Spaces:
Runtime error
Runtime error
dzy7e
commited on
Commit
·
49d1787
1
Parent(s):
b8c9f75
init
Browse files- app.py +49 -0
- attack.py +113 -0
- attacker/FGSM.py +48 -0
- attacker/PGD.py +84 -0
- attacker/__init__.py +3 -0
- attacker/base.py +33 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from torchvision.utils import save_image
|
3 |
+
from attack import Attacker
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
|
7 |
+
def do_attack(img, eps, step_size, steps, progress=gr.Progress()):
|
8 |
+
args=argparse.Namespace()
|
9 |
+
args.out_dir='./'
|
10 |
+
args.target='auto'
|
11 |
+
args.eps=eps
|
12 |
+
args.step_size=step_size
|
13 |
+
args.steps=steps
|
14 |
+
args.test_atk=False
|
15 |
+
|
16 |
+
step = progress.tqdm(range(steps))
|
17 |
+
|
18 |
+
def pdg_prog(ori_images, images, labels):
|
19 |
+
step.update(1)
|
20 |
+
|
21 |
+
attacker = Attacker(args, pgd_callback=pdg_prog)
|
22 |
+
atk_img, noise = attacker.attack_(img)
|
23 |
+
attacker.save_image(atk_img, noise, 'out.png')
|
24 |
+
return 'out.png'
|
25 |
+
|
26 |
+
with gr.Blocks(title="Anime AI Detect Fucker Demo", theme="dark") as demo:
|
27 |
+
gr.HTML('<a href="https://github.com/7eu7d7/anime-ai-detect-fucker">github repo</a>')
|
28 |
+
|
29 |
+
with gr.Row():
|
30 |
+
eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1)
|
31 |
+
step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001, value=0.136)
|
32 |
+
with gr.Row():
|
33 |
+
steps = gr.Slider(label="step count", minimum=1, maximum=100, step=1, value=20)
|
34 |
+
model_name = gr.Dropdown(label="attack target",
|
35 |
+
choices=["auto", "human", "ai"],
|
36 |
+
value="auto", show_label=True)
|
37 |
+
|
38 |
+
input_image = gr.Image(label="Clean Image", type="pil")
|
39 |
+
|
40 |
+
atk_btn = gr.Button("Attack")
|
41 |
+
|
42 |
+
with gr.Column():
|
43 |
+
output_image = gr.Image(label="Attacked Image")
|
44 |
+
|
45 |
+
atk_btn.click(fn=do_attack,
|
46 |
+
inputs=[input_image, eps, step_size, steps],
|
47 |
+
outputs=output_image)
|
48 |
+
|
49 |
+
demo.launch()
|
attack.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from transformers import BeitFeatureExtractor, BeitForImageClassification
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from torchvision.utils import save_image
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
from attacker import *
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
|
13 |
+
import argparse
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
def make_args():
|
18 |
+
parser = argparse.ArgumentParser(description='PyTorch MS_COCO Training')
|
19 |
+
|
20 |
+
parser.add_argument('inputs', type=str)
|
21 |
+
parser.add_argument('--out_dir', type=str, default='./output')
|
22 |
+
parser.add_argument('--target', type=str, default='auto', help='[auto, ai, human]')
|
23 |
+
parser.add_argument('--eps', type=float, default=8/8, help='Noise intensity ')
|
24 |
+
parser.add_argument('--step_size', type=float, default=1.087313/8, help='Attack step size')
|
25 |
+
parser.add_argument('--steps', type=int, default=20, help='Attack step count')
|
26 |
+
|
27 |
+
parser.add_argument('--test_atk', action='store_true')
|
28 |
+
|
29 |
+
return parser.parse_args()
|
30 |
+
|
31 |
+
class Attacker:
|
32 |
+
def __init__(self, args, pgd_callback):
|
33 |
+
self.args=args
|
34 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
35 |
+
|
36 |
+
print('正在加载模型...')
|
37 |
+
self.feature_extractor = BeitFeatureExtractor.from_pretrained('saltacc/anime-ai-detect')
|
38 |
+
self.model = BeitForImageClassification.from_pretrained('saltacc/anime-ai-detect').cuda()
|
39 |
+
print('加载完毕')
|
40 |
+
|
41 |
+
if args.target=='ai': #攻击成被识别为AI
|
42 |
+
self.target = torch.tensor([1]).to(device)
|
43 |
+
elif args.target=='human':
|
44 |
+
self.target = torch.tensor([0]).to(device)
|
45 |
+
|
46 |
+
dataset_mean_t = torch.tensor([0.5, 0.5, 0.5]).view(1, -1, 1, 1).cuda()
|
47 |
+
dataset_std_t = torch.tensor([0.5, 0.5, 0.5]).view(1, -1, 1, 1).cuda()
|
48 |
+
self.pgd = PGD(self.model, img_transform=(lambda x: (x - dataset_mean_t) / dataset_std_t, lambda x: x * dataset_std_t + dataset_mean_t))
|
49 |
+
self.pgd.set_para(eps=(args.eps * 2) / 255, alpha=lambda: (args.step_size * 2) / 255, iters=args.steps)
|
50 |
+
self.pgd.set_loss(CrossEntropyLoss())
|
51 |
+
self.pgd.set_call_back(pgd_callback)
|
52 |
+
|
53 |
+
def save_image(self, image, noise, img_name):
|
54 |
+
# 缩放图片只缩放噪声
|
55 |
+
W, H = image.size
|
56 |
+
noise = F.interpolate(noise, size=(H, W), mode='bicubic')
|
57 |
+
img_save = transforms.ToTensor()(image) + noise
|
58 |
+
save_image(img_save, os.path.join(self.args.out_dir, f'{img_name[:img_name.rfind(".")]}_atk.png'))
|
59 |
+
|
60 |
+
def attack_(self, image):
|
61 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")['pixel_values'].cuda()
|
62 |
+
|
63 |
+
if self.args.target == 'auto':
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = self.model(inputs)
|
66 |
+
logits = outputs.logits
|
67 |
+
cls = logits.argmax(-1).item()
|
68 |
+
target = torch.tensor([cls]).to(device)
|
69 |
+
else:
|
70 |
+
target = self.target
|
71 |
+
|
72 |
+
if self.args.test_atk:
|
73 |
+
self.test_image(inputs, 'before attack')
|
74 |
+
|
75 |
+
atk_img = self.pgd.attack(inputs, target)
|
76 |
+
|
77 |
+
noise = self.pgd.img_transform[1](atk_img).detach().cpu() - self.pgd.img_transform[1](inputs).detach().cpu()
|
78 |
+
|
79 |
+
if self.args.test_atk:
|
80 |
+
self.test_image(atk_img, 'after attack')
|
81 |
+
|
82 |
+
return atk_img, noise
|
83 |
+
|
84 |
+
def attack_one(self, path):
|
85 |
+
image = Image.open(path).convert('RGB')
|
86 |
+
atk_img, noise = self.attack_(image)
|
87 |
+
self.save_image(image, noise, os.path.basename(path))
|
88 |
+
|
89 |
+
def attack(self, path):
|
90 |
+
count=0
|
91 |
+
if os.path.isdir(path):
|
92 |
+
img_list=[os.path.join(path, x) for x in os.listdir(path)]
|
93 |
+
for img in img_list:
|
94 |
+
if (img.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff'))):
|
95 |
+
self.attack_one(img)
|
96 |
+
count+=1
|
97 |
+
else:
|
98 |
+
if (path.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff'))):
|
99 |
+
self.attack_one(path)
|
100 |
+
count += 1
|
101 |
+
print(f'总共攻击{count}张图像')
|
102 |
+
|
103 |
+
@torch.no_grad()
|
104 |
+
def test_image(self, img, pre_fix):
|
105 |
+
outputs = self.model(img)
|
106 |
+
logits = outputs.logits
|
107 |
+
predicted_class_idx = logits.argmax(-1).item()
|
108 |
+
print(pre_fix, "class:", self.model.config.id2label[predicted_class_idx], 'logits:', logits)
|
109 |
+
|
110 |
+
if __name__ == '__main__':
|
111 |
+
args=make_args()
|
112 |
+
attacker = Attacker(args)
|
113 |
+
attacker.attack(args.inputs)
|
attacker/FGSM.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from copy import deepcopy
|
4 |
+
from .base import Attacker
|
5 |
+
from torch.cuda import amp
|
6 |
+
|
7 |
+
class FGSM(Attacker):
|
8 |
+
def __init__(self, model, img_transform=(lambda x:x, lambda x:x), use_amp=False):
|
9 |
+
super().__init__(model, img_transform)
|
10 |
+
self.use_amp=use_amp
|
11 |
+
|
12 |
+
if use_amp:
|
13 |
+
self.scaler = amp.GradScaler()
|
14 |
+
|
15 |
+
def set_para(self, eps=8, alpha=lambda:8, **kwargs):
|
16 |
+
super().set_para(eps=eps, alpha=alpha, **kwargs)
|
17 |
+
|
18 |
+
def step(self, images, labels, loss):
|
19 |
+
with amp.autocast(enabled=self.use_amp):
|
20 |
+
images.requires_grad = True
|
21 |
+
outputs = self.model(images).logits
|
22 |
+
|
23 |
+
self.model.zero_grad()
|
24 |
+
cost = loss(outputs, labels)
|
25 |
+
|
26 |
+
if self.use_amp:
|
27 |
+
self.scaler.scale(cost).backward()
|
28 |
+
else:
|
29 |
+
cost.backward()
|
30 |
+
|
31 |
+
adv_images = (images + self.alpha() * images.grad.sign()).detach_()
|
32 |
+
eta = torch.clamp(adv_images - self.ori_images, min=-self.eps, max=self.eps)
|
33 |
+
images = self.img_transform[0](torch.clamp(self.img_transform[1](self.ori_images + eta), min=0, max=255).detach_())
|
34 |
+
|
35 |
+
return images
|
36 |
+
|
37 |
+
def attack(self, images, labels):
|
38 |
+
#images = deepcopy(images)
|
39 |
+
#self.ori_images = deepcopy(images)
|
40 |
+
|
41 |
+
self.model.eval()
|
42 |
+
|
43 |
+
images = self.forward(self, images, labels)
|
44 |
+
|
45 |
+
self.model.zero_grad()
|
46 |
+
self.model.train()
|
47 |
+
|
48 |
+
return images
|
attacker/PGD.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from copy import deepcopy
|
4 |
+
from .base import Attacker, Empty
|
5 |
+
from torch.cuda import amp
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
class PGD(Attacker):
|
9 |
+
def __init__(self, model, img_transform=(lambda x:x, lambda x:x), use_amp=False):
|
10 |
+
super().__init__(model, img_transform)
|
11 |
+
self.use_amp=use_amp
|
12 |
+
self.call_back=None
|
13 |
+
self.img_loader=None
|
14 |
+
self.img_hook=None
|
15 |
+
|
16 |
+
self.scaler = amp.GradScaler(enabled=use_amp)
|
17 |
+
|
18 |
+
def set_para(self, eps=8, alpha=lambda:8, iters=20, **kwargs):
|
19 |
+
super().set_para(eps=eps, alpha=alpha, iters=iters, **kwargs)
|
20 |
+
|
21 |
+
def set_call_back(self, call_back):
|
22 |
+
self.call_back=call_back
|
23 |
+
|
24 |
+
def set_img_loader(self, img_loader):
|
25 |
+
self.img_loader=img_loader
|
26 |
+
|
27 |
+
def step(self, images, labels, loss):
|
28 |
+
with amp.autocast(enabled=self.use_amp):
|
29 |
+
images.requires_grad = True
|
30 |
+
outputs = self.model(images).logits
|
31 |
+
|
32 |
+
self.model.zero_grad()
|
33 |
+
cost = loss(outputs, labels)#+outputs[2].view(-1)[0]*0+outputs[1].view(-1)[0]*0+outputs[0].view(-1)[0]*0 #support DDP
|
34 |
+
|
35 |
+
self.scaler.scale(cost).backward()
|
36 |
+
|
37 |
+
adv_images = (images + self.alpha() * images.grad.sign()).detach_()
|
38 |
+
eta = torch.clamp(adv_images - self.ori_images, min=-self.eps, max=self.eps)
|
39 |
+
images = self.img_transform[0](torch.clamp(self.img_transform[1](self.ori_images + eta), min=0, max=1).detach_())
|
40 |
+
|
41 |
+
return images
|
42 |
+
|
43 |
+
def set_data(self, images, labels):
|
44 |
+
self.ori_images = deepcopy(images)
|
45 |
+
self.images = images
|
46 |
+
self.labels = labels
|
47 |
+
|
48 |
+
def __iter__(self):
|
49 |
+
self.atk_step=0
|
50 |
+
return self
|
51 |
+
|
52 |
+
def __next__(self):
|
53 |
+
self.atk_step += 1
|
54 |
+
if self.atk_step>self.iters:
|
55 |
+
raise StopIteration
|
56 |
+
|
57 |
+
with self.model.no_sync() if isinstance(self.model, nn.parallel.DistributedDataParallel) else Empty():
|
58 |
+
self.model.eval()
|
59 |
+
|
60 |
+
self.images = self.forward(self, self.images, self.labels)
|
61 |
+
|
62 |
+
self.model.zero_grad()
|
63 |
+
self.model.train()
|
64 |
+
|
65 |
+
return self.ori_images, self.images.detach(), self.labels
|
66 |
+
|
67 |
+
def attack(self, images, labels):
|
68 |
+
#images = deepcopy(images)
|
69 |
+
self.ori_images = deepcopy(images)
|
70 |
+
|
71 |
+
for i in tqdm(range(self.iters)):
|
72 |
+
self.model.eval()
|
73 |
+
|
74 |
+
images = self.forward(self, images, labels)
|
75 |
+
|
76 |
+
self.model.zero_grad()
|
77 |
+
self.model.train()
|
78 |
+
if self.call_back:
|
79 |
+
self.call_back(self.ori_images, images.detach(), labels)
|
80 |
+
|
81 |
+
if self.img_hook is not None:
|
82 |
+
images=self.img_hook(self.ori_images, images.detach())
|
83 |
+
|
84 |
+
return images
|
attacker/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .base import *
|
2 |
+
from .PGD import *
|
3 |
+
from .FGSM import *
|
attacker/base.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
class Attacker:
|
3 |
+
def __init__(self, model, img_transform=(lambda x:x, lambda x:x)):
|
4 |
+
self.model = model # 必须是pytorch的model
|
5 |
+
'''self.model.eval()
|
6 |
+
for k, v in self.model.named_parameters():
|
7 |
+
v.requires_grad = False'''
|
8 |
+
self.img_transform=img_transform
|
9 |
+
self.forward = lambda attacker, images, labels: attacker.step(images, labels, attacker.loss)
|
10 |
+
|
11 |
+
def set_para(self, **kwargs):
|
12 |
+
for k,v in kwargs.items():
|
13 |
+
setattr(self, k,v)
|
14 |
+
|
15 |
+
def set_forward(self, forward):
|
16 |
+
self.forward=forward
|
17 |
+
|
18 |
+
def step(self, images, labels, loss):
|
19 |
+
pass
|
20 |
+
|
21 |
+
def set_loss(self, loss):
|
22 |
+
self.loss=loss
|
23 |
+
|
24 |
+
def attack(self, images, labels):
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
class Empty:
|
29 |
+
def __enter__(self):
|
30 |
+
pass
|
31 |
+
|
32 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
33 |
+
pass
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.1
|
2 |
+
torchvision==0.13.1
|
3 |
+
timm==0.6.12
|
4 |
+
Pillow
|
5 |
+
blobfile
|
6 |
+
mypy
|
7 |
+
numpy
|
8 |
+
pytest
|
9 |
+
requests
|
10 |
+
einops
|
11 |
+
deepspeed==0.4.0
|
12 |
+
scipy
|