File size: 12,411 Bytes
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Callable, Dict, List, Optional, Tuple, Union

import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
from torch.cuda.amp import autocast

from detectron2.config import configurable
from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY

from ..transformer_decoder.position_encoding import PositionEmbeddingSine
from ..transformer_decoder.transformer import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn


def build_pixel_decoder(cfg, input_shape):
    """
    Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
    """
    name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME
    model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
    forward_features = getattr(model, "forward_features", None)
    if not callable(forward_features):
        raise ValueError(
            "Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
            f"Please implement forward_features for {name} to only return mask features."
        )
    return model


# This is a modified FPN decoder.
@SEM_SEG_HEADS_REGISTRY.register()
class BasePixelDecoder(nn.Module):
    @configurable
    def __init__(
        self,
        input_shape: Dict[str, ShapeSpec],
        *,
        conv_dim: int,
        mask_dim: int,
        norm: Optional[Union[str, Callable]] = None,
    ):
        """
        NOTE: this interface is experimental.
        Args:
            input_shape: shapes (channels and stride) of the input features
            conv_dims: number of output channels for the intermediate conv layers.
            mask_dim: number of output channels for the final conv layer.
            norm (str or callable): normalization for all conv layers
        """
        super().__init__()

        input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
        self.in_features = [k for k, v in input_shape]  # starting from "res2" to "res5"
        feature_channels = [v.channels for k, v in input_shape]

        lateral_convs = []
        output_convs = []

        use_bias = norm == ""
        for idx, in_channels in enumerate(feature_channels):
            if idx == len(self.in_features) - 1:
                output_norm = get_norm(norm, conv_dim)
                output_conv = Conv2d(
                    in_channels,
                    conv_dim,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=use_bias,
                    norm=output_norm,
                    activation=F.relu,
                )
                weight_init.c2_xavier_fill(output_conv)
                self.add_module("layer_{}".format(idx + 1), output_conv)

                lateral_convs.append(None)
                output_convs.append(output_conv)
            else:
                lateral_norm = get_norm(norm, conv_dim)
                output_norm = get_norm(norm, conv_dim)

                lateral_conv = Conv2d(
                    in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
                )
                output_conv = Conv2d(
                    conv_dim,
                    conv_dim,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=use_bias,
                    norm=output_norm,
                    activation=F.relu,
                )
                weight_init.c2_xavier_fill(lateral_conv)
                weight_init.c2_xavier_fill(output_conv)
                self.add_module("adapter_{}".format(idx + 1), lateral_conv)
                self.add_module("layer_{}".format(idx + 1), output_conv)

                lateral_convs.append(lateral_conv)
                output_convs.append(output_conv)
        # Place convs into top-down order (from low to high resolution)
        # to make the top-down computation in forward clearer.
        self.lateral_convs = lateral_convs[::-1]
        self.output_convs = output_convs[::-1]

        self.mask_dim = mask_dim
        self.mask_features = Conv2d(
            conv_dim,
            mask_dim,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        weight_init.c2_xavier_fill(self.mask_features)

        self.maskformer_num_feature_levels = 3  # always use 3 scales

    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        ret = {}
        ret["input_shape"] = {
            k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
        }
        ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
        ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
        ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
        return ret

    def forward_features(self, features):
        multi_scale_features = []
        num_cur_levels = 0
        # Reverse feature maps into top-down order (from low to high resolution)
        for idx, f in enumerate(self.in_features[::-1]):
            x = features[f]
            lateral_conv = self.lateral_convs[idx]
            output_conv = self.output_convs[idx]
            if lateral_conv is None:
                y = output_conv(x)
            else:
                cur_fpn = lateral_conv(x)
                # Following FPN implementation, we use nearest upsampling here
                y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
                y = output_conv(y)
            if num_cur_levels < self.maskformer_num_feature_levels:
                multi_scale_features.append(y)
                num_cur_levels += 1
        return self.mask_features(y), None, multi_scale_features

    def forward(self, features, targets=None):
        logger = logging.getLogger(__name__)
        logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
        return self.forward_features(features)


class TransformerEncoderOnly(nn.Module):
    def __init__(
        self,
        d_model=512,
        nhead=8,
        num_encoder_layers=6,
        dim_feedforward=2048,
        dropout=0.1,
        activation="relu",
        normalize_before=False,
    ):
        super().__init__()

        encoder_layer = TransformerEncoderLayer(
            d_model, nhead, dim_feedforward, dropout, activation, normalize_before
        )
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src, mask, pos_embed):
        # flatten NxCxHxW to HWxNxC
        bs, c, h, w = src.shape
        src = src.flatten(2).permute(2, 0, 1)
        pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
        if mask is not None:
            mask = mask.flatten(1)

        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
        return memory.permute(1, 2, 0).view(bs, c, h, w)


# This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map.
@SEM_SEG_HEADS_REGISTRY.register()
class TransformerEncoderPixelDecoder(BasePixelDecoder):
    @configurable
    def __init__(
        self,
        input_shape: Dict[str, ShapeSpec],
        *,
        transformer_dropout: float,
        transformer_nheads: int,
        transformer_dim_feedforward: int,
        transformer_enc_layers: int,
        transformer_pre_norm: bool,
        conv_dim: int,
        mask_dim: int,
        norm: Optional[Union[str, Callable]] = None,
    ):
        """
        NOTE: this interface is experimental.
        Args:
            input_shape: shapes (channels and stride) of the input features
            transformer_dropout: dropout probability in transformer
            transformer_nheads: number of heads in transformer
            transformer_dim_feedforward: dimension of feedforward network
            transformer_enc_layers: number of transformer encoder layers
            transformer_pre_norm: whether to use pre-layernorm or not
            conv_dims: number of output channels for the intermediate conv layers.
            mask_dim: number of output channels for the final conv layer.
            norm (str or callable): normalization for all conv layers
        """
        super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm)

        input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
        self.in_features = [k for k, v in input_shape]  # starting from "res2" to "res5"
        feature_strides = [v.stride for k, v in input_shape]
        feature_channels = [v.channels for k, v in input_shape]

        in_channels = feature_channels[len(self.in_features) - 1]
        self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
        weight_init.c2_xavier_fill(self.input_proj)
        self.transformer = TransformerEncoderOnly(
            d_model=conv_dim,
            dropout=transformer_dropout,
            nhead=transformer_nheads,
            dim_feedforward=transformer_dim_feedforward,
            num_encoder_layers=transformer_enc_layers,
            normalize_before=transformer_pre_norm,
        )
        N_steps = conv_dim // 2
        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)

        # update layer
        use_bias = norm == ""
        output_norm = get_norm(norm, conv_dim)
        output_conv = Conv2d(
            conv_dim,
            conv_dim,
            kernel_size=3,
            stride=1,
            padding=1,
            bias=use_bias,
            norm=output_norm,
            activation=F.relu,
        )
        weight_init.c2_xavier_fill(output_conv)
        delattr(self, "layer_{}".format(len(self.in_features)))
        self.add_module("layer_{}".format(len(self.in_features)), output_conv)
        self.output_convs[0] = output_conv

    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        ret = super().from_config(cfg, input_shape)
        ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
        ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
        ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
        ret[
            "transformer_enc_layers"
        ] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS  # a separate config
        ret["transformer_pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
        return ret

    def forward_features(self, features):
        multi_scale_features = []
        num_cur_levels = 0
        # Reverse feature maps into top-down order (from low to high resolution)
        for idx, f in enumerate(self.in_features[::-1]):
            x = features[f]
            lateral_conv = self.lateral_convs[idx]
            output_conv = self.output_convs[idx]
            if lateral_conv is None:
                transformer = self.input_proj(x)
                pos = self.pe_layer(x)
                transformer = self.transformer(transformer, None, pos)
                y = output_conv(transformer)
                # save intermediate feature as input to Transformer decoder
                transformer_encoder_features = transformer
            else:
                cur_fpn = lateral_conv(x)
                # Following FPN implementation, we use nearest upsampling here
                y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
                y = output_conv(y)
            if num_cur_levels < self.maskformer_num_feature_levels:
                multi_scale_features.append(y)
                num_cur_levels += 1
        return self.mask_features(y), transformer_encoder_features, multi_scale_features

    def forward(self, features, targets=None):
        logger = logging.getLogger(__name__)
        logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
        return self.forward_features(features)