Spaces:
Running
Running
File size: 4,465 Bytes
47780ca 3c7feee 47780ca 17456cf 6d737eb 3c7feee e5d2d7f 3c7feee eb85b0c 3c7feee eb85b0c 3c7feee eb85b0c e5d2d7f 7e5ea3f e5d2d7f 3c7feee e5d2d7f 6d737eb 3c7feee 6d737eb 3c7feee 6d737eb 3c7feee 6d737eb 3c7feee 6d737eb 3c7feee 17456cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
title: Opdmulti Demo
emoji: π
colorFrom: gray
colorTo: red
sdk: docker
pinned: false
license: mit
---
# OPDMulti: Openable Part Detection for Multiple Objects
[Xiaohao Sun*](https://sun-xh.github.io/), [Hanxiao Jiang*](https://jianghanxiao.github.io/), [Manolis Savva](https://msavva.github.io/), [Angel Xuan Chang](http://angelxuanchang.github.io/)
This repository is intended as a deployment of a demo for the [OPDMulti](https://github.com/3dlg-hcvc/OPDMulti) project.
Please refer there for more information about the proect and implementation.
[arXiv](https://arxiv.org/abs/2303.14087) [Website](https://3dlg-hcvc.github.io/OPDMulti/)
## Installation
### Requirements
For the docker build, you will just need docker in order to build and run the container, else you will need
* python 3.10 (this definitely does not work with 3.11, and you may need to downgrade some packages to work with earlier versions of Python)
* git
* cmake
* libosmesa6-dev (for open3d headless rendering)
A full list of other packages can be found in the Dockerfile, or in `Open3D/util/install_deps_ubuntu.sh`.
The model file can currently be found [here](https://huggingface.co/3dlg-hcvc/opdmulti-motion-state-rgb-model) and is
downloaded as part of the demo code.
### Docker Build (preferred)
To build the docker container, run
```
docker build -f Dockerfile -t opdmulti-demo .
```
### Local Build
To setup the environment, run the following (recommended in a virtual environment):
```
# install base requirements
python3.10 -m pip install -r requirements.txt
# install detectron2 (must be done after some of the libraries in requirements.txt)
python3.10 -m pip install git+https://github.com/facebookresearch/detectron2.git@fc9c33b1f6e5d4c37bbb46dde19af41afc1ddb2a
# build library for model
cd mask2former/modeling/pixel_decoder/ops
python setup.py build install
# INSTALL OPEN3D
# --------------
# Option A: running locally only
pip install open3d==0.17.0
# Option B: running over ssh connection / headless environment
# in a separate folder
git clone https://github.com/isl-org/Open3D.git
cd Open3D/
mkdir build && cd build
cmake -DENABLE_HEADLESS_RENDERING=ON -DBUILD_GUI=OFF -DBUILD_WEBRTC=OFF -DUSE_SYSTEM_GLEW=OFF -DUSE_SYSTEM_GLFW=OFF ..
make -j$(nproc)
make install-pip-package
# to test custom build
cd ../examples/python/visualization/
python headless_rendering.py
```
## Usage
### Docker (preferred)
To run the docker container, execute
```
docker run -d --network host -t opdmulti-demo
```
If you want to see the output of the container or interact with it,
* use `-it` to run in interactive mode, and remove the `-d` option
* add `bash` to the end to open into a console rather than running the app directly
### Local
To startup the application locally, run
```
gradio app.py
```
You can view the app on the specified port (usually 7860). To run over an ssh connection, setup port forwarding using
`-L 7860:localhost:7860` when you create your ssh connection. Note that you will need to install Open3D in headless
rendering for this to work, as described above.
## Citation
If you find this code useful, please consider citing:
```bibtex
@article{sun2023opdmulti,
title={OPDMulti: Openable Part Detection for Multiple Objects},
author={Sun, Xiaohao and Jiang, Hanxiao and Savva, Manolis and Chang, Angel Xuan},
journal={arXiv preprint arXiv:2303.14087},
year={2023}
}
@article{mao2022multiscan,
title={MultiScan: Scalable RGBD scanning for 3D environments with articulated objects},
author={Mao, Yongsen and Zhang, Yiming and Jiang, Hanxiao and Chang, Angel and Savva, Manolis},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={9058--9071},
year={2022}
}
@inproceedings{jiang2022opd,
title={OPD: Single-view 3D openable part detection},
author={Jiang, Hanxiao and Mao, Yongsen and Savva, Manolis and Chang, Angel X},
booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part XXXIX},
pages={410--426},
year={2022},
organization={Springer}
}
@inproceedings{cheng2022masked,
title={Masked-attention mask transformer for universal image segmentation},
author={Cheng, Bowen and Misra, Ishan and Schwing, Alexander G and Kirillov, Alexander and Girdhar, Rohit},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={1290--1299},
year={2022}
}
```
|