atwang commited on
Commit
e5d2d7f
·
1 Parent(s): 17456cf

move model to huggingface

Browse files
Files changed (3) hide show
  1. README.md +5 -6
  2. app.py +8 -5
  3. inference.py +0 -1
README.md CHANGED
@@ -19,7 +19,7 @@ Please refer there for more information about the proect and implementation.
19
 
20
  ## Installation
21
 
22
- ## Requirements
23
 
24
  For the docker build, you will just need docker in order to build and run the container, else you will need
25
 
@@ -30,18 +30,17 @@ For the docker build, you will just need docker in order to build and run the co
30
 
31
  A full list of other packages can be found in the Dockerfile, or in `Open3D/util/install_deps_ubuntu.sh`.
32
 
33
- **BEFORE BUILDING** as of writing, you will need to copy the model file manually to `.data/models/motion_state_pred_opdformerp_rgb.pth`
34
- in the repository. This step must occur before the docker build, or if building locally then before running. Future
35
- work will make this step no longer required.
36
 
37
- ### Docker (preferred)
38
 
39
  To build the docker container, run
40
  ```
41
  docker build -f Dockerfile -t opdmulti-demo .
42
  ```
43
 
44
- ### Local
45
 
46
  To setup the environment, run the following (recommended in a virtual environment):
47
  ```
 
19
 
20
  ## Installation
21
 
22
+ ### Requirements
23
 
24
  For the docker build, you will just need docker in order to build and run the container, else you will need
25
 
 
30
 
31
  A full list of other packages can be found in the Dockerfile, or in `Open3D/util/install_deps_ubuntu.sh`.
32
 
33
+ The model file can currently be found [here](https://huggingface.co/3dlg-hcvc/opdmulti-motion-state-rgb-model) and is
34
+ downloaded as part of the demo code.
 
35
 
36
+ ### Docker Build (preferred)
37
 
38
  To build the docker container, run
39
  ```
40
  docker build -f Dockerfile -t opdmulti-demo .
41
  ```
42
 
43
+ ### Local Build
44
 
45
  To setup the environment, run the following (recommended in a virtual environment):
46
  ```
app.py CHANGED
@@ -3,11 +3,12 @@ import re
3
  import shutil
4
  import time
5
  from types import SimpleNamespace
6
- from typing import Any, Callable, Generator, Optional
7
 
8
  import gradio as gr
9
  import numpy as np
10
  from detectron2 import engine
 
11
  from natsort import natsorted
12
  from PIL import Image
13
 
@@ -20,7 +21,7 @@ SCORE_THRESHOLD = 0.8
20
  MAX_PARTS = 5 # TODO: we can replace this by having a slider and a single image visualization component rather than multiple components
21
  ARGS = SimpleNamespace(
22
  config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
23
- model=".data/models/motion_state_pred_opdformerp_rgb.pth",
24
  input_format="RGB",
25
  output=".output",
26
  cpu=True,
@@ -87,6 +88,8 @@ def predict(rgb_image: str, depth_image: str, intrinsic: np.ndarray, num_samples
87
  return [None] * 5
88
 
89
  # run model
 
 
90
  cfg = setup_cfg(ARGS)
91
  engine.launch(
92
  main,
@@ -117,7 +120,7 @@ def predict(rgb_image: str, depth_image: str, intrinsic: np.ndarray, num_samples
117
 
118
 
119
  def get_trigger(
120
- idx: int, fps: int = 25, oscillate: bool = True
121
  ) -> Callable[[str], Generator[Image.Image, None, None]]:
122
  """
123
  Return event listener trigger function for image component to animate image sequence.
@@ -260,8 +263,8 @@ with gr.Blocks() as demo:
260
  image_comp.select(get_trigger(idx), inputs=rgb_image, outputs=image_comp, api_name=False)
261
 
262
  # if user changes input, clear output images
263
- rgb_image.change(clear_outputs, inputs=rgb_image, outputs=images, api_name=False)
264
- depth_image.change(clear_outputs, inputs=rgb_image, outputs=images, api_name=False)
265
 
266
  submit_btn.click(
267
  fn=predict, inputs=[rgb_image, depth_image, intrinsic, num_samples], outputs=images, api_name=False
 
3
  import shutil
4
  import time
5
  from types import SimpleNamespace
6
+ from typing import Any, Callable, Generator
7
 
8
  import gradio as gr
9
  import numpy as np
10
  from detectron2 import engine
11
+ from huggingface_hub import hf_hub_download
12
  from natsort import natsorted
13
  from PIL import Image
14
 
 
21
  MAX_PARTS = 5 # TODO: we can replace this by having a slider and a single image visualization component rather than multiple components
22
  ARGS = SimpleNamespace(
23
  config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
24
+ model={"repo_id": "3dlg-hcvc/opdmulti-motion-state-rgb-model", "filename": "pytorch_model.pth"},
25
  input_format="RGB",
26
  output=".output",
27
  cpu=True,
 
88
  return [None] * 5
89
 
90
  # run model
91
+ weights_path = hf_hub_download(repo_id=ARGS.model["repo_id"], filename=ARGS.model["filename"])
92
+ ARGS.model = weights_path
93
  cfg = setup_cfg(ARGS)
94
  engine.launch(
95
  main,
 
120
 
121
 
122
  def get_trigger(
123
+ idx: int, fps: int = 15, oscillate: bool = True
124
  ) -> Callable[[str], Generator[Image.Image, None, None]]:
125
  """
126
  Return event listener trigger function for image component to animate image sequence.
 
263
  image_comp.select(get_trigger(idx), inputs=rgb_image, outputs=image_comp, api_name=False)
264
 
265
  # if user changes input, clear output images
266
+ rgb_image.change(clear_outputs, inputs=[], outputs=images, api_name=False)
267
+ depth_image.change(clear_outputs, inputs=[], outputs=images, api_name=False)
268
 
269
  submit_btn.click(
270
  fn=predict, inputs=[rgb_image, depth_image, intrinsic, num_samples], outputs=images, api_name=False
inference.py CHANGED
@@ -44,7 +44,6 @@ from visualization import (
44
  generate_rotation_visualization,
45
  generate_translation_visualization,
46
  batch_trim,
47
- create_gif,
48
  )
49
 
50
  # import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to
 
44
  generate_rotation_visualization,
45
  generate_translation_visualization,
46
  batch_trim,
 
47
  )
48
 
49
  # import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to