File size: 1,783 Bytes
49d1787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd5168
d459a94
49d1787
 
 
 
 
f8d7eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d1787
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
from attack import Attacker
import argparse

def do_attack(img, eps, step_size, steps, progress=gr.Progress()):
    args=argparse.Namespace()
    args.out_dir='./'
    args.target='auto'
    args.eps=eps
    args.step_size=step_size
    args.steps=steps
    args.test_atk=False

    step = progress.tqdm(range(steps))

    def pdg_prog(ori_images, images, labels):
        step.update(1)

    attacker = Attacker(args, pgd_callback=pdg_prog)
    atk_img, noise = attacker.attack_(img)
    attacker.save_image(img, noise, 'out.png')
    return 'out_atk.png'

with gr.Blocks(title="Anime AI Detect Fucker Demo", theme="dark") as demo:
    gr.HTML('<a href="https://github.com/7eu7d7/anime-ai-detect-fucker">github repo</a>')

    with gr.Row():
        with gr.Column():
            with gr.Row():
                eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1)
                step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001, value=0.136)
            with gr.Row():
                steps = gr.Slider(label="step count", minimum=1, maximum=100, step=1, value=20)
                model_name = gr.Dropdown(label="attack target",
                                         choices=["auto", "human", "ai"],
                                         interactive=True,
                                         value="auto", show_label=True)

            input_image = gr.Image(label="Clean Image", type="pil")

            atk_btn = gr.Button("Attack")

        with gr.Column():
            output_image = gr.Image(label="Attacked Image")

    atk_btn.click(fn=do_attack,
                      inputs=[input_image, eps, step_size, steps],
                      outputs=output_image)

demo.launch()