878 |
+
tempo_score = 1.0
|
879 |
+
elif 40 <= tempo < 60 or 180 < tempo <= 220:
|
880 |
+
tempo_score = 0.6
|
881 |
+
else:
|
882 |
+
tempo_score = 0.3
|
883 |
+
|
884 |
+
# Intensity consistency score
|
885 |
+
if intensity_mean > 0:
|
886 |
+
intensity_consistency = max(0, 1.0 - (intensity_std / intensity_mean))
|
887 |
+
else:
|
888 |
+
intensity_consistency = 0.5
|
889 |
+
|
890 |
+
return (tempo_score + intensity_consistency) / 2
|
891 |
+
|
892 |
+
def _calculate_stress_score(self, pitch_data: Dict, intensity_data: Dict) -> float:
|
893 |
+
"""Calculate stress score based on pitch and intensity variation"""
|
894 |
+
pitch_cv = pitch_data.get("cv", 0)
|
895 |
+
intensity_std = intensity_data.get("rms_std", 0)
|
896 |
+
intensity_mean = intensity_data.get("rms_mean", 0)
|
897 |
+
|
898 |
+
# Pitch coefficient of variation score
|
899 |
+
if 0.2 <= pitch_cv <= 0.4:
|
900 |
+
pitch_score = 1.0
|
901 |
+
elif 0.1 <= pitch_cv < 0.2 or 0.4 < pitch_cv <= 0.6:
|
902 |
+
pitch_score = 0.7
|
903 |
+
else:
|
904 |
+
pitch_score = 0.4
|
905 |
+
|
906 |
+
# Intensity variation score
|
907 |
+
if intensity_mean > 0:
|
908 |
+
intensity_cv = intensity_std / intensity_mean
|
909 |
+
if 0.1 <= intensity_cv <= 0.3:
|
910 |
+
intensity_score = 1.0
|
911 |
+
elif 0.05 <= intensity_cv < 0.1 or 0.3 < intensity_cv <= 0.5:
|
912 |
+
intensity_score = 0.7
|
913 |
else:
|
914 |
+
intensity_score = 0.4
|
915 |
+
else:
|
916 |
+
intensity_score = 0.5
|
917 |
+
|
918 |
+
return (pitch_score + intensity_score) / 2
|
919 |
|
920 |
+
def _generate_prosody_feedback(self, pace_score: float, intonation_score: float,
|
921 |
+
rhythm_score: float, stress_score: float,
|
922 |
+
speech_rate: float, pitch_data: Dict) -> List[str]:
|
923 |
+
"""Generate detailed prosody feedback"""
|
924 |
+
feedback = []
|
925 |
+
|
926 |
+
if pace_score < 0.5:
|
927 |
+
if speech_rate < self.expected_speech_rate * 0.8:
|
928 |
+
feedback.append("Tốc độ nói hơi chậm, thử nói nhanh hơn một chút")
|
929 |
+
else:
|
930 |
+
feedback.append("Tốc độ nói hơi nhanh, thử nói chậm lại để rõ ràng hơn")
|
931 |
+
elif pace_score >= 0.8:
|
932 |
+
feedback.append("Tốc độ nói rất tự nhiên")
|
933 |
+
|
934 |
+
if intonation_score < 0.5:
|
935 |
+
feedback.append("Cần cải thiện ngữ điệu - thay đổi cao độ giọng nhiều hơn")
|
936 |
+
elif intonation_score >= 0.8:
|
937 |
+
feedback.append("Ngữ điệu rất tự nhiên và sinh động")
|
938 |
+
|
939 |
+
if rhythm_score < 0.5:
|
940 |
+
feedback.append("Nhịp điệu cần đều hơn - chú ý đến trọng âm của từ")
|
941 |
+
elif rhythm_score >= 0.8:
|
942 |
+
feedback.append("Nhịp điệu rất tốt")
|
943 |
+
|
944 |
+
if stress_score < 0.5:
|
945 |
+
feedback.append("Cần nhấn mạnh trọng âm rõ ràng hơn")
|
946 |
+
elif stress_score >= 0.8:
|
947 |
+
feedback.append("Trọng âm được nhấn rất tốt")
|
948 |
+
|
949 |
+
return feedback
|
950 |
|
951 |
+
def _estimate_syllables(self, text: str) -> int:
|
952 |
+
"""Estimate number of syllables in text"""
|
953 |
+
vowels = "aeiouy"
|
954 |
+
text = text.lower()
|
955 |
+
syllable_count = 0
|
956 |
+
prev_was_vowel = False
|
957 |
+
|
958 |
+
for char in text:
|
959 |
+
if char in vowels:
|
960 |
+
if not prev_was_vowel:
|
961 |
+
syllable_count += 1
|
962 |
+
prev_was_vowel = True
|
963 |
+
else:
|
964 |
+
prev_was_vowel = False
|
965 |
+
|
966 |
+
if text.endswith('e'):
|
967 |
+
syllable_count -= 1
|
968 |
+
|
969 |
+
return max(1, syllable_count)
|
970 |
|
971 |
+
def _empty_prosody_result(self) -> Dict:
|
972 |
+
"""Return empty prosody result for error cases"""
|
973 |
+
return {
|
974 |
+
"pace_score": 0.5,
|
975 |
+
"intonation_score": 0.5,
|
976 |
+
"rhythm_score": 0.5,
|
977 |
+
"stress_score": 0.5,
|
978 |
+
"overall_prosody": 0.5,
|
979 |
+
"details": {},
|
980 |
+
"feedback": ["Không thể phân tích ngữ điệu"]
|
981 |
+
}
|
982 |
|
|
|
983 |
|
984 |
+
class EnhancedFeedbackGenerator:
|
985 |
+
"""Enhanced feedback generator with detailed analysis"""
|
986 |
|
987 |
+
def generate_enhanced_feedback(self, overall_score: float, wrong_words: List[Dict],
|
988 |
+
phoneme_comparisons: List[Dict], mode: AssessmentMode,
|
989 |
+
prosody_analysis: Dict = None) -> List[str]:
|
990 |
+
"""Generate comprehensive feedback based on assessment mode"""
|
991 |
+
|
992 |
+
feedback = []
|
993 |
+
|
994 |
+
# Overall score feedback
|
995 |
+
if overall_score >= 0.9:
|
996 |
+
feedback.append("Phát âm xuất sắc! Bạn đã làm rất tốt.")
|
997 |
+
elif overall_score >= 0.8:
|
998 |
+
feedback.append("Phát âm rất tốt! Chỉ còn một vài điểm nhỏ cần cải thiện.")
|
999 |
+
elif overall_score >= 0.6:
|
1000 |
+
feedback.append("Phát âm khá tốt, còn một số điểm cần luyện tập thêm.")
|
1001 |
+
elif overall_score >= 0.4:
|
1002 |
+
feedback.append("Cần luyện tập thêm. Tập trung vào những từ được đánh dấu.")
|
1003 |
+
else:
|
1004 |
+
feedback.append("Hãy luyện tập chậm rãi và rõ ràng hơn.")
|
1005 |
|
1006 |
+
# Mode-specific feedback
|
1007 |
+
if mode == AssessmentMode.WORD:
|
1008 |
+
feedback.extend(self._generate_word_mode_feedback(wrong_words, phoneme_comparisons))
|
1009 |
+
elif mode == AssessmentMode.SENTENCE:
|
1010 |
+
feedback.extend(self._generate_sentence_mode_feedback(wrong_words, prosody_analysis))
|
1011 |
|
1012 |
+
# Common error patterns
|
1013 |
+
error_patterns = self._analyze_error_patterns(phoneme_comparisons)
|
1014 |
+
if error_patterns:
|
1015 |
+
feedback.extend(error_patterns)
|
|
|
1016 |
|
1017 |
+
return feedback
|
|
|
|
|
|
|
1018 |
|
1019 |
+
def _generate_word_mode_feedback(self, wrong_words: List[Dict],
|
1020 |
+
phoneme_comparisons: List[Dict]) -> List[str]:
|
1021 |
+
"""Generate feedback specific to word mode"""
|
1022 |
+
feedback = []
|
1023 |
|
1024 |
+
if wrong_words:
|
1025 |
+
if len(wrong_words) == 1:
|
1026 |
+
word = wrong_words[0]["word"]
|
1027 |
+
feedback.append(f"Từ '{word}' cần luyện tập thêm")
|
1028 |
+
|
1029 |
+
# Character-level feedback
|
1030 |
+
char_errors = wrong_words[0].get("character_errors", [])
|
1031 |
+
if char_errors:
|
1032 |
+
error_chars = [err.character for err in char_errors[:3]]
|
1033 |
+
feedback.append(f"Chú ý các âm: {', '.join(error_chars)}")
|
1034 |
+
else:
|
1035 |
+
word_list = [w["word"] for w in wrong_words[:3]]
|
1036 |
+
feedback.append(f"Các từ cần luyện: {', '.join(word_list)}")
|
1037 |
|
1038 |
+
return feedback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1039 |
|
1040 |
+
def _generate_sentence_mode_feedback(self, wrong_words: List[Dict],
|
1041 |
+
prosody_analysis: Dict) -> List[str]:
|
1042 |
+
"""Generate feedback specific to sentence mode"""
|
1043 |
+
feedback = []
|
1044 |
|
1045 |
+
# Word-level feedback
|
1046 |
+
if wrong_words:
|
1047 |
+
if len(wrong_words) <= 2:
|
1048 |
+
word_list = [w["word"] for w in wrong_words]
|
1049 |
+
feedback.append(f"Cần cải thiện: {', '.join(word_list)}")
|
1050 |
+
else:
|
1051 |
+
feedback.append(f"Có {len(wrong_words)} từ cần luyện tập")
|
1052 |
+
|
1053 |
+
# Prosody feedback
|
1054 |
+
if prosody_analysis and "feedback" in prosody_analysis:
|
1055 |
+
feedback.extend(prosody_analysis["feedback"][:2]) # Limit prosody feedback
|
|
|
|
|
1056 |
|
1057 |
+
return feedback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1058 |
|
1059 |
+
def _analyze_error_patterns(self, phoneme_comparisons: List[Dict]) -> List[str]:
|
1060 |
+
"""Analyze common error patterns across phonemes"""
|
1061 |
+
feedback = []
|
1062 |
+
|
1063 |
+
# Count error types
|
1064 |
+
error_counts = defaultdict(int)
|
1065 |
+
difficult_phonemes = defaultdict(int)
|
1066 |
+
|
1067 |
+
for comparison in phoneme_comparisons:
|
1068 |
+
if comparison["status"] in ["wrong", "substitution"]:
|
1069 |
+
phoneme = comparison["reference_phoneme"]
|
1070 |
+
difficult_phonemes[phoneme] += 1
|
1071 |
+
error_counts[comparison["status"]] += 1
|
1072 |
+
|
1073 |
+
# Most problematic phoneme
|
1074 |
+
if difficult_phonemes:
|
1075 |
+
most_difficult = max(difficult_phonemes.items(), key=lambda x: x[1])
|
1076 |
+
if most_difficult[1] >= 2:
|
1077 |
+
phoneme = most_difficult[0]
|
1078 |
+
phoneme_tips = {
|
1079 |
+
"θ": "Lưỡi giữa răng, thổi nhẹ",
|
1080 |
+
"ð": "Lưỡi giữa răng, rung dây thanh",
|
1081 |
+
"v": "Môi dưới chạm răng trên",
|
1082 |
+
"r": "Cuộn lưỡi nhẹ",
|
1083 |
+
"z": "Như 's' nhưng rung dây thanh"
|
1084 |
+
}
|
1085 |
+
|
1086 |
+
if phoneme in phoneme_tips:
|
1087 |
+
feedback.append(f"Âm khó nhất /{phoneme}/: {phoneme_tips[phoneme]}")
|
1088 |
+
|
1089 |
+
return feedback
|
1090 |
|
|
|
|
|
|
|
|
|
1091 |
|
1092 |
+
class ProductionPronunciationAssessor:
|
1093 |
+
"""Production-ready pronunciation assessor - Enhanced version with singleton pattern"""
|
1094 |
+
|
1095 |
+
_instance = None
|
1096 |
+
_initialized = False
|
1097 |
|
1098 |
+
def __new__(cls, onnx: bool = False, quantized: bool = False):
|
1099 |
+
if cls._instance is None:
|
1100 |
+
cls._instance = super(ProductionPronunciationAssessor, cls).__new__(cls)
|
1101 |
+
return cls._instance
|
1102 |
|
1103 |
+
def __init__(self, onnx: bool = False, quantized: bool = False):
|
1104 |
+
"""Initialize the production-ready pronunciation assessment system (only once)"""
|
1105 |
+
if self._initialized:
|
1106 |
+
return
|
1107 |
+
|
1108 |
+
logger.info("Initializing Production Pronunciation Assessment System...")
|
1109 |
+
|
1110 |
+
self.asr = EnhancedWav2Vec2CharacterASR(onnx=onnx, quantized=quantized)
|
1111 |
+
self.word_analyzer = EnhancedWordAnalyzer()
|
1112 |
+
self.prosody_analyzer = EnhancedProsodyAnalyzer()
|
1113 |
+
self.feedback_generator = EnhancedFeedbackGenerator()
|
1114 |
+
self.g2p = EnhancedG2P()
|
1115 |
+
|
1116 |
+
ProductionPronunciationAssessor._initialized = True
|
1117 |
+
logger.info("Production system initialization completed")
|
1118 |
|
1119 |
+
def assess_pronunciation(self, audio_path: str, reference_text: str,
|
1120 |
+
mode: str = "auto") -> Dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1121 |
"""
|
1122 |
+
Main assessment function with enhanced features
|
1123 |
+
|
1124 |
Args:
|
1125 |
audio_path: Path to audio file
|
1126 |
+
reference_text: Reference text to compare against
|
1127 |
+
mode: Assessment mode ("word", "sentence", "auto", or legacy modes)
|
1128 |
+
|
1129 |
Returns:
|
1130 |
+
Enhanced assessment results with backward compatibility
|
1131 |
"""
|
|
|
1132 |
|
1133 |
+
logger.info(f"Starting production assessment in {mode} mode...")
|
1134 |
+
start_time = time.time()
|
|
|
|
|
|
|
1135 |
|
1136 |
+
try:
|
1137 |
+
# Normalize and validate mode
|
1138 |
+
assessment_mode = self._normalize_mode(mode, reference_text)
|
1139 |
+
logger.info(f"Using assessment mode: {assessment_mode.value}")
|
1140 |
+
|
1141 |
+
# Step 1: Enhanced ASR transcription with features
|
1142 |
+
asr_result = self.asr.transcribe_with_features(audio_path)
|
1143 |
+
|
1144 |
+
if not asr_result["character_transcript"]:
|
1145 |
+
return self._create_error_result("No speech detected in audio")
|
1146 |
+
|
1147 |
+
# Step 2: Enhanced word analysis
|
1148 |
+
analysis_result = self.word_analyzer.analyze_words_enhanced(
|
1149 |
+
reference_text,
|
1150 |
+
asr_result["phoneme_representation"],
|
1151 |
+
assessment_mode
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
# Step 3: Calculate overall score
|
1155 |
+
overall_score = self._calculate_overall_score(analysis_result["phoneme_differences"])
|
1156 |
+
|
1157 |
+
# Step 4: Prosody analysis for sentence mode
|
1158 |
+
prosody_analysis = {}
|
1159 |
+
if assessment_mode == AssessmentMode.SENTENCE:
|
1160 |
+
prosody_analysis = self.prosody_analyzer.analyze_prosody_enhanced(
|
1161 |
+
asr_result["audio_features"],
|
1162 |
+
reference_text
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
# Step 5: Generate enhanced feedback
|
1166 |
+
feedback = self.feedback_generator.generate_enhanced_feedback(
|
1167 |
+
overall_score,
|
1168 |
+
analysis_result["wrong_words"],
|
1169 |
+
analysis_result["phoneme_differences"],
|
1170 |
+
assessment_mode,
|
1171 |
+
prosody_analysis
|
1172 |
+
)
|
1173 |
+
|
1174 |
+
# Step 6: Create phoneme comparison summary
|
1175 |
+
phoneme_comparison_summary = self._create_phoneme_comparison_summary(
|
1176 |
+
analysis_result["phoneme_pairs"]
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
# Step 7: Assemble result with backward compatibility
|
1180 |
+
result = self._create_enhanced_result(
|
1181 |
+
asr_result, analysis_result, overall_score, feedback,
|
1182 |
+
prosody_analysis, phoneme_comparison_summary, assessment_mode
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
# Add processing metadata
|
1186 |
+
processing_time = time.time() - start_time
|
1187 |
+
result["processing_info"] = {
|
1188 |
+
"processing_time": round(processing_time, 2),
|
1189 |
+
"mode": assessment_mode.value,
|
1190 |
+
"model_used": "Wav2Vec2-Enhanced",
|
1191 |
+
"onnx_enabled": self.asr.use_onnx,
|
1192 |
+
"confidence": asr_result["confidence"],
|
1193 |
+
"enhanced_features": True,
|
1194 |
+
"character_level_analysis": assessment_mode == AssessmentMode.WORD,
|
1195 |
+
"prosody_analysis": assessment_mode == AssessmentMode.SENTENCE
|
1196 |
+
}
|
1197 |
+
|
1198 |
+
logger.info(f"Production assessment completed in {processing_time:.2f}s")
|
1199 |
+
return result
|
1200 |
+
|
1201 |
+
except Exception as e:
|
1202 |
+
logger.error(f"Production assessment error: {e}")
|
1203 |
+
return self._create_error_result(f"Assessment failed: {str(e)}")
|
1204 |
|
1205 |
+
def _normalize_mode(self, mode: str, reference_text: str) -> AssessmentMode:
|
1206 |
+
"""Normalize mode parameter with backward compatibility"""
|
|
|
|
|
1207 |
|
1208 |
+
# Legacy mode mapping
|
1209 |
+
legacy_mapping = {
|
1210 |
+
"normal": AssessmentMode.AUTO,
|
1211 |
+
"advanced": AssessmentMode.AUTO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1212 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1213 |
|
1214 |
+
if mode in legacy_mapping:
|
1215 |
+
normalized_mode = legacy_mapping[mode]
|
1216 |
+
logger.info(f"Mapped legacy mode '{mode}' to '{normalized_mode.value}'")
|
1217 |
+
mode = normalized_mode.value
|
1218 |
|
1219 |
+
# Validate mode
|
1220 |
+
try:
|
1221 |
+
assessment_mode = AssessmentMode(mode)
|
1222 |
+
except ValueError:
|
1223 |
+
logger.warning(f"Invalid mode '{mode}', defaulting to AUTO")
|
1224 |
+
assessment_mode = AssessmentMode.AUTO
|
1225 |
|
1226 |
+
# Auto-detect mode based on text length
|
1227 |
+
if assessment_mode == AssessmentMode.AUTO:
|
1228 |
+
word_count = len(reference_text.strip().split())
|
1229 |
+
assessment_mode = AssessmentMode.WORD if word_count <= 3 else AssessmentMode.SENTENCE
|
1230 |
+
logger.info(f"Auto-detected mode: {assessment_mode.value} (word count: {word_count})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1231 |
|
1232 |
+
return assessment_mode
|
1233 |
|
1234 |
+
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
|
1235 |
+
"""Calculate weighted overall score"""
|
1236 |
+
if not phoneme_comparisons:
|
1237 |
+
return 0.0
|
1238 |
|
1239 |
+
total_weighted_score = 0.0
|
1240 |
+
total_weight = 0.0
|
|
|
1241 |
|
1242 |
+
for comparison in phoneme_comparisons:
|
1243 |
+
weight = comparison.get("difficulty", 0.5) # Use difficulty as weight
|
1244 |
+
score = comparison["score"]
|
1245 |
+
|
1246 |
+
total_weighted_score += score * weight
|
1247 |
+
total_weight += weight
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1248 |
|
1249 |
+
return total_weighted_score / total_weight if total_weight > 0 else 0.0
|
1250 |
|
1251 |
def _create_phoneme_comparison_summary(self, phoneme_pairs: List[Dict]) -> Dict:
|
1252 |
+
"""Create phoneme comparison summary statistics"""
|
1253 |
total = len(phoneme_pairs)
|
1254 |
+
if total == 0:
|
1255 |
+
return {"total_phonemes": 0, "accuracy_percentage": 0}
|
1256 |
+
|
1257 |
correct = sum(1 for pair in phoneme_pairs if pair["match"])
|
1258 |
substitutions = sum(1 for pair in phoneme_pairs if pair["type"] == "substitution")
|
1259 |
deletions = sum(1 for pair in phoneme_pairs if pair["type"] == "deletion")
|
|
|
1265 |
"substitutions": substitutions,
|
1266 |
"deletions": deletions,
|
1267 |
"insertions": insertions,
|
1268 |
+
"accuracy_percentage": round((correct / total) * 100, 1),
|
1269 |
+
"error_rate": round(((substitutions + deletions + insertions) / total) * 100, 1)
|
1270 |
}
|
1271 |
|
1272 |
+
def _create_enhanced_result(self, asr_result: Dict, analysis_result: Dict,
|
1273 |
+
overall_score: float, feedback: List[str],
|
1274 |
+
prosody_analysis: Dict, phoneme_summary: Dict,
|
1275 |
+
assessment_mode: AssessmentMode) -> Dict:
|
1276 |
+
"""Create enhanced result with backward compatibility"""
|
1277 |
+
|
1278 |
+
# Base result structure (backward compatible)
|
1279 |
+
result = {
|
1280 |
+
"transcript": asr_result["character_transcript"],
|
1281 |
+
"transcript_phonemes": asr_result["phoneme_representation"],
|
1282 |
+
"user_phonemes": asr_result["phoneme_representation"],
|
1283 |
+
"character_transcript": asr_result["character_transcript"],
|
1284 |
+
"overall_score": overall_score,
|
1285 |
+
"word_highlights": analysis_result["word_highlights"],
|
1286 |
+
"phoneme_differences": analysis_result["phoneme_differences"],
|
1287 |
+
"wrong_words": analysis_result["wrong_words"],
|
1288 |
+
"feedback": feedback,
|
1289 |
+
}
|
1290 |
+
|
1291 |
+
# Enhanced features
|
1292 |
+
result.update({
|
1293 |
+
"reference_phonemes": analysis_result["reference_phonemes"],
|
1294 |
+
"phoneme_pairs": analysis_result["phoneme_pairs"],
|
1295 |
+
"phoneme_comparison": phoneme_summary,
|
1296 |
+
"assessment_mode": assessment_mode.value,
|
1297 |
+
})
|
1298 |
+
|
1299 |
+
# Add prosody analysis for sentence mode
|
1300 |
+
if prosody_analysis:
|
1301 |
+
result["prosody_analysis"] = prosody_analysis
|
1302 |
+
|
1303 |
+
# Add character-level analysis for word mode
|
1304 |
+
if assessment_mode == AssessmentMode.WORD:
|
1305 |
+
result["character_level_analysis"] = True
|
1306 |
|
1307 |
+
# Add character errors to word highlights if available
|
1308 |
+
for word_highlight in result["word_highlights"]:
|
1309 |
+
if "character_errors" in word_highlight:
|
1310 |
+
# Convert CharacterError objects to dicts for JSON serialization
|
1311 |
+
char_errors = []
|
1312 |
+
for error in word_highlight["character_errors"]:
|
1313 |
+
if isinstance(error, CharacterError):
|
1314 |
+
char_errors.append({
|
1315 |
+
"character": error.character,
|
1316 |
+
"position": error.position,
|
1317 |
+
"error_type": error.error_type,
|
1318 |
+
"expected_sound": error.expected_sound,
|
1319 |
+
"actual_sound": error.actual_sound,
|
1320 |
+
"severity": error.severity,
|
1321 |
+
"color": error.color
|
1322 |
+
})
|
1323 |
+
else:
|
1324 |
+
char_errors.append(error)
|
1325 |
+
word_highlight["character_errors"] = char_errors
|
1326 |
+
|
1327 |
+
return result
|
1328 |
+
|
1329 |
+
def _create_error_result(self, error_message: str) -> Dict:
|
1330 |
+
"""Create error result structure"""
|
1331 |
+
return {
|
1332 |
+
"transcript": "",
|
1333 |
+
"transcript_phonemes": "",
|
1334 |
+
"user_phonemes": "",
|
1335 |
+
"character_transcript": "",
|
1336 |
+
"overall_score": 0.0,
|
1337 |
+
"word_highlights": [],
|
1338 |
+
"phoneme_differences": [],
|
1339 |
+
"wrong_words": [],
|
1340 |
+
"feedback": [f"Lỗi: {error_message}"],
|
1341 |
+
"error": error_message,
|
1342 |
+
"assessment_mode": "error",
|
1343 |
+
"processing_info": {
|
1344 |
+
"processing_time": 0,
|
1345 |
+
"mode": "error",
|
1346 |
+
"model_used": "Wav2Vec2-Enhanced",
|
1347 |
+
"confidence": 0.0,
|
1348 |
+
"enhanced_features": False
|
1349 |
}
|
1350 |
+
}
|
1351 |
+
|
1352 |
+
def get_system_info(self) -> Dict:
|
1353 |
+
"""Get comprehensive system information"""
|
1354 |
+
return {
|
1355 |
+
"version": "2.1.0-production",
|
1356 |
+
"name": "Production Pronunciation Assessment System",
|
1357 |
+
"modes": [mode.value for mode in AssessmentMode],
|
1358 |
+
"features": [
|
1359 |
+
"Enhanced Levenshtein distance phoneme alignment",
|
1360 |
+
"Character-level error detection (word mode)",
|
1361 |
+
"Advanced prosody analysis (sentence mode)",
|
1362 |
+
"Vietnamese speaker-specific error patterns",
|
1363 |
+
"Real-time confidence scoring",
|
1364 |
+
"IPA phonetic representation with visualization",
|
1365 |
+
"Backward compatibility with legacy APIs",
|
1366 |
+
"Production-ready error handling"
|
1367 |
+
],
|
1368 |
+
"model_info": {
|
1369 |
+
"asr_model": self.asr.model_name,
|
1370 |
+
"onnx_enabled": self.asr.use_onnx,
|
1371 |
+
"sample_rate": self.asr.sample_rate
|
1372 |
+
},
|
1373 |
+
"assessment_modes": {
|
1374 |
+
"word": "Detailed character and phoneme level analysis for single words or short phrases",
|
1375 |
+
"sentence": "Word-level analysis with prosody evaluation for complete sentences",
|
1376 |
+
"auto": "Automatically selects mode based on text length (≤3 words = word mode)"
|
1377 |
}
|
1378 |
+
}
|
1379 |
+
|
1380 |
+
|
1381 |
+
# Backward compatibility wrapper
|
1382 |
+
class SimplePronunciationAssessor:
|
1383 |
+
"""Backward compatible wrapper for the enhanced system"""
|
1384 |
+
|
1385 |
+
def __init__(self):
|
1386 |
+
print("Initializing Simple Pronunciation Assessor (Enhanced)...")
|
1387 |
+
self.enhanced_assessor = ProductionPronunciationAssessor()
|
1388 |
+
print("Enhanced Simple Pronunciation Assessor initialization completed")
|
1389 |
+
|
1390 |
+
def assess_pronunciation(self, audio_path: str, reference_text: str,
|
1391 |
+
mode: str = "normal") -> Dict:
|
1392 |
+
"""
|
1393 |
+
Backward compatible assessment function
|
1394 |
+
|
1395 |
+
Args:
|
1396 |
+
audio_path: Path to audio file
|
1397 |
+
reference_text: Reference text to compare
|
1398 |
+
mode: Assessment mode (supports legacy modes)
|
1399 |
+
"""
|
1400 |
+
return self.enhanced_assessor.assess_pronunciation(audio_path, reference_text, mode)
|
1401 |
+
|
1402 |
+
|
1403 |
+
# Example usage
|
1404 |
+
if __name__ == "__main__":
|
1405 |
+
# Initialize production system
|
1406 |
+
system = ProductionPronunciationAssessor(onnx=False, quantized=False)
|
1407 |
+
|
1408 |
+
# Example word mode assessment
|
1409 |
+
print("=== WORD MODE EXAMPLE ===")
|
1410 |
+
word_result = system.assess_pronunciation(
|
1411 |
+
audio_path="./hello_world.wav",
|
1412 |
+
reference_text="hello",
|
1413 |
+
mode="word"
|
1414 |
+
)
|
1415 |
+
# print(f"Word mode result keys: {list(word_result.keys())}")
|
1416 |
+
print("Word result", word_result)
|
1417 |
+
|
1418 |
+
# Example sentence mode assessment
|
1419 |
+
print("\n=== SENTENCE MODE EXAMPLE ===")
|
1420 |
+
sentence_result = system.assess_pronunciation(
|
1421 |
+
audio_path="./hello_how_are_you_today.wav",
|
1422 |
+
reference_text="Hello, how are you today?",
|
1423 |
+
mode="sentence"
|
1424 |
+
)
|
1425 |
+
print(f"Sentence mode result keys: {list(sentence_result.keys())}")
|
1426 |
+
print("Sentence result", sentence_result)
|
1427 |
+
|
1428 |
+
# Example auto mode assessment
|
1429 |
+
print("\n=== AUTO MODE EXAMPLE ===")
|
1430 |
+
auto_result = system.assess_pronunciation(
|
1431 |
+
audio_path="./hello_how_are_you_today.wav",
|
1432 |
+
reference_text="world", # Single word - should auto-select word mode
|
1433 |
+
mode="auto"
|
1434 |
+
)
|
1435 |
+
print(f"Auto mode result: {auto_result['assessment_mode']}")
|
1436 |
+
print("Auto result", auto_result)
|
1437 |
+
|
1438 |
+
# Backward compatibility test
|
1439 |
+
print("\n=== BACKWARD COMPATIBILITY TEST ===")
|
1440 |
+
legacy_assessor = SimplePronunciationAssessor()
|
1441 |
+
legacy_result = legacy_assessor.assess_pronunciation(
|
1442 |
+
audio_path="./hello_world.wav",
|
1443 |
+
reference_text="pronunciation",
|
1444 |
+
mode="normal" # Legacy mode
|
1445 |
+
)
|
1446 |
+
print(f"Legacy mode result: {legacy_result}")
|
1447 |
+
print(f"Legacy mode mapped to: {legacy_result.get('assessment_mode', 'N/A')}")
|
1448 |
+
|
1449 |
+
# System info
|
1450 |
+
print(f"\n=== SYSTEM INFO ===")
|
1451 |
+
system_info = system.get_system_info()
|
1452 |
+
print(f"System version: {system_info['version']}")
|
1453 |
+
print(f"Available modes: {system_info['modes']}")
|
1454 |
+
print(f"Key features: {len(system_info['features'])} enhanced features")
|
src/apis/create_app.py
CHANGED
@@ -6,6 +6,8 @@ from src.apis.routes.lesson_route import router as router_lesson
|
|
6 |
from src.apis.routes.evaluation_route import router as router_evaluation
|
7 |
from src.apis.routes.pronunciation_route import router as router_pronunciation
|
8 |
from src.apis.routes.speaking_route import router as router_speaking
|
|
|
|
|
9 |
|
10 |
api_router = APIRouter(prefix="/api")
|
11 |
api_router.include_router(router_user)
|
@@ -14,6 +16,7 @@ api_router.include_router(router_lesson)
|
|
14 |
api_router.include_router(router_evaluation)
|
15 |
api_router.include_router(router_pronunciation)
|
16 |
api_router.include_router(router_speaking)
|
|
|
17 |
|
18 |
|
19 |
def create_app():
|
@@ -27,4 +30,19 @@ def create_app():
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return app
|
|
|
6 |
from src.apis.routes.evaluation_route import router as router_evaluation
|
7 |
from src.apis.routes.pronunciation_route import router as router_pronunciation
|
8 |
from src.apis.routes.speaking_route import router as router_speaking
|
9 |
+
from src.apis.routes.ipa_route import router as router_ipa
|
10 |
+
from loguru import logger
|
11 |
|
12 |
api_router = APIRouter(prefix="/api")
|
13 |
api_router.include_router(router_user)
|
|
|
16 |
api_router.include_router(router_evaluation)
|
17 |
api_router.include_router(router_pronunciation)
|
18 |
api_router.include_router(router_speaking)
|
19 |
+
api_router.include_router(router_ipa)
|
20 |
|
21 |
|
22 |
def create_app():
|
|
|
30 |
allow_headers=["*"],
|
31 |
)
|
32 |
|
33 |
+
@app.on_event("startup")
|
34 |
+
async def startup_event():
|
35 |
+
"""Pre-initialize assessor on server startup for better performance"""
|
36 |
+
try:
|
37 |
+
logger.info("Pre-initializing ProductionPronunciationAssessor...")
|
38 |
+
from src.apis.routes.speaking_route import get_assessor
|
39 |
+
from src.apis.routes.ipa_route import get_assessor as get_ipa_assessor
|
40 |
+
|
41 |
+
# Pre-initialize both assessors (they share the same singleton)
|
42 |
+
get_assessor()
|
43 |
+
get_ipa_assessor()
|
44 |
+
logger.info("ProductionPronunciationAssessor pre-initialization completed!")
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"Failed to pre-initialize assessor: {e}")
|
47 |
+
|
48 |
return app
|
src/apis/routes/ipa_route.py
ADDED
@@ -0,0 +1,1763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter, HTTPException, Query, UploadFile, File, Form
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List, Dict, Optional, Union, Any
|
4 |
+
import json
|
5 |
+
import random
|
6 |
+
import re
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
import base64
|
10 |
+
import subprocess
|
11 |
+
from loguru import logger
|
12 |
+
from src.apis.controllers.speaking_controller import (
|
13 |
+
EnhancedG2P,
|
14 |
+
ProductionPronunciationAssessor,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class CharacterMapping(BaseModel):
|
19 |
+
ipa_symbol: Optional[str] = None
|
20 |
+
grapheme: Optional[str] = None
|
21 |
+
start_index: Optional[int] = None
|
22 |
+
end_index: Optional[int] = None
|
23 |
+
characters: Optional[str] = None
|
24 |
+
chars: Optional[str] = None
|
25 |
+
ipa: Optional[str] = None
|
26 |
+
start: Optional[int] = None
|
27 |
+
end: Optional[int] = None
|
28 |
+
|
29 |
+
|
30 |
+
router = APIRouter(prefix="/ipa", tags=["IPA Training"])
|
31 |
+
|
32 |
+
# Initialize G2P converter and assessment system once (singleton pattern)
|
33 |
+
g2p = EnhancedG2P()
|
34 |
+
# Global assessor instance - will be initialized once due to singleton pattern
|
35 |
+
global_assessor = None
|
36 |
+
|
37 |
+
|
38 |
+
def get_assessor():
|
39 |
+
"""Get or create the global assessor instance"""
|
40 |
+
global global_assessor
|
41 |
+
if global_assessor is None:
|
42 |
+
logger.info("Creating global ProductionPronunciationAssessor instance...")
|
43 |
+
global_assessor = ProductionPronunciationAssessor()
|
44 |
+
return global_assessor
|
45 |
+
|
46 |
+
|
47 |
+
def map_ipa_to_characters(word: str, ipa_symbol: str) -> List[CharacterMapping]:
|
48 |
+
"""
|
49 |
+
Map IPA symbols to their corresponding characters in the word
|
50 |
+
Returns a list of character mappings for highlighting
|
51 |
+
"""
|
52 |
+
# Common IPA to grapheme mappings
|
53 |
+
ipa_mappings = {
|
54 |
+
# Vowels
|
55 |
+
"i": [
|
56 |
+
"ee",
|
57 |
+
"ea",
|
58 |
+
"e",
|
59 |
+
"ie",
|
60 |
+
"ei",
|
61 |
+
"i",
|
62 |
+
], # see, eat, me, piece, receive, machine
|
63 |
+
"ɪ": ["i", "y", "ui", "e"], # sit, gym, build, women
|
64 |
+
"u": ["oo", "u", "ou", "ue", "ui", "o"], # food, flu, soup, true, fruit, do
|
65 |
+
"ʊ": ["oo", "u", "ou"], # book, put, could
|
66 |
+
"ɛ": ["e", "ea", "ai", "a"], # bed, head, said, many
|
67 |
+
"ə": [
|
68 |
+
"a",
|
69 |
+
"e",
|
70 |
+
"i",
|
71 |
+
"o",
|
72 |
+
"u",
|
73 |
+
"ou",
|
74 |
+
"ar",
|
75 |
+
"er",
|
76 |
+
"or",
|
77 |
+
], # about, taken, pencil, lemon, circus, famous, dollar, butter, doctor
|
78 |
+
"ʌ": ["u", "o", "ou", "oo"], # cup, love, country, blood
|
79 |
+
"ɑ": ["a", "o", "au"], # father, hot, aunt
|
80 |
+
"æ": ["a"], # cat, apple
|
81 |
+
"ɔ": ["o", "aw", "au", "a", "ou"], # saw, law, caught, all, thought
|
82 |
+
# Diphthongs
|
83 |
+
"eɪ": ["a", "ai", "ay", "ei", "ey", "ea"], # say, wait, day, eight, grey, break
|
84 |
+
"aɪ": ["i", "y", "ie", "uy", "ai", "igh"], # my, fly, pie, buy, aisle, night
|
85 |
+
"ɔɪ": ["oy", "oi"], # boy, coin
|
86 |
+
"aʊ": ["ou", "ow"], # how, house
|
87 |
+
"oʊ": ["o", "oa", "ow", "oe", "ou"], # go, boat, show, toe, soul
|
88 |
+
# Consonants
|
89 |
+
"p": ["p", "pp"], # pen, apple
|
90 |
+
"b": ["b", "bb"], # boy, rabbit
|
91 |
+
"t": ["t", "tt", "ed"], # top, butter, walked
|
92 |
+
"d": ["d", "dd", "ed"], # dog, ladder, played
|
93 |
+
"k": ["c", "k", "ck", "ch", "qu"], # cat, key, back, school, queen
|
94 |
+
"g": ["g", "gg", "gh", "gu"], # go, egg, ghost, guard
|
95 |
+
"f": ["f", "ff", "ph", "gh"], # fish, off, phone, laugh
|
96 |
+
"v": ["v", "ve"], # very, have
|
97 |
+
"θ": ["th"], # think
|
98 |
+
"ð": ["th"], # this
|
99 |
+
"s": ["s", "ss", "c", "sc", "ps"], # see, miss, city, scene, psychology
|
100 |
+
"z": ["z", "zz", "s", "se", "ze"], # zoo, buzz, is, rose, froze
|
101 |
+
"ʃ": [
|
102 |
+
"sh",
|
103 |
+
"s",
|
104 |
+
"ss",
|
105 |
+
"ch",
|
106 |
+
"ci",
|
107 |
+
"ti",
|
108 |
+
], # ship, sure, mission, machine, special, nation
|
109 |
+
"ʒ": ["s", "si", "ge"], # measure, vision, garage
|
110 |
+
"tʃ": ["ch", "tch", "t"], # chair, watch, nature
|
111 |
+
"dʒ": ["j", "ge", "dge", "g"], # job, age, bridge, gym
|
112 |
+
"m": ["m", "mm", "mb"], # man, hammer, lamb
|
113 |
+
"n": ["n", "nn", "kn", "gn"], # no, dinner, knee, sign
|
114 |
+
"ŋ": ["ng", "n"], # sing, think
|
115 |
+
"l": ["l", "ll"], # love, hello
|
116 |
+
"r": ["r", "rr", "wr"], # red, sorry, write
|
117 |
+
"j": ["y", "i", "j"], # yes, onion, hallelujah
|
118 |
+
"w": ["w", "wh", "qu", "u"], # we, what, queen, language
|
119 |
+
"h": ["h", "wh"], # house, who
|
120 |
+
}
|
121 |
+
|
122 |
+
# Get possible grapheme representations for the IPA symbol
|
123 |
+
possible_graphemes = ipa_mappings.get(ipa_symbol, [])
|
124 |
+
|
125 |
+
# Find the best match in the word
|
126 |
+
word_lower = word.lower()
|
127 |
+
mappings = []
|
128 |
+
|
129 |
+
for grapheme in possible_graphemes:
|
130 |
+
start_pos = word_lower.find(grapheme)
|
131 |
+
if start_pos != -1:
|
132 |
+
mappings.append(
|
133 |
+
CharacterMapping(
|
134 |
+
ipa_symbol=ipa_symbol,
|
135 |
+
grapheme=grapheme,
|
136 |
+
start_index=start_pos,
|
137 |
+
end_index=start_pos + len(grapheme),
|
138 |
+
characters=word[start_pos : start_pos + len(grapheme)],
|
139 |
+
)
|
140 |
+
)
|
141 |
+
break # Use the first match found
|
142 |
+
|
143 |
+
# If no direct match found, try to match individual characters
|
144 |
+
if not mappings and ipa_symbol in word_lower:
|
145 |
+
start_pos = word_lower.find(ipa_symbol)
|
146 |
+
if start_pos != -1:
|
147 |
+
mappings.append(
|
148 |
+
CharacterMapping(
|
149 |
+
ipa_symbol=ipa_symbol,
|
150 |
+
grapheme=ipa_symbol,
|
151 |
+
start_index=start_pos,
|
152 |
+
end_index=start_pos + len(ipa_symbol),
|
153 |
+
characters=word[start_pos : start_pos + len(ipa_symbol)],
|
154 |
+
)
|
155 |
+
)
|
156 |
+
|
157 |
+
return mappings
|
158 |
+
|
159 |
+
|
160 |
+
def map_word_to_phonemes(word: str, ipa_transcription: str) -> List[CharacterMapping]:
|
161 |
+
"""
|
162 |
+
Map an entire word to its phoneme sequence
|
163 |
+
Returns detailed character to IPA mappings for the whole word
|
164 |
+
"""
|
165 |
+
# Clean the IPA transcription
|
166 |
+
clean_ipa = ipa_transcription.strip("/").replace("ˈ", "").replace("ˌ", "")
|
167 |
+
|
168 |
+
# Common word-to-IPA mappings for better accuracy
|
169 |
+
word_mappings = {
|
170 |
+
# Easy words
|
171 |
+
"cat": [
|
172 |
+
CharacterMapping(
|
173 |
+
characters="c", ipa_symbol="k", start_index=0, end_index=1
|
174 |
+
),
|
175 |
+
CharacterMapping(
|
176 |
+
characters="a", ipa_symbol="æ", start_index=1, end_index=2
|
177 |
+
),
|
178 |
+
CharacterMapping(
|
179 |
+
characters="t", ipa_symbol="t", start_index=2, end_index=3
|
180 |
+
),
|
181 |
+
],
|
182 |
+
"dog": [
|
183 |
+
CharacterMapping(
|
184 |
+
characters="d", ipa_symbol="d", start_index=0, end_index=1
|
185 |
+
),
|
186 |
+
CharacterMapping(
|
187 |
+
characters="o", ipa_symbol="ɔ", start_index=1, end_index=2
|
188 |
+
),
|
189 |
+
CharacterMapping(
|
190 |
+
characters="g", ipa_symbol="g", start_index=2, end_index=3
|
191 |
+
),
|
192 |
+
],
|
193 |
+
"pen": [
|
194 |
+
CharacterMapping(
|
195 |
+
characters="p", ipa_symbol="p", start_index=0, end_index=1
|
196 |
+
),
|
197 |
+
CharacterMapping(
|
198 |
+
characters="e", ipa_symbol="ɛ", start_index=1, end_index=2
|
199 |
+
),
|
200 |
+
CharacterMapping(
|
201 |
+
characters="n", ipa_symbol="n", start_index=2, end_index=3
|
202 |
+
),
|
203 |
+
],
|
204 |
+
"see": [
|
205 |
+
CharacterMapping(
|
206 |
+
characters="s", ipa_symbol="s", start_index=0, end_index=1
|
207 |
+
),
|
208 |
+
CharacterMapping(
|
209 |
+
characters="ee", ipa_symbol="i", start_index=1, end_index=3
|
210 |
+
),
|
211 |
+
],
|
212 |
+
"bed": [
|
213 |
+
CharacterMapping(
|
214 |
+
characters="b", ipa_symbol="b", start_index=0, end_index=1
|
215 |
+
),
|
216 |
+
CharacterMapping(
|
217 |
+
characters="e", ipa_symbol="ɛ", start_index=1, end_index=2
|
218 |
+
),
|
219 |
+
CharacterMapping(
|
220 |
+
characters="d", ipa_symbol="d", start_index=2, end_index=3
|
221 |
+
),
|
222 |
+
],
|
223 |
+
"fish": [
|
224 |
+
CharacterMapping(
|
225 |
+
characters="f", ipa_symbol="f", start_index=0, end_index=1
|
226 |
+
),
|
227 |
+
CharacterMapping(
|
228 |
+
characters="i", ipa_symbol="ɪ", start_index=1, end_index=2
|
229 |
+
),
|
230 |
+
CharacterMapping(
|
231 |
+
characters="sh", ipa_symbol="ʃ", start_index=2, end_index=4
|
232 |
+
),
|
233 |
+
],
|
234 |
+
"book": [
|
235 |
+
CharacterMapping(
|
236 |
+
characters="b", ipa_symbol="b", start_index=0, end_index=1
|
237 |
+
),
|
238 |
+
CharacterMapping(
|
239 |
+
characters="oo", ipa_symbol="ʊ", start_index=1, end_index=3
|
240 |
+
),
|
241 |
+
CharacterMapping(
|
242 |
+
characters="k", ipa_symbol="k", start_index=3, end_index=4
|
243 |
+
),
|
244 |
+
],
|
245 |
+
"food": [
|
246 |
+
CharacterMapping(
|
247 |
+
characters="f", ipa_symbol="f", start_index=0, end_index=1
|
248 |
+
),
|
249 |
+
CharacterMapping(
|
250 |
+
characters="oo", ipa_symbol="u", start_index=1, end_index=3
|
251 |
+
),
|
252 |
+
CharacterMapping(
|
253 |
+
characters="d", ipa_symbol="d", start_index=3, end_index=4
|
254 |
+
),
|
255 |
+
],
|
256 |
+
"man": [
|
257 |
+
CharacterMapping(
|
258 |
+
characters="m", ipa_symbol="m", start_index=0, end_index=1
|
259 |
+
),
|
260 |
+
CharacterMapping(
|
261 |
+
characters="a", ipa_symbol="æ", start_index=1, end_index=2
|
262 |
+
),
|
263 |
+
CharacterMapping(
|
264 |
+
characters="n", ipa_symbol="n", start_index=2, end_index=3
|
265 |
+
),
|
266 |
+
],
|
267 |
+
"sun": [
|
268 |
+
CharacterMapping(
|
269 |
+
characters="s", ipa_symbol="s", start_index=0, end_index=1
|
270 |
+
),
|
271 |
+
CharacterMapping(
|
272 |
+
characters="u", ipa_symbol="ʌ", start_index=1, end_index=2
|
273 |
+
),
|
274 |
+
CharacterMapping(
|
275 |
+
characters="n", ipa_symbol="n", start_index=2, end_index=3
|
276 |
+
),
|
277 |
+
],
|
278 |
+
# Medium words
|
279 |
+
"chair": [
|
280 |
+
CharacterMapping(
|
281 |
+
characters="ch", ipa_symbol="tʃ", start_index=0, end_index=2
|
282 |
+
),
|
283 |
+
CharacterMapping(
|
284 |
+
characters="ai", ipa_symbol="ɛ", start_index=2, end_index=4
|
285 |
+
),
|
286 |
+
CharacterMapping(
|
287 |
+
characters="r", ipa_symbol="r", start_index=4, end_index=5
|
288 |
+
),
|
289 |
+
],
|
290 |
+
"water": [
|
291 |
+
CharacterMapping(
|
292 |
+
characters="w", ipa_symbol="w", start_index=0, end_index=1
|
293 |
+
),
|
294 |
+
CharacterMapping(
|
295 |
+
characters="a", ipa_symbol="ɔ", start_index=1, end_index=2
|
296 |
+
),
|
297 |
+
CharacterMapping(
|
298 |
+
characters="t", ipa_symbol="t", start_index=2, end_index=3
|
299 |
+
),
|
300 |
+
CharacterMapping(
|
301 |
+
characters="er", ipa_symbol="ər", start_index=3, end_index=5
|
302 |
+
),
|
303 |
+
],
|
304 |
+
"house": [
|
305 |
+
CharacterMapping(
|
306 |
+
characters="h", ipa_symbol="h", start_index=0, end_index=1
|
307 |
+
),
|
308 |
+
CharacterMapping(
|
309 |
+
characters="ou", ipa_symbol="aʊ", start_index=1, end_index=3
|
310 |
+
),
|
311 |
+
CharacterMapping(
|
312 |
+
characters="se", ipa_symbol="s", start_index=3, end_index=5
|
313 |
+
),
|
314 |
+
],
|
315 |
+
"yellow": [
|
316 |
+
CharacterMapping(
|
317 |
+
characters="y", ipa_symbol="j", start_index=0, end_index=1
|
318 |
+
),
|
319 |
+
CharacterMapping(
|
320 |
+
characters="e", ipa_symbol="ɛ", start_index=1, end_index=2
|
321 |
+
),
|
322 |
+
CharacterMapping(
|
323 |
+
characters="ll", ipa_symbol="l", start_index=2, end_index=4
|
324 |
+
),
|
325 |
+
CharacterMapping(
|
326 |
+
characters="ow", ipa_symbol="oʊ", start_index=4, end_index=6
|
327 |
+
),
|
328 |
+
],
|
329 |
+
"about": [
|
330 |
+
CharacterMapping(
|
331 |
+
characters="a", ipa_symbol="ə", start_index=0, end_index=1
|
332 |
+
),
|
333 |
+
CharacterMapping(
|
334 |
+
characters="b", ipa_symbol="b", start_index=1, end_index=2
|
335 |
+
),
|
336 |
+
CharacterMapping(
|
337 |
+
characters="ou", ipa_symbol="aʊ", start_index=2, end_index=4
|
338 |
+
),
|
339 |
+
CharacterMapping(
|
340 |
+
characters="t", ipa_symbol="t", start_index=4, end_index=5
|
341 |
+
),
|
342 |
+
],
|
343 |
+
# Hard words
|
344 |
+
"think": [
|
345 |
+
CharacterMapping(
|
346 |
+
characters="th", ipa_symbol="θ", start_index=0, end_index=2
|
347 |
+
),
|
348 |
+
CharacterMapping(
|
349 |
+
characters="i", ipa_symbol="ɪ", start_index=2, end_index=3
|
350 |
+
),
|
351 |
+
CharacterMapping(
|
352 |
+
characters="nk", ipa_symbol="ŋk", start_index=3, end_index=5
|
353 |
+
),
|
354 |
+
],
|
355 |
+
"this": [
|
356 |
+
CharacterMapping(
|
357 |
+
characters="th", ipa_symbol="ð", start_index=0, end_index=2
|
358 |
+
),
|
359 |
+
CharacterMapping(
|
360 |
+
characters="i", ipa_symbol="ɪ", start_index=2, end_index=3
|
361 |
+
),
|
362 |
+
CharacterMapping(
|
363 |
+
characters="s", ipa_symbol="s", start_index=3, end_index=4
|
364 |
+
),
|
365 |
+
],
|
366 |
+
"very": [
|
367 |
+
CharacterMapping(
|
368 |
+
characters="v", ipa_symbol="v", start_index=0, end_index=1
|
369 |
+
),
|
370 |
+
CharacterMapping(
|
371 |
+
characters="e", ipa_symbol="ɛ", start_index=1, end_index=2
|
372 |
+
),
|
373 |
+
CharacterMapping(
|
374 |
+
characters="r", ipa_symbol="r", start_index=2, end_index=3
|
375 |
+
),
|
376 |
+
CharacterMapping(
|
377 |
+
characters="y", ipa_symbol="i", start_index=3, end_index=4
|
378 |
+
),
|
379 |
+
],
|
380 |
+
"through": [
|
381 |
+
CharacterMapping(
|
382 |
+
characters="th", ipa_symbol="θ", start_index=0, end_index=2
|
383 |
+
),
|
384 |
+
CharacterMapping(
|
385 |
+
characters="r", ipa_symbol="r", start_index=2, end_index=3
|
386 |
+
),
|
387 |
+
CharacterMapping(
|
388 |
+
characters="ough", ipa_symbol="u", start_index=3, end_index=7
|
389 |
+
),
|
390 |
+
],
|
391 |
+
"measure": [
|
392 |
+
CharacterMapping(
|
393 |
+
characters="m", ipa_symbol="m", start_index=0, end_index=1
|
394 |
+
),
|
395 |
+
CharacterMapping(
|
396 |
+
characters="ea", ipa_symbol="ɛ", start_index=1, end_index=3
|
397 |
+
),
|
398 |
+
CharacterMapping(
|
399 |
+
characters="s", ipa_symbol="ʒ", start_index=3, end_index=4
|
400 |
+
),
|
401 |
+
CharacterMapping(
|
402 |
+
characters="ure", ipa_symbol="ər", start_index=4, end_index=7
|
403 |
+
),
|
404 |
+
],
|
405 |
+
}
|
406 |
+
|
407 |
+
# Check if we have a predefined mapping
|
408 |
+
if word.lower() in word_mappings:
|
409 |
+
return word_mappings[word.lower()]
|
410 |
+
|
411 |
+
# If no predefined mapping, try to create a basic mapping
|
412 |
+
# This is a simplified approach - in production, you'd use a more sophisticated G2P system
|
413 |
+
mappings = []
|
414 |
+
char_index = 0
|
415 |
+
|
416 |
+
# Basic character-by-character mapping (fallback)
|
417 |
+
for i, char in enumerate(word.lower()):
|
418 |
+
if char.isalpha():
|
419 |
+
mappings.append(
|
420 |
+
CharacterMapping(
|
421 |
+
characters=word[i],
|
422 |
+
ipa_symbol=char, # Simplified - would need actual phoneme mapping
|
423 |
+
start_index=i,
|
424 |
+
end_index=i + 1,
|
425 |
+
)
|
426 |
+
)
|
427 |
+
|
428 |
+
return mappings
|
429 |
+
|
430 |
+
|
431 |
+
class IPASymbol(BaseModel):
|
432 |
+
symbol: str
|
433 |
+
description: str
|
434 |
+
example_word: str
|
435 |
+
audio_example: Optional[str] = None
|
436 |
+
category: str # vowel, consonant, diphthong
|
437 |
+
difficulty_level: str # easy, medium, hard
|
438 |
+
vietnamese_tip: str
|
439 |
+
character_mapping: Optional[List[CharacterMapping]] = None
|
440 |
+
|
441 |
+
|
442 |
+
class IPALesson(BaseModel):
|
443 |
+
id: str
|
444 |
+
title: str
|
445 |
+
description: str
|
446 |
+
symbols: List[IPASymbol]
|
447 |
+
difficulty: str
|
448 |
+
estimated_time: int # minutes
|
449 |
+
|
450 |
+
|
451 |
+
class IPAWord(BaseModel):
|
452 |
+
word: str
|
453 |
+
ipa: str
|
454 |
+
phonemes: List[str]
|
455 |
+
difficulty: str
|
456 |
+
meaning: str
|
457 |
+
example_sentence: str
|
458 |
+
character_mapping: Optional[List[CharacterMapping]] = None
|
459 |
+
|
460 |
+
|
461 |
+
class IPAExercise(BaseModel):
|
462 |
+
word: str
|
463 |
+
ipa: str
|
464 |
+
phonemes: List[str]
|
465 |
+
hints: List[str]
|
466 |
+
difficulty: str
|
467 |
+
|
468 |
+
|
469 |
+
# IPA Symbol data for Vietnamese learners
|
470 |
+
IPA_SYMBOLS_DATA = {
|
471 |
+
# Vowels - Easy
|
472 |
+
"i": {
|
473 |
+
"desc": "High front unrounded vowel",
|
474 |
+
"word": "see",
|
475 |
+
"tip": "Như âm 'i' trong tiếng Việt nhưng dài hơn",
|
476 |
+
"category": "vowel",
|
477 |
+
"difficulty": "easy",
|
478 |
+
},
|
479 |
+
"u": {
|
480 |
+
"desc": "High back rounded vowel",
|
481 |
+
"word": "food",
|
482 |
+
"tip": "Như âm 'u' trong tiếng Việt nhưng dài hơn",
|
483 |
+
"category": "vowel",
|
484 |
+
"difficulty": "easy",
|
485 |
+
},
|
486 |
+
"ɑ": {
|
487 |
+
"desc": "Low back unrounded vowel",
|
488 |
+
"word": "father",
|
489 |
+
"tip": "Mở miệng rộng, âm 'a' sâu",
|
490 |
+
"category": "vowel",
|
491 |
+
"difficulty": "easy",
|
492 |
+
},
|
493 |
+
"ɛ": {
|
494 |
+
"desc": "Mid front unrounded vowel",
|
495 |
+
"word": "bed",
|
496 |
+
"tip": "Giống âm 'e' trong 'đẹp'",
|
497 |
+
"category": "vowel",
|
498 |
+
"difficulty": "easy",
|
499 |
+
},
|
500 |
+
"ɔ": {
|
501 |
+
"desc": "Mid back rounded vowel",
|
502 |
+
"word": "saw",
|
503 |
+
"tip": "Âm 'o' tròn môi",
|
504 |
+
"category": "vowel",
|
505 |
+
"difficulty": "easy",
|
506 |
+
},
|
507 |
+
# Vowels - Medium
|
508 |
+
"ɪ": {
|
509 |
+
"desc": "Near-close near-front unrounded vowel",
|
510 |
+
"word": "sit",
|
511 |
+
"tip": "Âm 'i' ngắn, không kéo dài",
|
512 |
+
"category": "vowel",
|
513 |
+
"difficulty": "medium",
|
514 |
+
},
|
515 |
+
"ʊ": {
|
516 |
+
"desc": "Near-close near-back rounded vowel",
|
517 |
+
"word": "put",
|
518 |
+
"tip": "Âm 'u' ngắn, tròn môi nhẹ",
|
519 |
+
"category": "vowel",
|
520 |
+
"difficulty": "medium",
|
521 |
+
},
|
522 |
+
"ʌ": {
|
523 |
+
"desc": "Mid central unrounded vowel",
|
524 |
+
"word": "cup",
|
525 |
+
"tip": "Âm 'ơ' nhưng mở miệng hơn",
|
526 |
+
"category": "vowel",
|
527 |
+
"difficulty": "medium",
|
528 |
+
},
|
529 |
+
"æ": {
|
530 |
+
"desc": "Near-open front unrounded vowel",
|
531 |
+
"word": "cat",
|
532 |
+
"tip": "Mở miệng rộng, âm 'a' phẳng",
|
533 |
+
"category": "vowel",
|
534 |
+
"difficulty": "medium",
|
535 |
+
},
|
536 |
+
"ə": {
|
537 |
+
"desc": "Schwa - mid central vowel",
|
538 |
+
"word": "about",
|
539 |
+
"tip": "Âm yếu 'ơ', thư giãn cơ miệng",
|
540 |
+
"category": "vowel",
|
541 |
+
"difficulty": "medium",
|
542 |
+
},
|
543 |
+
# Diphthongs
|
544 |
+
"eɪ": {
|
545 |
+
"desc": "Diphthong from e to i",
|
546 |
+
"word": "say",
|
547 |
+
"tip": "Từ 'e' trượt lên 'i'",
|
548 |
+
"category": "diphthong",
|
549 |
+
"difficulty": "medium",
|
550 |
+
},
|
551 |
+
"aɪ": {
|
552 |
+
"desc": "Diphthong from a to i",
|
553 |
+
"word": "my",
|
554 |
+
"tip": "Từ 'a' trượt lên 'i'",
|
555 |
+
"category": "diphthong",
|
556 |
+
"difficulty": "medium",
|
557 |
+
},
|
558 |
+
"ɔɪ": {
|
559 |
+
"desc": "Diphthong from o to i",
|
560 |
+
"word": "boy",
|
561 |
+
"tip": "Từ 'o' trượt lên 'i'",
|
562 |
+
"category": "diphthong",
|
563 |
+
"difficulty": "medium",
|
564 |
+
},
|
565 |
+
"aʊ": {
|
566 |
+
"desc": "Diphthong from a to u",
|
567 |
+
"word": "how",
|
568 |
+
"tip": "Từ 'a' trượt lên 'u'",
|
569 |
+
"category": "diphthong",
|
570 |
+
"difficulty": "medium",
|
571 |
+
},
|
572 |
+
"oʊ": {
|
573 |
+
"desc": "Diphthong from o to u",
|
574 |
+
"word": "go",
|
575 |
+
"tip": "Từ 'o' trượt lên 'u'",
|
576 |
+
"category": "diphthong",
|
577 |
+
"difficulty": "medium",
|
578 |
+
},
|
579 |
+
# Consonants - Easy
|
580 |
+
"p": {
|
581 |
+
"desc": "Voiceless bilabial plosive",
|
582 |
+
"word": "pen",
|
583 |
+
"tip": "Âm 'p' không thở ra",
|
584 |
+
"category": "consonant",
|
585 |
+
"difficulty": "easy",
|
586 |
+
},
|
587 |
+
"b": {
|
588 |
+
"desc": "Voiced bilabial plosive",
|
589 |
+
"word": "boy",
|
590 |
+
"tip": "Âm 'b' có rung dây thanh",
|
591 |
+
"category": "consonant",
|
592 |
+
"difficulty": "easy",
|
593 |
+
},
|
594 |
+
"t": {
|
595 |
+
"desc": "Voiceless alveolar plosive",
|
596 |
+
"word": "top",
|
597 |
+
"tip": "Âm 't' lưỡi chạm nướu",
|
598 |
+
"category": "consonant",
|
599 |
+
"difficulty": "easy",
|
600 |
+
},
|
601 |
+
"d": {
|
602 |
+
"desc": "Voiced alveolar plosive",
|
603 |
+
"word": "dog",
|
604 |
+
"tip": "Âm 'd' có rung d��y thanh",
|
605 |
+
"category": "consonant",
|
606 |
+
"difficulty": "easy",
|
607 |
+
},
|
608 |
+
"k": {
|
609 |
+
"desc": "Voiceless velar plosive",
|
610 |
+
"word": "cat",
|
611 |
+
"tip": "Âm 'k' cuống họng",
|
612 |
+
"category": "consonant",
|
613 |
+
"difficulty": "easy",
|
614 |
+
},
|
615 |
+
"g": {
|
616 |
+
"desc": "Voiced velar plosive",
|
617 |
+
"word": "go",
|
618 |
+
"tip": "Âm 'g' có rung dây thanh",
|
619 |
+
"category": "consonant",
|
620 |
+
"difficulty": "easy",
|
621 |
+
},
|
622 |
+
"m": {
|
623 |
+
"desc": "Bilabial nasal",
|
624 |
+
"word": "man",
|
625 |
+
"tip": "Âm 'm' qua mũi",
|
626 |
+
"category": "consonant",
|
627 |
+
"difficulty": "easy",
|
628 |
+
},
|
629 |
+
"n": {
|
630 |
+
"desc": "Alveolar nasal",
|
631 |
+
"word": "no",
|
632 |
+
"tip": "Âm 'n' lưỡi chạm nướu",
|
633 |
+
"category": "consonant",
|
634 |
+
"difficulty": "easy",
|
635 |
+
},
|
636 |
+
"s": {
|
637 |
+
"desc": "Voiceless alveolar fricative",
|
638 |
+
"word": "see",
|
639 |
+
"tip": "Âm 's' rít",
|
640 |
+
"category": "consonant",
|
641 |
+
"difficulty": "easy",
|
642 |
+
},
|
643 |
+
"f": {
|
644 |
+
"desc": "Voiceless labiodental fricative",
|
645 |
+
"word": "fish",
|
646 |
+
"tip": "Môi dưới chạm răng trên",
|
647 |
+
"category": "consonant",
|
648 |
+
"difficulty": "easy",
|
649 |
+
},
|
650 |
+
# Consonants - Medium
|
651 |
+
"ʃ": {
|
652 |
+
"desc": "Voiceless postalveolar fricative",
|
653 |
+
"word": "ship",
|
654 |
+
"tip": "Âm 'sh', lưỡi cong",
|
655 |
+
"category": "consonant",
|
656 |
+
"difficulty": "medium",
|
657 |
+
},
|
658 |
+
"ʒ": {
|
659 |
+
"desc": "Voiced postalveolar fricative",
|
660 |
+
"word": "measure",
|
661 |
+
"tip": "Như 'ʃ' nhưng có rung dây thanh",
|
662 |
+
"category": "consonant",
|
663 |
+
"difficulty": "medium",
|
664 |
+
},
|
665 |
+
"tʃ": {
|
666 |
+
"desc": "Voiceless postalveolar affricate",
|
667 |
+
"word": "chair",
|
668 |
+
"tip": "Âm 'ch', từ 't' + 'ʃ'",
|
669 |
+
"category": "consonant",
|
670 |
+
"difficulty": "medium",
|
671 |
+
},
|
672 |
+
"dʒ": {
|
673 |
+
"desc": "Voiced postalveolar affricate",
|
674 |
+
"word": "job",
|
675 |
+
"tip": "Từ 'd' + 'ʒ'",
|
676 |
+
"category": "consonant",
|
677 |
+
"difficulty": "medium",
|
678 |
+
},
|
679 |
+
"l": {
|
680 |
+
"desc": "Lateral approximant",
|
681 |
+
"word": "love",
|
682 |
+
"tip": "Lưỡi chạm nướu, âm thoát hai bên",
|
683 |
+
"category": "consonant",
|
684 |
+
"difficulty": "medium",
|
685 |
+
},
|
686 |
+
"r": {
|
687 |
+
"desc": "Approximant",
|
688 |
+
"word": "red",
|
689 |
+
"tip": "Cuộn lưỡi nhẹ, không chạm vòm",
|
690 |
+
"category": "consonant",
|
691 |
+
"difficulty": "medium",
|
692 |
+
},
|
693 |
+
"j": {
|
694 |
+
"desc": "Palatal approximant",
|
695 |
+
"word": "yes",
|
696 |
+
"tip": "Âm 'y', lưỡi gần vòm miệng",
|
697 |
+
"category": "consonant",
|
698 |
+
"difficulty": "medium",
|
699 |
+
},
|
700 |
+
"w": {
|
701 |
+
"desc": "Labial-velar approximant",
|
702 |
+
"word": "we",
|
703 |
+
"tip": "Tròn môi như 'u', không dùng răng",
|
704 |
+
"category": "consonant",
|
705 |
+
"difficulty": "medium",
|
706 |
+
},
|
707 |
+
"h": {
|
708 |
+
"desc": "Glottal fricative",
|
709 |
+
"word": "house",
|
710 |
+
"tip": "Thở ra nhẹ từ họng",
|
711 |
+
"category": "consonant",
|
712 |
+
"difficulty": "medium",
|
713 |
+
},
|
714 |
+
"z": {
|
715 |
+
"desc": "Voiced alveolar fricative",
|
716 |
+
"word": "zoo",
|
717 |
+
"tip": "Như 's' nhưng có rung dây thanh",
|
718 |
+
"category": "consonant",
|
719 |
+
"difficulty": "medium",
|
720 |
+
},
|
721 |
+
# Consonants - Hard (for Vietnamese speakers)
|
722 |
+
"θ": {
|
723 |
+
"desc": "Voiceless dental fricative",
|
724 |
+
"word": "think",
|
725 |
+
"tip": "Lưỡi giữa răng, thổi nhẹ",
|
726 |
+
"category": "consonant",
|
727 |
+
"difficulty": "hard",
|
728 |
+
},
|
729 |
+
"ð": {
|
730 |
+
"desc": "Voiced dental fricative",
|
731 |
+
"word": "this",
|
732 |
+
"tip": "Lưỡi giữa răng, rung dây thanh",
|
733 |
+
"category": "consonant",
|
734 |
+
"difficulty": "hard",
|
735 |
+
},
|
736 |
+
"v": {
|
737 |
+
"desc": "Voiced labiodental fricative",
|
738 |
+
"word": "very",
|
739 |
+
"tip": "Môi dưới chạm răng trên, rung dây thanh",
|
740 |
+
"category": "consonant",
|
741 |
+
"difficulty": "hard",
|
742 |
+
},
|
743 |
+
"ŋ": {
|
744 |
+
"desc": "Velar nasal",
|
745 |
+
"word": "sing",
|
746 |
+
"tip": "Âm 'ng' cuối từ",
|
747 |
+
"category": "consonant",
|
748 |
+
"difficulty": "hard",
|
749 |
+
},
|
750 |
+
}
|
751 |
+
|
752 |
+
# Sample word database for each difficulty level
|
753 |
+
SAMPLE_WORDS = {
|
754 |
+
"easy": [
|
755 |
+
{
|
756 |
+
"word": "cat",
|
757 |
+
"ipa": "/kæt/",
|
758 |
+
"meaning": "con mèo",
|
759 |
+
"sentence": "The cat is sleeping.",
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"word": "dog",
|
763 |
+
"ipa": "/dɔg/",
|
764 |
+
"meaning": "con chó",
|
765 |
+
"sentence": "I love my dog.",
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"word": "man",
|
769 |
+
"ipa": "/mæn/",
|
770 |
+
"meaning": "người đàn ông",
|
771 |
+
"sentence": "The man is tall.",
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"word": "pen",
|
775 |
+
"ipa": "/pɛn/",
|
776 |
+
"meaning": "cái bút",
|
777 |
+
"sentence": "I need a pen.",
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"word": "sun",
|
781 |
+
"ipa": "/sʌn/",
|
782 |
+
"meaning": "mặt trời",
|
783 |
+
"sentence": "The sun is bright.",
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"word": "fish",
|
787 |
+
"ipa": "/fɪʃ/",
|
788 |
+
"meaning": "con cá",
|
789 |
+
"sentence": "Fish live in water.",
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"word": "book",
|
793 |
+
"ipa": "/bʊk/",
|
794 |
+
"meaning": "quyển sách",
|
795 |
+
"sentence": "I read a book.",
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"word": "food",
|
799 |
+
"ipa": "/fud/",
|
800 |
+
"meaning": "thức ăn",
|
801 |
+
"sentence": "I like good food.",
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"word": "see",
|
805 |
+
"ipa": "/si/",
|
806 |
+
"meaning": "nhìn thấy",
|
807 |
+
"sentence": "I can see you.",
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"word": "bed",
|
811 |
+
"ipa": "/bɛd/",
|
812 |
+
"meaning": "giường",
|
813 |
+
"sentence": "I sleep in my bed.",
|
814 |
+
},
|
815 |
+
],
|
816 |
+
"medium": [
|
817 |
+
{
|
818 |
+
"word": "water",
|
819 |
+
"ipa": "/ˈwɔtər/",
|
820 |
+
"meaning": "nước",
|
821 |
+
"sentence": "I drink water every day.",
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"word": "chair",
|
825 |
+
"ipa": "/tʃɛr/",
|
826 |
+
"meaning": "cái ghế",
|
827 |
+
"sentence": "Please sit on the chair.",
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"word": "school",
|
831 |
+
"ipa": "/skul/",
|
832 |
+
"meaning": "trường học",
|
833 |
+
"sentence": "Children go to school.",
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"word": "mother",
|
837 |
+
"ipa": "/ˈmʌðər/",
|
838 |
+
"meaning": "mẹ",
|
839 |
+
"sentence": "My mother is kind.",
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"word": "house",
|
843 |
+
"ipa": "/haʊs/",
|
844 |
+
"meaning": "ngôi nhà",
|
845 |
+
"sentence": "I live in a big house.",
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"word": "yellow",
|
849 |
+
"ipa": "/ˈjɛloʊ/",
|
850 |
+
"meaning": "màu vàng",
|
851 |
+
"sentence": "The sun is yellow.",
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"word": "measure",
|
855 |
+
"ipa": "/ˈmɛʒər/",
|
856 |
+
"meaning": "đo lường",
|
857 |
+
"sentence": "Please measure the length.",
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"word": "pleasure",
|
861 |
+
"ipa": "/ˈplɛʒər/",
|
862 |
+
"meaning": "niềm vui",
|
863 |
+
"sentence": "It's a pleasure to meet you.",
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"word": "about",
|
867 |
+
"ipa": "/əˈbaʊt/",
|
868 |
+
"meaning": "về",
|
869 |
+
"sentence": "Tell me about your day.",
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"word": "family",
|
873 |
+
"ipa": "/ˈfæməli/",
|
874 |
+
"meaning": "gia đình",
|
875 |
+
"sentence": "I love my family.",
|
876 |
+
},
|
877 |
+
],
|
878 |
+
"hard": [
|
879 |
+
{
|
880 |
+
"word": "think",
|
881 |
+
"ipa": "/θɪŋk/",
|
882 |
+
"meaning": "suy nghĩ",
|
883 |
+
"sentence": "I think you are right.",
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"word": "this",
|
887 |
+
"ipa": "/ðɪs/",
|
888 |
+
"meaning": "cái này",
|
889 |
+
"sentence": "This is my book.",
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"word": "very",
|
893 |
+
"ipa": "/ˈvɛri/",
|
894 |
+
"meaning": "rất",
|
895 |
+
"sentence": "You are very smart.",
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"word": "through",
|
899 |
+
"ipa": "/θru/",
|
900 |
+
"meaning": "qua",
|
901 |
+
"sentence": "Walk through the door.",
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"word": "weather",
|
905 |
+
"ipa": "/ˈwɛðər/",
|
906 |
+
"meaning": "thời tiết",
|
907 |
+
"sentence": "The weather is nice.",
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"word": "voice",
|
911 |
+
"ipa": "/vɔɪs/",
|
912 |
+
"meaning": "giọng nói",
|
913 |
+
"sentence": "She has a beautiful voice.",
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"word": "clothes",
|
917 |
+
"ipa": "/kloʊðz/",
|
918 |
+
"meaning": "quần áo",
|
919 |
+
"sentence": "I need new clothes.",
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"word": "breathe",
|
923 |
+
"ipa": "/brið/",
|
924 |
+
"meaning": "thở",
|
925 |
+
"sentence": "Breathe slowly and deeply.",
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"word": "although",
|
929 |
+
"ipa": "/ɔlˈðoʊ/",
|
930 |
+
"meaning": "mặc dù",
|
931 |
+
"sentence": "Although it's cold, I'm happy.",
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"word": "rhythm",
|
935 |
+
"ipa": "/ˈrɪðəm/",
|
936 |
+
"meaning": "nhịp điệu",
|
937 |
+
"sentence": "Music has a good rhythm.",
|
938 |
+
},
|
939 |
+
],
|
940 |
+
}
|
941 |
+
|
942 |
+
|
943 |
+
@router.get("/symbols", response_model=List[IPASymbol])
|
944 |
+
async def get_ipa_symbols(
|
945 |
+
category: Optional[str] = Query(
|
946 |
+
None, description="Filter by category: vowel, consonant, diphthong"
|
947 |
+
)
|
948 |
+
):
|
949 |
+
"""Get all IPA symbols with Vietnamese tips and character mappings"""
|
950 |
+
try:
|
951 |
+
symbols = []
|
952 |
+
for symbol, data in IPA_SYMBOLS_DATA.items():
|
953 |
+
if category and data["category"] != category:
|
954 |
+
continue
|
955 |
+
|
956 |
+
# Get character mapping for the example word
|
957 |
+
character_mapping = map_ipa_to_characters(data["word"], symbol)
|
958 |
+
|
959 |
+
symbols.append(
|
960 |
+
IPASymbol(
|
961 |
+
symbol=symbol,
|
962 |
+
description=data["desc"],
|
963 |
+
example_word=data["word"],
|
964 |
+
category=data["category"],
|
965 |
+
difficulty_level=data["difficulty"],
|
966 |
+
vietnamese_tip=data["tip"],
|
967 |
+
character_mapping=character_mapping,
|
968 |
+
)
|
969 |
+
)
|
970 |
+
|
971 |
+
# Sort by difficulty and then by symbol
|
972 |
+
difficulty_order = {"easy": 0, "medium": 1, "hard": 2}
|
973 |
+
symbols.sort(key=lambda x: (difficulty_order[x.difficulty_level], x.symbol))
|
974 |
+
|
975 |
+
return symbols
|
976 |
+
except Exception as e:
|
977 |
+
logger.error(f"Error getting IPA symbols: {e}")
|
978 |
+
raise HTTPException(status_code=500, detail=str(e))
|
979 |
+
|
980 |
+
|
981 |
+
@router.get("/lessons", response_model=List[IPALesson])
|
982 |
+
async def get_ipa_lessons():
|
983 |
+
"""Get structured IPA lessons for progressive learning"""
|
984 |
+
try:
|
985 |
+
lessons = [
|
986 |
+
{
|
987 |
+
"id": "vowels_basic",
|
988 |
+
"title": "Nguyên âm cơ bản (Basic Vowels)",
|
989 |
+
"description": "Học các nguyên âm đơn giản nhất trong tiếng Anh",
|
990 |
+
"symbols": [
|
991 |
+
s
|
992 |
+
for s in IPA_SYMBOLS_DATA.keys()
|
993 |
+
if IPA_SYMBOLS_DATA[s]["category"] == "vowel"
|
994 |
+
and IPA_SYMBOLS_DATA[s]["difficulty"] == "easy"
|
995 |
+
],
|
996 |
+
"difficulty": "easy",
|
997 |
+
"estimated_time": 15,
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"id": "consonants_basic",
|
1001 |
+
"title": "Phụ âm cơ bản (Basic Consonants)",
|
1002 |
+
"description": "Các phụ âm dễ phát âm cho người Việt",
|
1003 |
+
"symbols": [
|
1004 |
+
s
|
1005 |
+
for s in IPA_SYMBOLS_DATA.keys()
|
1006 |
+
if IPA_SYMBOLS_DATA[s]["category"] == "consonant"
|
1007 |
+
and IPA_SYMBOLS_DATA[s]["difficulty"] == "easy"
|
1008 |
+
],
|
1009 |
+
"difficulty": "easy",
|
1010 |
+
"estimated_time": 20,
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"id": "vowels_intermediate",
|
1014 |
+
"title": "Nguyên âm nâng cao (Intermediate Vowels)",
|
1015 |
+
"description": "Các nguyên âm khó hơn, cần luyện tập kỹ",
|
1016 |
+
"symbols": [
|
1017 |
+
s
|
1018 |
+
for s in IPA_SYMBOLS_DATA.keys()
|
1019 |
+
if IPA_SYMBOLS_DATA[s]["category"] == "vowel"
|
1020 |
+
and IPA_SYMBOLS_DATA[s]["difficulty"] == "medium"
|
1021 |
+
],
|
1022 |
+
"difficulty": "medium",
|
1023 |
+
"estimated_time": 25,
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"id": "diphthongs",
|
1027 |
+
"title": "Nguyên âm đôi (Diphthongs)",
|
1028 |
+
"description": "Học cách phát âm nguyên âm đôi tự nhiên",
|
1029 |
+
"symbols": [
|
1030 |
+
s
|
1031 |
+
for s in IPA_SYMBOLS_DATA.keys()
|
1032 |
+
if IPA_SYMBOLS_DATA[s]["category"] == "diphthong"
|
1033 |
+
],
|
1034 |
+
"difficulty": "medium",
|
1035 |
+
"estimated_time": 20,
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"id": "consonants_intermediate",
|
1039 |
+
"title": "Phụ âm trung cấp (Intermediate Consonants)",
|
1040 |
+
"description": "Các phụ âm cần luyện tập cho người Việt",
|
1041 |
+
"symbols": [
|
1042 |
+
s
|
1043 |
+
for s in IPA_SYMBOLS_DATA.keys()
|
1044 |
+
if IPA_SYMBOLS_DATA[s]["category"] == "consonant"
|
1045 |
+
and IPA_SYMBOLS_DATA[s]["difficulty"] == "medium"
|
1046 |
+
],
|
1047 |
+
"difficulty": "medium",
|
1048 |
+
"estimated_time": 30,
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"id": "difficult_sounds",
|
1052 |
+
"title": "Âm khó (Difficult Sounds)",
|
1053 |
+
"description": "Những âm khó nhất cho người Việt: th, v, z",
|
1054 |
+
"symbols": [
|
1055 |
+
s
|
1056 |
+
for s in IPA_SYMBOLS_DATA.keys()
|
1057 |
+
if IPA_SYMBOLS_DATA[s]["difficulty"] == "hard"
|
1058 |
+
],
|
1059 |
+
"difficulty": "hard",
|
1060 |
+
"estimated_time": 40,
|
1061 |
+
},
|
1062 |
+
]
|
1063 |
+
|
1064 |
+
# Convert to proper lesson objects
|
1065 |
+
lesson_objects = []
|
1066 |
+
for lesson in lessons:
|
1067 |
+
symbol_objects = []
|
1068 |
+
for symbol_key in lesson["symbols"]:
|
1069 |
+
data = IPA_SYMBOLS_DATA[symbol_key]
|
1070 |
+
# Get character mapping for the example word
|
1071 |
+
character_mapping = map_ipa_to_characters(data["word"], symbol_key)
|
1072 |
+
|
1073 |
+
symbol_objects.append(
|
1074 |
+
IPASymbol(
|
1075 |
+
symbol=symbol_key,
|
1076 |
+
description=data["desc"],
|
1077 |
+
example_word=data["word"],
|
1078 |
+
category=data["category"],
|
1079 |
+
difficulty_level=data["difficulty"],
|
1080 |
+
vietnamese_tip=data["tip"],
|
1081 |
+
character_mapping=character_mapping,
|
1082 |
+
)
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
lesson_objects.append(
|
1086 |
+
IPALesson(
|
1087 |
+
id=lesson["id"],
|
1088 |
+
title=lesson["title"],
|
1089 |
+
description=lesson["description"],
|
1090 |
+
symbols=symbol_objects,
|
1091 |
+
difficulty=lesson["difficulty"],
|
1092 |
+
estimated_time=lesson["estimated_time"],
|
1093 |
+
)
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
return lesson_objects
|
1097 |
+
except Exception as e:
|
1098 |
+
logger.error(f"Error getting IPA lessons: {e}")
|
1099 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1100 |
+
|
1101 |
+
|
1102 |
+
@router.get("/words", response_model=List[IPAWord])
|
1103 |
+
async def get_practice_words(
|
1104 |
+
difficulty: str = Query("easy", description="Difficulty level: easy, medium, hard")
|
1105 |
+
):
|
1106 |
+
"""Get practice words with IPA transcription and character mappings"""
|
1107 |
+
try:
|
1108 |
+
if difficulty not in ["easy", "medium", "hard"]:
|
1109 |
+
difficulty = "easy"
|
1110 |
+
|
1111 |
+
words_data = SAMPLE_WORDS.get(difficulty, SAMPLE_WORDS["easy"])
|
1112 |
+
|
1113 |
+
words = []
|
1114 |
+
for word_data in words_data:
|
1115 |
+
# Get phonemes using G2P
|
1116 |
+
try:
|
1117 |
+
phoneme_data = g2p.text_to_phonemes(word_data["word"])[0]
|
1118 |
+
phonemes = phoneme_data["phonemes"]
|
1119 |
+
except:
|
1120 |
+
# Fallback to simple conversion
|
1121 |
+
phonemes = list(word_data["word"].lower())
|
1122 |
+
|
1123 |
+
# Calculate difficulty
|
1124 |
+
difficulty_score = 0.0
|
1125 |
+
for phoneme in phonemes:
|
1126 |
+
difficulty_score += g2p.get_difficulty_score(phoneme)
|
1127 |
+
avg_difficulty = difficulty_score / len(phonemes) if phonemes else 0.3
|
1128 |
+
|
1129 |
+
word_difficulty = (
|
1130 |
+
"hard"
|
1131 |
+
if avg_difficulty > 0.6
|
1132 |
+
else "medium" if avg_difficulty > 0.4 else "easy"
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
# Get character mapping for the word
|
1136 |
+
character_mapping = map_word_to_phonemes(
|
1137 |
+
word_data["word"], word_data["ipa"]
|
1138 |
+
)
|
1139 |
+
|
1140 |
+
words.append(
|
1141 |
+
IPAWord(
|
1142 |
+
word=word_data["word"],
|
1143 |
+
ipa=word_data["ipa"],
|
1144 |
+
phonemes=phonemes,
|
1145 |
+
difficulty=word_difficulty,
|
1146 |
+
meaning=word_data["meaning"],
|
1147 |
+
example_sentence=word_data["sentence"],
|
1148 |
+
character_mapping=character_mapping,
|
1149 |
+
)
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
return words
|
1153 |
+
except Exception as e:
|
1154 |
+
logger.error(f"Error getting practice words: {e}")
|
1155 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1156 |
+
|
1157 |
+
|
1158 |
+
@router.get("/exercises", response_model=List[IPAExercise])
|
1159 |
+
async def get_ipa_exercises(
|
1160 |
+
count: int = Query(5, ge=1, le=20), difficulty: str = Query("mixed")
|
1161 |
+
):
|
1162 |
+
"""Generate random IPA pronunciation exercises"""
|
1163 |
+
try:
|
1164 |
+
exercises = []
|
1165 |
+
|
1166 |
+
# Select words based on difficulty
|
1167 |
+
if difficulty == "mixed":
|
1168 |
+
all_words = []
|
1169 |
+
for level in SAMPLE_WORDS.values():
|
1170 |
+
all_words.extend(level)
|
1171 |
+
selected_words = random.sample(all_words, min(count, len(all_words)))
|
1172 |
+
else:
|
1173 |
+
if difficulty not in SAMPLE_WORDS:
|
1174 |
+
difficulty = "easy"
|
1175 |
+
word_pool = SAMPLE_WORDS[difficulty]
|
1176 |
+
selected_words = random.sample(word_pool, min(count, len(word_pool)))
|
1177 |
+
|
1178 |
+
for word_data in selected_words:
|
1179 |
+
# Get phonemes
|
1180 |
+
try:
|
1181 |
+
phoneme_data = g2p.text_to_phonemes(word_data["word"])[0]
|
1182 |
+
phonemes = phoneme_data["phonemes"]
|
1183 |
+
except:
|
1184 |
+
phonemes = list(word_data["word"].lower())
|
1185 |
+
|
1186 |
+
# Generate hints
|
1187 |
+
hints = [
|
1188 |
+
f"Nghĩa: {word_data['meaning']}",
|
1189 |
+
f"Ví dụ: {word_data['sentence']}",
|
1190 |
+
f"Số âm tiết: {len(phonemes)}",
|
1191 |
+
]
|
1192 |
+
|
1193 |
+
# Add specific pronunciation hints for difficult sounds
|
1194 |
+
difficult_sounds = []
|
1195 |
+
for phoneme in phonemes:
|
1196 |
+
if phoneme in ["θ", "ð", "v", "z", "ʒ", "r", "w"]:
|
1197 |
+
difficult_sounds.append(phoneme)
|
1198 |
+
|
1199 |
+
if difficult_sounds:
|
1200 |
+
for sound in difficult_sounds:
|
1201 |
+
if sound in IPA_SYMBOLS_DATA:
|
1202 |
+
hints.append(f"Âm /{sound}/: {IPA_SYMBOLS_DATA[sound]['tip']}")
|
1203 |
+
|
1204 |
+
exercises.append(
|
1205 |
+
IPAExercise(
|
1206 |
+
word=word_data["word"],
|
1207 |
+
ipa=word_data["ipa"],
|
1208 |
+
phonemes=phonemes,
|
1209 |
+
hints=hints,
|
1210 |
+
difficulty=difficulty if difficulty != "mixed" else "easy",
|
1211 |
+
)
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
return exercises
|
1215 |
+
except Exception as e:
|
1216 |
+
logger.error(f"Error generating IPA exercises: {e}")
|
1217 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1218 |
+
|
1219 |
+
|
1220 |
+
@router.get("/symbol/{symbol}")
|
1221 |
+
async def get_symbol_details(symbol: str):
|
1222 |
+
"""Get detailed information about a specific IPA symbol"""
|
1223 |
+
try:
|
1224 |
+
if symbol not in IPA_SYMBOLS_DATA:
|
1225 |
+
raise HTTPException(
|
1226 |
+
status_code=404, detail=f"IPA symbol '{symbol}' not found"
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
data = IPA_SYMBOLS_DATA[symbol]
|
1230 |
+
|
1231 |
+
# Find words containing this symbol
|
1232 |
+
example_words = []
|
1233 |
+
for difficulty_level, words in SAMPLE_WORDS.items():
|
1234 |
+
for word_data in words:
|
1235 |
+
if symbol in word_data["ipa"]:
|
1236 |
+
example_words.append(
|
1237 |
+
{
|
1238 |
+
"word": word_data["word"],
|
1239 |
+
"ipa": word_data["ipa"],
|
1240 |
+
"meaning": word_data["meaning"],
|
1241 |
+
"difficulty": difficulty_level,
|
1242 |
+
}
|
1243 |
+
)
|
1244 |
+
if len(example_words) >= 5: # Limit to 5 examples
|
1245 |
+
break
|
1246 |
+
if len(example_words) >= 5:
|
1247 |
+
break
|
1248 |
+
|
1249 |
+
return {
|
1250 |
+
"symbol": symbol,
|
1251 |
+
"description": data["desc"],
|
1252 |
+
"example_word": data["word"],
|
1253 |
+
"category": data["category"],
|
1254 |
+
"difficulty_level": data["difficulty"],
|
1255 |
+
"vietnamese_tip": data["tip"],
|
1256 |
+
"difficulty_score": g2p.get_difficulty_score(symbol),
|
1257 |
+
"example_words": example_words,
|
1258 |
+
"practice_tips": _get_practice_tips(symbol),
|
1259 |
+
}
|
1260 |
+
except HTTPException:
|
1261 |
+
raise
|
1262 |
+
except Exception as e:
|
1263 |
+
logger.error(f"Error getting symbol details: {e}")
|
1264 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1265 |
+
|
1266 |
+
|
1267 |
+
def _get_practice_tips(symbol: str) -> List[str]:
|
1268 |
+
"""Get specific practice tips for a symbol"""
|
1269 |
+
tips_map = {
|
1270 |
+
"θ": [
|
1271 |
+
"Đặt đầu lưỡi giữa răng trên và răng dưới",
|
1272 |
+
"Thổi khí nhẹ qua kẽ răng",
|
1273 |
+
"Không rung dây thanh âm",
|
1274 |
+
"Luyện với từ: think, three, thank",
|
1275 |
+
],
|
1276 |
+
"ð": [
|
1277 |
+
"Vị trí lưỡi giống như âm θ",
|
1278 |
+
"Nhưng phải rung dây thanh âm",
|
1279 |
+
"Cảm nhận rung động ở cổ họng",
|
1280 |
+
"Luyện với từ: this, that, brother",
|
1281 |
+
],
|
1282 |
+
"v": [
|
1283 |
+
"Môi dưới chạm vào răng trên",
|
1284 |
+
"Không dùng cả hai môi như tiếng Việt",
|
1285 |
+
"Rung dây thanh âm",
|
1286 |
+
"Luyện với từ: very, voice, love",
|
1287 |
+
],
|
1288 |
+
"r": [
|
1289 |
+
"Cuộn lưỡi nhẹ nhàng",
|
1290 |
+
"Không để lưỡi chạm vào vòm miệng",
|
1291 |
+
"Không lăn lưỡi như tiếng Việt",
|
1292 |
+
"Luyện với từ: red, run, car",
|
1293 |
+
],
|
1294 |
+
"w": [
|
1295 |
+
"Tròn môi như phát âm 'u'",
|
1296 |
+
"Không dùng răng như âm 'v'",
|
1297 |
+
"Môi tròn rồi mở ra nhanh",
|
1298 |
+
"Luyện với từ: we, water, window",
|
1299 |
+
],
|
1300 |
+
}
|
1301 |
+
|
1302 |
+
return tips_map.get(
|
1303 |
+
symbol,
|
1304 |
+
[
|
1305 |
+
f"Luyện phát âm âm /{symbol}/ thường xuyên",
|
1306 |
+
"Nghe và bắt chước người bản ngữ",
|
1307 |
+
"Tập trung vào vị trí lưỡi và môi",
|
1308 |
+
"Luyện tập với từ đơn giản trước",
|
1309 |
+
],
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
|
1313 |
+
@router.get("/word-analysis/{word}")
|
1314 |
+
async def get_word_analysis(word: str):
|
1315 |
+
"""Get comprehensive analysis of a word for IPA learning"""
|
1316 |
+
try:
|
1317 |
+
# Get phoneme data
|
1318 |
+
phoneme_data = g2p.text_to_phonemes(word)[0]
|
1319 |
+
|
1320 |
+
# Calculate difficulty
|
1321 |
+
difficulty_scores = [
|
1322 |
+
g2p.get_difficulty_score(p) for p in phoneme_data["phonemes"]
|
1323 |
+
]
|
1324 |
+
avg_difficulty = (
|
1325 |
+
sum(difficulty_scores) / len(difficulty_scores)
|
1326 |
+
if difficulty_scores
|
1327 |
+
else 0.3
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
word_difficulty = (
|
1331 |
+
"hard"
|
1332 |
+
if avg_difficulty > 0.6
|
1333 |
+
else "medium" if avg_difficulty > 0.4 else "easy"
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
# Get detailed phoneme analysis
|
1337 |
+
phoneme_analysis = []
|
1338 |
+
for i, phoneme in enumerate(phoneme_data["phonemes"]):
|
1339 |
+
difficulty_score = g2p.get_difficulty_score(phoneme)
|
1340 |
+
|
1341 |
+
analysis = {
|
1342 |
+
"phoneme": phoneme,
|
1343 |
+
"position": i,
|
1344 |
+
"difficulty_score": difficulty_score,
|
1345 |
+
"difficulty_level": (
|
1346 |
+
"hard"
|
1347 |
+
if difficulty_score > 0.6
|
1348 |
+
else "medium" if difficulty_score > 0.4 else "easy"
|
1349 |
+
),
|
1350 |
+
"category": IPA_SYMBOLS_DATA.get(phoneme, {}).get(
|
1351 |
+
"category", "unknown"
|
1352 |
+
),
|
1353 |
+
"vietnamese_tip": IPA_SYMBOLS_DATA.get(phoneme, {}).get(
|
1354 |
+
"tip", f"Luyện âm {phoneme}"
|
1355 |
+
),
|
1356 |
+
"practice_tips": _get_practice_tips(phoneme),
|
1357 |
+
}
|
1358 |
+
phoneme_analysis.append(analysis)
|
1359 |
+
|
1360 |
+
# Find similar words for practice
|
1361 |
+
similar_words = []
|
1362 |
+
for difficulty_level, words in SAMPLE_WORDS.items():
|
1363 |
+
for word_data in words:
|
1364 |
+
if word_data["word"] != word:
|
1365 |
+
# Check if shares difficult phonemes
|
1366 |
+
word_phonemes = g2p.text_to_phonemes(word_data["word"])[0][
|
1367 |
+
"phonemes"
|
1368 |
+
]
|
1369 |
+
shared_difficult = [
|
1370 |
+
p
|
1371 |
+
for p in phoneme_data["phonemes"]
|
1372 |
+
if p in word_phonemes and g2p.get_difficulty_score(p) > 0.5
|
1373 |
+
]
|
1374 |
+
if shared_difficult:
|
1375 |
+
similar_words.append(
|
1376 |
+
{
|
1377 |
+
"word": word_data["word"],
|
1378 |
+
"ipa": word_data["ipa"],
|
1379 |
+
"meaning": word_data["meaning"],
|
1380 |
+
"shared_sounds": shared_difficult,
|
1381 |
+
"difficulty": difficulty_level,
|
1382 |
+
}
|
1383 |
+
)
|
1384 |
+
if len(similar_words) >= 5:
|
1385 |
+
break
|
1386 |
+
if len(similar_words) >= 5:
|
1387 |
+
break
|
1388 |
+
|
1389 |
+
return {
|
1390 |
+
"word": word,
|
1391 |
+
"ipa": phoneme_data["ipa"],
|
1392 |
+
"phonemes": phoneme_data["phonemes"],
|
1393 |
+
"phoneme_string": phoneme_data["phoneme_string"],
|
1394 |
+
"difficulty": word_difficulty,
|
1395 |
+
"difficulty_score": avg_difficulty,
|
1396 |
+
"phoneme_analysis": phoneme_analysis,
|
1397 |
+
"similar_words": similar_words,
|
1398 |
+
"practice_sequence": _generate_practice_sequence(phoneme_analysis),
|
1399 |
+
"common_mistakes": _get_common_mistakes(phoneme_data["phonemes"]),
|
1400 |
+
}
|
1401 |
+
|
1402 |
+
except Exception as e:
|
1403 |
+
logger.error(f"Error analyzing word '{word}': {e}")
|
1404 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1405 |
+
|
1406 |
+
|
1407 |
+
def _generate_practice_sequence(phoneme_analysis: List[Dict]) -> List[Dict]:
|
1408 |
+
"""Generate a practice sequence starting with easier sounds"""
|
1409 |
+
# Sort by difficulty
|
1410 |
+
sorted_phonemes = sorted(phoneme_analysis, key=lambda x: x["difficulty_score"])
|
1411 |
+
|
1412 |
+
sequence = []
|
1413 |
+
for phoneme_data in sorted_phonemes:
|
1414 |
+
step = {
|
1415 |
+
"step": len(sequence) + 1,
|
1416 |
+
"phoneme": phoneme_data["phoneme"],
|
1417 |
+
"focus": "Tập trung vào âm này",
|
1418 |
+
"tip": phoneme_data["vietnamese_tip"],
|
1419 |
+
"practice_words": _get_practice_words_for_phoneme(phoneme_data["phoneme"]),
|
1420 |
+
}
|
1421 |
+
sequence.append(step)
|
1422 |
+
|
1423 |
+
return sequence
|
1424 |
+
|
1425 |
+
|
1426 |
+
def _get_practice_words_for_phoneme(phoneme: str) -> List[str]:
|
1427 |
+
"""Get simple words containing the phoneme"""
|
1428 |
+
practice_words = {
|
1429 |
+
"θ": ["think", "three", "month", "tooth"],
|
1430 |
+
"ð": ["this", "that", "mother", "brother"],
|
1431 |
+
"v": ["very", "voice", "love", "give"],
|
1432 |
+
"r": ["red", "run", "car", "tree"],
|
1433 |
+
"w": ["we", "water", "window", "want"],
|
1434 |
+
"z": ["zoo", "zero", "buzz", "pizza"],
|
1435 |
+
"ʒ": ["measure", "pleasure", "treasure", "vision"],
|
1436 |
+
"æ": ["cat", "hat", "man", "bad"],
|
1437 |
+
"ɪ": ["sit", "big", "win", "ship"],
|
1438 |
+
"ʊ": ["put", "look", "book", "good"],
|
1439 |
+
}
|
1440 |
+
|
1441 |
+
return practice_words.get(phoneme, [])
|
1442 |
+
|
1443 |
+
|
1444 |
+
def _get_common_mistakes(phonemes: List[str]) -> List[Dict]:
|
1445 |
+
"""Get common pronunciation mistakes for Vietnamese speakers"""
|
1446 |
+
mistakes = []
|
1447 |
+
|
1448 |
+
common_mistakes_map = {
|
1449 |
+
"θ": {
|
1450 |
+
"mistake": "Phát âm thành 'f' hoặc 's'",
|
1451 |
+
"correction": "Đặt lưỡi giữa răng, thổi nhẹ",
|
1452 |
+
"examples": ["think → fink/sink (sai), think (đúng)"],
|
1453 |
+
},
|
1454 |
+
"ð": {
|
1455 |
+
"mistake": "Phát âm thành 'd' hoặc 'z'",
|
1456 |
+
"correction": "Lưỡi giữa răng + rung dây thanh",
|
1457 |
+
"examples": ["this → dis/zis (sai), this (đúng)"],
|
1458 |
+
},
|
1459 |
+
"v": {
|
1460 |
+
"mistake": "Phát âm thành 'w' hoặc 'b'",
|
1461 |
+
"correction": "Môi dưới chạm răng trên",
|
1462 |
+
"examples": ["very → wery/bery (sai), very (đúng)"],
|
1463 |
+
},
|
1464 |
+
"r": {
|
1465 |
+
"mistake": "Lăn lưỡi như tiếng Việt",
|
1466 |
+
"correction": "Cuộn lưỡi nhẹ, không chạm vòm",
|
1467 |
+
"examples": ["red → rrred (sai), red (đúng)"],
|
1468 |
+
},
|
1469 |
+
"w": {
|
1470 |
+
"mistake": "Phát âm thành 'v'",
|
1471 |
+
"correction": "Tròn môi, không dùng răng",
|
1472 |
+
"examples": ["we → ve (sai), we (đúng)"],
|
1473 |
+
},
|
1474 |
+
}
|
1475 |
+
|
1476 |
+
for phoneme in phonemes:
|
1477 |
+
if phoneme in common_mistakes_map:
|
1478 |
+
mistake_info = common_mistakes_map[phoneme]
|
1479 |
+
mistakes.append(
|
1480 |
+
{
|
1481 |
+
"phoneme": phoneme,
|
1482 |
+
"common_mistake": mistake_info["mistake"],
|
1483 |
+
"correction": mistake_info["correction"],
|
1484 |
+
"examples": mistake_info["examples"],
|
1485 |
+
}
|
1486 |
+
)
|
1487 |
+
|
1488 |
+
return mistakes
|
1489 |
+
|
1490 |
+
|
1491 |
+
@router.post("/assess-pronunciation")
|
1492 |
+
async def assess_ipa_pronunciation(
|
1493 |
+
audio_file: UploadFile = File(
|
1494 |
+
..., description="Audio file for IPA pronunciation assessment"
|
1495 |
+
),
|
1496 |
+
word: str = Form(..., description="Target word to assess"),
|
1497 |
+
target_ipa: str = Form(None, description="Target IPA transcription (optional)"),
|
1498 |
+
focus_phonemes: str = Form(
|
1499 |
+
None, description="Comma-separated list of phonemes to focus on (optional)"
|
1500 |
+
),
|
1501 |
+
):
|
1502 |
+
"""
|
1503 |
+
Specialized IPA pronunciation assessment with detailed phoneme analysis
|
1504 |
+
Optimized for IPA learning with Vietnamese speaker feedback
|
1505 |
+
"""
|
1506 |
+
|
1507 |
+
import tempfile
|
1508 |
+
import os
|
1509 |
+
|
1510 |
+
try:
|
1511 |
+
# Get the global assessor instance (singleton)
|
1512 |
+
assessor = get_assessor()
|
1513 |
+
|
1514 |
+
# Save uploaded audio file
|
1515 |
+
file_extension = ".wav"
|
1516 |
+
if audio_file.filename and "." in audio_file.filename:
|
1517 |
+
file_extension = f".{audio_file.filename.split('.')[-1]}"
|
1518 |
+
|
1519 |
+
with tempfile.NamedTemporaryFile(
|
1520 |
+
delete=False, suffix=file_extension
|
1521 |
+
) as tmp_file:
|
1522 |
+
content = await audio_file.read()
|
1523 |
+
tmp_file.write(content)
|
1524 |
+
tmp_file.flush()
|
1525 |
+
|
1526 |
+
# Run standard pronunciation assessment
|
1527 |
+
result = assessor.assess_pronunciation(tmp_file.name, word, "word")
|
1528 |
+
|
1529 |
+
# Get target IPA and phonemes
|
1530 |
+
if not target_ipa:
|
1531 |
+
target_phonemes_data = g2p.text_to_phonemes(word)[0]
|
1532 |
+
target_ipa = target_phonemes_data["ipa"]
|
1533 |
+
target_phonemes = target_phonemes_data["phonemes"]
|
1534 |
+
else:
|
1535 |
+
# Parse IPA to phonemes (simplified)
|
1536 |
+
target_phonemes = target_ipa.replace("/", "").split()
|
1537 |
+
|
1538 |
+
# Focus phonemes analysis
|
1539 |
+
focus_phonemes_list = []
|
1540 |
+
if focus_phonemes:
|
1541 |
+
focus_phonemes_list = [p.strip() for p in focus_phonemes.split(",")]
|
1542 |
+
|
1543 |
+
# Enhanced IPA-specific analysis
|
1544 |
+
ipa_analysis = {
|
1545 |
+
"target_word": word,
|
1546 |
+
"target_ipa": target_ipa,
|
1547 |
+
"target_phonemes": target_phonemes,
|
1548 |
+
"user_transcript": result.get("transcript", ""),
|
1549 |
+
"user_ipa": result.get("user_ipa", ""),
|
1550 |
+
"user_phonemes": result.get("user_phonemes", ""),
|
1551 |
+
"overall_score": result.get("overall_score", 0.0),
|
1552 |
+
"phoneme_accuracy": result.get("phoneme_comparison", {}).get(
|
1553 |
+
"accuracy_percentage", 0
|
1554 |
+
),
|
1555 |
+
"focus_phonemes_analysis": [],
|
1556 |
+
"vietnamese_specific_tips": [],
|
1557 |
+
"practice_recommendations": [],
|
1558 |
+
}
|
1559 |
+
|
1560 |
+
# Focus phonemes detailed analysis
|
1561 |
+
if focus_phonemes_list and result.get("phoneme_differences"):
|
1562 |
+
for phoneme_diff in result["phoneme_differences"]:
|
1563 |
+
ref_phoneme = phoneme_diff.get("reference_phoneme", "")
|
1564 |
+
if ref_phoneme in focus_phonemes_list:
|
1565 |
+
analysis = {
|
1566 |
+
"phoneme": ref_phoneme,
|
1567 |
+
"status": phoneme_diff.get("status", "unknown"),
|
1568 |
+
"score": phoneme_diff.get("score", 0.0),
|
1569 |
+
"difficulty": g2p.get_difficulty_score(ref_phoneme),
|
1570 |
+
"vietnamese_tip": IPA_SYMBOLS_DATA.get(ref_phoneme, {}).get(
|
1571 |
+
"tip", ""
|
1572 |
+
),
|
1573 |
+
"practice_tip": _get_practice_tips(ref_phoneme),
|
1574 |
+
}
|
1575 |
+
ipa_analysis["focus_phonemes_analysis"].append(analysis)
|
1576 |
+
|
1577 |
+
# Vietnamese-specific pronunciation tips
|
1578 |
+
all_target_phonemes = target_phonemes + focus_phonemes_list
|
1579 |
+
vietnamese_tips = []
|
1580 |
+
|
1581 |
+
for phoneme in set(all_target_phonemes):
|
1582 |
+
if phoneme in [
|
1583 |
+
"θ",
|
1584 |
+
"ð",
|
1585 |
+
"v",
|
1586 |
+
"z",
|
1587 |
+
"ʒ",
|
1588 |
+
"r",
|
1589 |
+
"w",
|
1590 |
+
"æ",
|
1591 |
+
"ɪ",
|
1592 |
+
"ʊ",
|
1593 |
+
]: # Difficult for Vietnamese
|
1594 |
+
tip_data = IPA_SYMBOLS_DATA.get(phoneme, {})
|
1595 |
+
if tip_data:
|
1596 |
+
vietnamese_tips.append(
|
1597 |
+
{
|
1598 |
+
"phoneme": phoneme,
|
1599 |
+
"tip": tip_data.get("tip", ""),
|
1600 |
+
"difficulty": tip_data.get("difficulty", "medium"),
|
1601 |
+
"category": tip_data.get("category", "unknown"),
|
1602 |
+
}
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
ipa_analysis["vietnamese_specific_tips"] = vietnamese_tips
|
1606 |
+
|
1607 |
+
# Practice recommendations based on score
|
1608 |
+
if result.get("overall_score", 0) < 0.7:
|
1609 |
+
recommendations = [
|
1610 |
+
"Nghe từ mẫu nhiều lần trước khi phát âm",
|
1611 |
+
"Phát âm chậm và rõ ràng từng âm vị",
|
1612 |
+
"Chú ý đến vị trí lưỡi và môi khi phát âm",
|
1613 |
+
]
|
1614 |
+
|
1615 |
+
# Add specific recommendations for low-scoring phonemes
|
1616 |
+
if result.get("wrong_words"):
|
1617 |
+
for wrong_word in result["wrong_words"][
|
1618 |
+
:2
|
1619 |
+
]: # Top 2 problematic words
|
1620 |
+
for wrong_phoneme in wrong_word.get("wrong_phonemes", [])[:2]:
|
1621 |
+
phoneme = wrong_phoneme.get("expected", "")
|
1622 |
+
if phoneme in IPA_SYMBOLS_DATA:
|
1623 |
+
recommendations.append(
|
1624 |
+
f"Luyện đặc biệt âm /{phoneme}/: {IPA_SYMBOLS_DATA[phoneme]['tip']}"
|
1625 |
+
)
|
1626 |
+
|
1627 |
+
ipa_analysis["practice_recommendations"] = recommendations
|
1628 |
+
|
1629 |
+
# Combine with original result
|
1630 |
+
enhanced_result = {
|
1631 |
+
**result, # Original assessment result
|
1632 |
+
"ipa_analysis": ipa_analysis, # IPA-specific analysis
|
1633 |
+
"assessment_type": "ipa_focused",
|
1634 |
+
"target_ipa": target_ipa,
|
1635 |
+
"focus_phonemes": focus_phonemes_list,
|
1636 |
+
}
|
1637 |
+
|
1638 |
+
# Clean up temp file
|
1639 |
+
os.unlink(tmp_file.name)
|
1640 |
+
|
1641 |
+
logger.info(
|
1642 |
+
f"IPA assessment completed for word '{word}' with score {result.get('overall_score', 0):.2f}"
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
return enhanced_result
|
1646 |
+
|
1647 |
+
except Exception as e:
|
1648 |
+
logger.error(f"IPA pronunciation assessment error: {e}")
|
1649 |
+
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
|
1650 |
+
|
1651 |
+
|
1652 |
+
@router.get("/practice-session/{lesson_id}")
|
1653 |
+
async def create_ipa_practice_session(lesson_id: str):
|
1654 |
+
"""Create a structured IPA practice session"""
|
1655 |
+
try:
|
1656 |
+
# This would typically fetch from a database
|
1657 |
+
# For now, we'll create a sample session based on lesson_id
|
1658 |
+
|
1659 |
+
if lesson_id == "vowels_basic":
|
1660 |
+
session_words = [
|
1661 |
+
{
|
1662 |
+
"word": "cat",
|
1663 |
+
"ipa": "/kæt/",
|
1664 |
+
"focus_phonemes": ["æ"],
|
1665 |
+
"mapping": map_word_to_phonemes("cat", "/kæt/"),
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"word": "bed",
|
1669 |
+
"ipa": "/bɛd/",
|
1670 |
+
"focus_phonemes": ["ɛ"],
|
1671 |
+
"mapping": map_word_to_phonemes("bed", "/bɛd/"),
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"word": "see",
|
1675 |
+
"ipa": "/si/",
|
1676 |
+
"focus_phonemes": ["i"],
|
1677 |
+
"mapping": map_word_to_phonemes("see", "/si/"),
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"word": "cup",
|
1681 |
+
"ipa": "/kʌp/",
|
1682 |
+
"focus_phonemes": ["ʌ"],
|
1683 |
+
"mapping": map_word_to_phonemes("cup", "/kʌp/"),
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"word": "book",
|
1687 |
+
"ipa": "/bʊk/",
|
1688 |
+
"focus_phonemes": ["ʊ"],
|
1689 |
+
"mapping": map_word_to_phonemes("book", "/bʊk/"),
|
1690 |
+
},
|
1691 |
+
]
|
1692 |
+
elif lesson_id == "difficult_sounds":
|
1693 |
+
session_words = [
|
1694 |
+
{
|
1695 |
+
"word": "think",
|
1696 |
+
"ipa": "/θɪŋk/",
|
1697 |
+
"focus_phonemes": ["θ"],
|
1698 |
+
"mapping": map_word_to_phonemes("think", "/θɪŋk/"),
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"word": "this",
|
1702 |
+
"ipa": "/ðɪs/",
|
1703 |
+
"focus_phonemes": ["ð"],
|
1704 |
+
"mapping": map_word_to_phonemes("this", "/ðɪs/"),
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"word": "very",
|
1708 |
+
"ipa": "/ˈvɛri/",
|
1709 |
+
"focus_phonemes": ["v"],
|
1710 |
+
"mapping": map_word_to_phonemes("very", "/ˈvɛri/"),
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"word": "water",
|
1714 |
+
"ipa": "/ˈwɔtər/",
|
1715 |
+
"focus_phonemes": ["w"],
|
1716 |
+
"mapping": map_word_to_phonemes("water", "/ˈwɔtər/"),
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"word": "red",
|
1720 |
+
"ipa": "/rɛd/",
|
1721 |
+
"focus_phonemes": ["r"],
|
1722 |
+
"mapping": map_word_to_phonemes("red", "/rɛd/"),
|
1723 |
+
},
|
1724 |
+
]
|
1725 |
+
else:
|
1726 |
+
# Default session
|
1727 |
+
session_words = [
|
1728 |
+
{
|
1729 |
+
"word": "hello",
|
1730 |
+
"ipa": "/həˈloʊ/",
|
1731 |
+
"focus_phonemes": ["ə", "oʊ"],
|
1732 |
+
"mapping": map_word_to_phonemes("hello", "/həˈloʊ/"),
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"word": "world",
|
1736 |
+
"ipa": "/wɜrld/",
|
1737 |
+
"focus_phonemes": ["w", "ɜr"],
|
1738 |
+
"mapping": map_word_to_phonemes("world", "/wɜrld/"),
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"word": "practice",
|
1742 |
+
"ipa": "/ˈpræktɪs/",
|
1743 |
+
"focus_phonemes": ["æ", "ɪ"],
|
1744 |
+
"mapping": map_word_to_phonemes("practice", "/ˈpræktɪs/"),
|
1745 |
+
},
|
1746 |
+
]
|
1747 |
+
|
1748 |
+
return {
|
1749 |
+
"session_id": lesson_id,
|
1750 |
+
"title": f"IPA Practice Session: {lesson_id.replace('_', ' ').title()}",
|
1751 |
+
"words": session_words,
|
1752 |
+
"estimated_time": len(session_words) * 3, # 3 minutes per word
|
1753 |
+
"instructions": [
|
1754 |
+
"Nghe mẫu từng từ carefully",
|
1755 |
+
"Tập trung vào âm vị được highlight",
|
1756 |
+
"Ghi âm nhiều lần cho đến khi đạt điểm tốt",
|
1757 |
+
"Đọc feedback để cải thiện",
|
1758 |
+
],
|
1759 |
+
}
|
1760 |
+
|
1761 |
+
except Exception as e:
|
1762 |
+
logger.error(f"Error creating practice session: {e}")
|
1763 |
+
raise HTTPException(status_code=500, detail=str(e))
|
src/apis/routes/speaking_route.py
CHANGED
@@ -9,7 +9,7 @@ from loguru import logger
|
|
9 |
from src.utils.speaking_utils import convert_numpy_types
|
10 |
|
11 |
# Import the new evaluation system
|
12 |
-
from
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
router = APIRouter(prefix="/speaking", tags=["Speaking"])
|
@@ -36,7 +36,16 @@ class PronunciationAssessmentResult(BaseModel):
|
|
36 |
assessment_mode: Optional[str] = None
|
37 |
character_level_analysis: Optional[bool] = None
|
38 |
|
39 |
-
assessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
@router.post("/assess", response_model=PronunciationAssessmentResult)
|
@@ -103,7 +112,8 @@ async def assess_pronunciation(
|
|
103 |
|
104 |
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
|
105 |
|
106 |
-
# Run assessment using enhanced assessor
|
|
|
107 |
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
|
108 |
|
109 |
# Get reference phonemes and IPA
|
|
|
9 |
from src.utils.speaking_utils import convert_numpy_types
|
10 |
|
11 |
# Import the new evaluation system
|
12 |
+
from src.apis.controllers.speaking_controller import ProductionPronunciationAssessor, EnhancedG2P
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
router = APIRouter(prefix="/speaking", tags=["Speaking"])
|
|
|
36 |
assessment_mode: Optional[str] = None
|
37 |
character_level_analysis: Optional[bool] = None
|
38 |
|
39 |
+
# Global assessor instance - singleton pattern for performance
|
40 |
+
global_assessor = None
|
41 |
+
|
42 |
+
def get_assessor():
|
43 |
+
"""Get or create the global assessor instance"""
|
44 |
+
global global_assessor
|
45 |
+
if global_assessor is None:
|
46 |
+
logger.info("Creating global ProductionPronunciationAssessor instance...")
|
47 |
+
global_assessor = ProductionPronunciationAssessor()
|
48 |
+
return global_assessor
|
49 |
|
50 |
|
51 |
@router.post("/assess", response_model=PronunciationAssessmentResult)
|
|
|
112 |
|
113 |
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
|
114 |
|
115 |
+
# Run assessment using enhanced assessor (singleton)
|
116 |
+
assessor = get_assessor()
|
117 |
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
|
118 |
|
119 |
# Get reference phonemes and IPA
|