Spaces:
Running
Running
[NOT TESTED] initial implementation of app
Browse files- .gitignore +3 -0
- app.py +131 -4
- configs/coco/instance-segmentation/Base-COCO-InstanceSegmentation.yaml +47 -0
- configs/coco/instance-segmentation/maskformer2_R50_bs16_50ep.yaml +44 -0
- configs/coco/instance-segmentation/swin/opd_base.yaml +50 -0
- configs/coco/instance-segmentation/swin/opd_v1_real.yaml +7 -0
- dev-requirements.txt +3 -0
- examples/59-4860.png +0 -0
- examples/59-4860_d.png +0 -0
- inference.py +836 -0
- mask2former/__init__.py +11 -0
- mask2former/config.py +125 -0
- mask2former/maskformer_model.py +820 -0
- mask2former/modeling/__init__.py +6 -0
- mask2former/modeling/backbone/__init__.py +1 -0
- mask2former/modeling/backbone/swin.py +770 -0
- mask2former/modeling/criterion.py +547 -0
- mask2former/modeling/matcher.py +192 -0
- mask2former/modeling/meta_arch/__init__.py +1 -0
- mask2former/modeling/meta_arch/mask_former_head.py +133 -0
- mask2former/modeling/meta_arch/per_pixel_baseline.py +243 -0
- mask2former/modeling/pixel_decoder/__init__.py +1 -0
- mask2former/modeling/pixel_decoder/fpn.py +312 -0
- mask2former/modeling/pixel_decoder/msdeformattn.py +358 -0
- mask2former/modeling/pixel_decoder/ops/functions/__init__.py +13 -0
- mask2former/modeling/pixel_decoder/ops/functions/ms_deform_attn_func.py +72 -0
- mask2former/modeling/pixel_decoder/ops/make.sh +13 -0
- mask2former/modeling/pixel_decoder/ops/modules/__init__.py +12 -0
- mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py +125 -0
- mask2former/modeling/pixel_decoder/ops/setup.py +78 -0
- mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.cpp +46 -0
- mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.h +38 -0
- mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.cu +158 -0
- mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h +35 -0
- mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_im2col_cuda.cuh +1332 -0
- mask2former/modeling/pixel_decoder/ops/src/ms_deform_attn.h +67 -0
- mask2former/modeling/pixel_decoder/ops/src/vision.cpp +21 -0
- mask2former/modeling/pixel_decoder/ops/test.py +92 -0
- mask2former/modeling/transformer_decoder/__init__.py +4 -0
- mask2former/modeling/transformer_decoder/mask2former_transformer_decoder.py +461 -0
- mask2former/modeling/transformer_decoder/maskformer_transformer_decoder.py +188 -0
- mask2former/modeling/transformer_decoder/opd_transformer_decoder.py +520 -0
- mask2former/modeling/transformer_decoder/position_encoding.py +64 -0
- mask2former/modeling/transformer_decoder/transformer.py +369 -0
- mask2former/utils/__init__.py +2 -0
- mask2former/utils/misc.py +111 -0
- mask2former/utils/motion_visualizer.py +676 -0
- mask2former/utils/tranform.py +169 -0
- pre-requirements.txt +6 -0
- requirements.txt +11 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
build/
|
2 |
+
venv/
|
3 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,7 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from types import SimpleNamespace
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
from detectron2 import engine
|
9 |
+
|
10 |
+
from inference import main, setup_cfg
|
11 |
+
|
12 |
+
# internal settings
|
13 |
+
NUM_PROCESSES = 1
|
14 |
+
CROP = False
|
15 |
+
SCORE_THRESHOLD = 0.8
|
16 |
+
MAX_PARTS = 5
|
17 |
+
ARGS = SimpleNamespace(
|
18 |
+
config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
|
19 |
+
model="...",
|
20 |
+
input_format="RGB",
|
21 |
+
output=".output",
|
22 |
+
cpu=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_samples: int) -> list[Any]:
|
27 |
+
def find_gifs(path: str) -> list[str]:
|
28 |
+
"""Scrape folders for all generated gif files."""
|
29 |
+
for file in os.listdir(path):
|
30 |
+
sub_path = os.path.join(path, file)
|
31 |
+
if os.path.isdir(sub_path):
|
32 |
+
for image_file in os.listdir(sub_path):
|
33 |
+
if re.match(r".*\.gif$", image_file):
|
34 |
+
yield os.path.join(sub_path, image_file)
|
35 |
+
|
36 |
+
cfg = setup_cfg(ARGS)
|
37 |
+
|
38 |
+
engine.launch(
|
39 |
+
main,
|
40 |
+
NUM_PROCESSES,
|
41 |
+
args=(
|
42 |
+
cfg,
|
43 |
+
rgb_image,
|
44 |
+
depth_image,
|
45 |
+
intrinsics,
|
46 |
+
num_samples,
|
47 |
+
CROP,
|
48 |
+
SCORE_THRESHOLD,
|
49 |
+
),
|
50 |
+
)
|
51 |
+
|
52 |
+
# process output
|
53 |
+
# TODO: may want to select these in decreasing order of score
|
54 |
+
pre_outputs = list(find_gifs(ARGS.output))
|
55 |
+
|
56 |
+
outputs = []
|
57 |
+
for idx in range(MAX_PARTS): # hide unused components
|
58 |
+
if idx < len(pre_outputs):
|
59 |
+
outputs.append(gr.update(value=pre_outputs[idx], visible=True))
|
60 |
+
else:
|
61 |
+
outputs.append(gr.update(visible=False))
|
62 |
+
return outputs
|
63 |
+
|
64 |
+
|
65 |
+
def variable_outputs(idx):
|
66 |
+
idx = int(idx)
|
67 |
+
|
68 |
+
|
69 |
+
with gr.Blocks() as app:
|
70 |
+
gr.Markdown(
|
71 |
+
"""
|
72 |
+
# OPDMulti Demo
|
73 |
+
Upload an image to see its range of motion.
|
74 |
+
"""
|
75 |
+
)
|
76 |
+
|
77 |
+
# TODO: add gr.Examples
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
rgb_image = gr.Image(
|
81 |
+
image_mode="RGB", source="upload", type="filepath", label="RGB Image", show_label=True, interactive=True
|
82 |
+
)
|
83 |
+
depth_image = gr.Image(
|
84 |
+
image_mode="L", source="upload", type="filepath", label="Depth Image", show_label=True, interactive=True
|
85 |
+
)
|
86 |
+
|
87 |
+
intrinsics = gr.Dataframe(
|
88 |
+
value=[
|
89 |
+
[
|
90 |
+
214.85935872395834,
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
],
|
94 |
+
[
|
95 |
+
0.0,
|
96 |
+
214.85935872395834,
|
97 |
+
0.0,
|
98 |
+
],
|
99 |
+
[
|
100 |
+
125.90160319010417,
|
101 |
+
95.13726399739583,
|
102 |
+
1.0,
|
103 |
+
],
|
104 |
+
],
|
105 |
+
row_count=(3, "fixed"),
|
106 |
+
col_count=(3, "fixed"),
|
107 |
+
datatype="number",
|
108 |
+
type="numpy",
|
109 |
+
label="Intrinsics matrix",
|
110 |
+
show_label=True,
|
111 |
+
interactive=True,
|
112 |
+
)
|
113 |
+
num_samples = gr.Number(
|
114 |
+
value=10,
|
115 |
+
label="Number of samples",
|
116 |
+
show_label=True,
|
117 |
+
interactive=True,
|
118 |
+
precision=0,
|
119 |
+
minimum=3,
|
120 |
+
maximum=20,
|
121 |
+
)
|
122 |
+
|
123 |
+
submit_btn = gr.Button("Run model")
|
124 |
+
|
125 |
+
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
126 |
+
# identified.
|
127 |
+
outputs = [gr.Image(type="filepath", label=f"Part {idx + 1}", visible=False) for idx in range(MAX_PARTS)]
|
128 |
|
129 |
+
# TODO: maybe need to use a queue here so we don't overload the instance
|
130 |
+
submit_btn.click(
|
131 |
+
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=outputs, api_name="run_model"
|
132 |
+
)
|
133 |
|
134 |
+
app.launch()
|
|
configs/coco/instance-segmentation/Base-COCO-InstanceSegmentation.yaml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
BACKBONE:
|
3 |
+
FREEZE_AT: 0
|
4 |
+
NAME: "build_resnet_backbone"
|
5 |
+
WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
|
6 |
+
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
7 |
+
PIXEL_STD: [58.395, 57.120, 57.375]
|
8 |
+
RESNETS:
|
9 |
+
DEPTH: 50
|
10 |
+
STEM_TYPE: "basic" # not used
|
11 |
+
STEM_OUT_CHANNELS: 64
|
12 |
+
STRIDE_IN_1X1: False
|
13 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
14 |
+
# NORM: "SyncBN"
|
15 |
+
RES5_MULTI_GRID: [1, 1, 1] # not used
|
16 |
+
DATASETS:
|
17 |
+
TRAIN: ("coco_2017_train",)
|
18 |
+
TEST: ("coco_2017_val",)
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 16
|
21 |
+
BASE_LR: 0.0001
|
22 |
+
STEPS: (327778, 355092)
|
23 |
+
MAX_ITER: 368750
|
24 |
+
WARMUP_FACTOR: 1.0
|
25 |
+
WARMUP_ITERS: 10
|
26 |
+
WEIGHT_DECAY: 0.05
|
27 |
+
OPTIMIZER: "ADAMW"
|
28 |
+
BACKBONE_MULTIPLIER: 0.1
|
29 |
+
CLIP_GRADIENTS:
|
30 |
+
ENABLED: True
|
31 |
+
CLIP_TYPE: "full_model"
|
32 |
+
CLIP_VALUE: 0.01
|
33 |
+
NORM_TYPE: 2.0
|
34 |
+
AMP:
|
35 |
+
ENABLED: True
|
36 |
+
INPUT:
|
37 |
+
IMAGE_SIZE: 1024
|
38 |
+
MIN_SCALE: 0.1
|
39 |
+
MAX_SCALE: 2.0
|
40 |
+
FORMAT: "RGB"
|
41 |
+
DATASET_MAPPER_NAME: "coco_instance_lsj"
|
42 |
+
TEST:
|
43 |
+
EVAL_PERIOD: 5000
|
44 |
+
DATALOADER:
|
45 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
46 |
+
NUM_WORKERS: 4
|
47 |
+
VERSION: 2
|
configs/coco/instance-segmentation/maskformer2_R50_bs16_50ep.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: Base-COCO-InstanceSegmentation.yaml
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "MaskFormer"
|
4 |
+
SEM_SEG_HEAD:
|
5 |
+
NAME: "MaskFormerHead"
|
6 |
+
IGNORE_VALUE: 255
|
7 |
+
NUM_CLASSES: 80
|
8 |
+
LOSS_WEIGHT: 1.0
|
9 |
+
CONVS_DIM: 256
|
10 |
+
MASK_DIM: 256
|
11 |
+
NORM: "GN"
|
12 |
+
# pixel decoder
|
13 |
+
PIXEL_DECODER_NAME: "MSDeformAttnPixelDecoder"
|
14 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
15 |
+
DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
|
16 |
+
COMMON_STRIDE: 4
|
17 |
+
TRANSFORMER_ENC_LAYERS: 6
|
18 |
+
MASK_FORMER:
|
19 |
+
TRANSFORMER_DECODER_NAME: "MultiScaleMaskedTransformerDecoder"
|
20 |
+
TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
|
21 |
+
DEEP_SUPERVISION: True
|
22 |
+
NO_OBJECT_WEIGHT: 0.1
|
23 |
+
CLASS_WEIGHT: 2.0
|
24 |
+
MASK_WEIGHT: 5.0
|
25 |
+
DICE_WEIGHT: 5.0
|
26 |
+
HIDDEN_DIM: 256
|
27 |
+
NUM_OBJECT_QUERIES: 100
|
28 |
+
NHEADS: 8
|
29 |
+
DROPOUT: 0.0
|
30 |
+
DIM_FEEDFORWARD: 2048
|
31 |
+
ENC_LAYERS: 0
|
32 |
+
PRE_NORM: False
|
33 |
+
ENFORCE_INPUT_PROJ: False
|
34 |
+
SIZE_DIVISIBILITY: 32
|
35 |
+
DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
|
36 |
+
TRAIN_NUM_POINTS: 12544
|
37 |
+
OVERSAMPLE_RATIO: 3.0
|
38 |
+
IMPORTANCE_SAMPLE_RATIO: 0.75
|
39 |
+
TEST:
|
40 |
+
SEMANTIC_ON: False
|
41 |
+
INSTANCE_ON: True
|
42 |
+
PANOPTIC_ON: False
|
43 |
+
OVERLAP_THRESHOLD: 0.8
|
44 |
+
OBJECT_MASK_THRESHOLD: 0.8
|
configs/coco/instance-segmentation/swin/opd_base.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: ../maskformer2_R50_bs16_50ep.yaml
|
2 |
+
|
3 |
+
INPUT:
|
4 |
+
FORMAT: "RGB"
|
5 |
+
IMAGE_SIZE: 256
|
6 |
+
MAX_SIZE_TEST: 256
|
7 |
+
MAX_SIZE_TRAIN: 256
|
8 |
+
MIN_SIZE_TEST: 256
|
9 |
+
MIN_SIZE_TRAIN:
|
10 |
+
- 256
|
11 |
+
# DATASET_MAPPER_NAME: "motion_instance"
|
12 |
+
|
13 |
+
DATALOADER:
|
14 |
+
NUM_WORKERS: 4
|
15 |
+
|
16 |
+
DATASETS:
|
17 |
+
TRAIN: ("MotionNet_train",)
|
18 |
+
TEST: ("MotionNet_valid",)
|
19 |
+
|
20 |
+
MODEL:
|
21 |
+
MOTIONNET:
|
22 |
+
TYPE: BMOC_V0
|
23 |
+
SEM_SEG_HEAD:
|
24 |
+
NUM_CLASSES: 3
|
25 |
+
MASK_ON: True # Useful for our MotionEvaluator, because it's from an older version detectron2
|
26 |
+
MASK_FORMER:
|
27 |
+
TRANSFORMER_DECODER_NAME: OPDMultiScaleMaskedTransformerDecoder
|
28 |
+
CLASS_WEIGHT: 2.0
|
29 |
+
MASK_WEIGHT: 5.0
|
30 |
+
DICE_WEIGHT: 5.0
|
31 |
+
MTYPE_WEIGHT: 2.0
|
32 |
+
MORIGIN_WEIGHT: 16.0
|
33 |
+
MAXIS_WEIGHT: 16.0
|
34 |
+
MSTATE_WEIGHT: 16.0
|
35 |
+
MSTATEMAX_WEIGHT: 16.0
|
36 |
+
EXTRINSIC_WEIGHT: 30.0
|
37 |
+
|
38 |
+
SOLVER:
|
39 |
+
IMS_PER_BATCH: 16
|
40 |
+
BASE_LR: 0.0001
|
41 |
+
STEPS: (36000, 48000)
|
42 |
+
MAX_ITER: 60000
|
43 |
+
CHECKPOINT_PERIOD: 10000
|
44 |
+
|
45 |
+
TEST:
|
46 |
+
AUG:
|
47 |
+
ENABLED: false
|
48 |
+
FLIP: false
|
49 |
+
EVAL_PERIOD: 10000
|
50 |
+
SEED: 42
|
configs/coco/instance-segmentation/swin/opd_v1_real.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: ./opd_base.yaml
|
2 |
+
|
3 |
+
MODEL:
|
4 |
+
MOTIONNET:
|
5 |
+
TYPE: BMOC_V1
|
6 |
+
PIXEL_MEAN: [142.60756197911175, 128.59507321750323, 110.82755928042158, 1267.231689453125] # RGB mean from MotionDataset_real train
|
7 |
+
PIXEL_STD: [24.008765143841437, 24.132018526763215, 27.228518892160068, 599.8106079101562] # RGB stddev from MotionDataset_real train
|
dev-requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
black==23.9.1
|
2 |
+
gradio==3.44.3
|
3 |
+
huggingface-hub==0.17.2
|
examples/59-4860.png
ADDED
examples/59-4860_d.png
ADDED
inference.py
ADDED
@@ -0,0 +1,836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
inference.py
|
3 |
+
------------
|
4 |
+
Provides functionality to run the OPDMulti model on an input image, independent of dataset and ground truth, and
|
5 |
+
visualize the output. Large portions of the code originate from get_prediction.py, rgbd_to_pcd_vis.py,
|
6 |
+
evaluate_on_log.py, and other related files. The primary goal was to create a more standalone script which could be
|
7 |
+
converted more easily into a public demo, thus the goal was to sever most dependencies on existing ground truth or
|
8 |
+
datasets.
|
9 |
+
|
10 |
+
Example usage:
|
11 |
+
python inference.py \
|
12 |
+
--rgb path/to/59-4860.png \
|
13 |
+
--depth path/to/59-4860_d.png \
|
14 |
+
--model path/to/model.pth \
|
15 |
+
--output path/to/output_dir
|
16 |
+
"""
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
import time
|
22 |
+
from copy import deepcopy
|
23 |
+
from typing import Any
|
24 |
+
|
25 |
+
import imageio
|
26 |
+
import open3d as o3d
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
import torch.nn as nn
|
30 |
+
from detectron2 import engine, evaluation
|
31 |
+
from detectron2.modeling import build_model
|
32 |
+
from detectron2.config import get_cfg, CfgNode
|
33 |
+
from detectron2.projects.deeplab import add_deeplab_config
|
34 |
+
from detectron2.structures import instances
|
35 |
+
from detectron2.utils import comm
|
36 |
+
from detectron2.utils.logger import setup_logger
|
37 |
+
from PIL import Image, ImageChops
|
38 |
+
|
39 |
+
from mask2former import (
|
40 |
+
add_maskformer2_config,
|
41 |
+
add_motionnet_config,
|
42 |
+
)
|
43 |
+
|
44 |
+
# import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint.py, in order to
|
45 |
+
# replicate model loading without the overhead of setting up an OPDTrainer
|
46 |
+
|
47 |
+
TORCH_VERSION: tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
|
48 |
+
if TORCH_VERSION >= (1, 11):
|
49 |
+
from torch.ao import quantization
|
50 |
+
from torch.ao.quantization import FakeQuantizeBase, ObserverBase
|
51 |
+
elif (
|
52 |
+
TORCH_VERSION >= (1, 8)
|
53 |
+
and hasattr(torch.quantization, "FakeQuantizeBase")
|
54 |
+
and hasattr(torch.quantization, "ObserverBase")
|
55 |
+
):
|
56 |
+
from torch import quantization
|
57 |
+
from torch.quantization import FakeQuantizeBase, ObserverBase
|
58 |
+
|
59 |
+
# TODO: find a global place for this instead of in many places in code
|
60 |
+
TYPE_CLASSIFICATION = {
|
61 |
+
0: "rotation",
|
62 |
+
1: "translation",
|
63 |
+
}
|
64 |
+
|
65 |
+
POINT_COLOR = [1, 0, 0] # red for demonstration
|
66 |
+
IMAGE_EXTENSIONS = (".png", ".jpg", ".jpeg")
|
67 |
+
|
68 |
+
|
69 |
+
def get_parser() -> argparse.ArgumentParser:
|
70 |
+
"""
|
71 |
+
Specfy command-line arguments.
|
72 |
+
|
73 |
+
The primary inputs to the script should be the image paths (RGBD) and camera intrinsics. Other arguments are
|
74 |
+
provided to facilitate script testing and model changes. Run file with -h/--help to see all arguments.
|
75 |
+
|
76 |
+
:return: parser for extracting command-line arguments
|
77 |
+
"""
|
78 |
+
parser = argparse.ArgumentParser(description="Inference for OPDMulti")
|
79 |
+
# The main arguments which should be specified by the user
|
80 |
+
parser.add_argument(
|
81 |
+
"--rgb",
|
82 |
+
dest="rgb_image",
|
83 |
+
metavar="FILE",
|
84 |
+
help="path to RGB image file on which to run model",
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--depth",
|
88 |
+
dest="depth_image",
|
89 |
+
metavar="FILE",
|
90 |
+
help="path to depth image file on which to run model",
|
91 |
+
)
|
92 |
+
parser.add_argument( # FIXME: might make more sense to make this a path
|
93 |
+
"-i",
|
94 |
+
"--intrinsics",
|
95 |
+
nargs=9,
|
96 |
+
default=[
|
97 |
+
214.85935872395834,
|
98 |
+
0.0,
|
99 |
+
0.0,
|
100 |
+
0.0,
|
101 |
+
214.85935872395834,
|
102 |
+
0.0,
|
103 |
+
125.90160319010417,
|
104 |
+
95.13726399739583,
|
105 |
+
1.0,
|
106 |
+
],
|
107 |
+
dest="intrinsics",
|
108 |
+
help="camera intrinsics matrix, as a list of values",
|
109 |
+
)
|
110 |
+
|
111 |
+
# optional parameters for user to specify
|
112 |
+
parser.add_argument(
|
113 |
+
"-n",
|
114 |
+
"--num-samples",
|
115 |
+
default=10,
|
116 |
+
dest="num_samples",
|
117 |
+
metavar="NUM",
|
118 |
+
help="number of sample states to generate in visualization",
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--crop",
|
122 |
+
action="store_true",
|
123 |
+
dest="crop",
|
124 |
+
help="crop whitespace out of images for visualization",
|
125 |
+
)
|
126 |
+
|
127 |
+
# local script development arguments
|
128 |
+
parser.add_argument(
|
129 |
+
"-m",
|
130 |
+
"--model",
|
131 |
+
default="path/to/model/file", # FIXME: set a good default path
|
132 |
+
dest="model",
|
133 |
+
metavar="FILE",
|
134 |
+
help="path to model file to run",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"-c",
|
138 |
+
"--config",
|
139 |
+
default="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
|
140 |
+
metavar="FILE",
|
141 |
+
dest="config_file",
|
142 |
+
help="path to config file",
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"-o",
|
146 |
+
"--output",
|
147 |
+
default="output", # FIXME: set a good default path
|
148 |
+
dest="output",
|
149 |
+
help="path to output directory in which to save results",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--num-processes",
|
153 |
+
default=1,
|
154 |
+
dest="num_processes",
|
155 |
+
help="number of processes per machine. When using GPUs, this should be the number of GPUs.",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"-s",
|
159 |
+
"--score-threshold",
|
160 |
+
default=0.8,
|
161 |
+
type=float,
|
162 |
+
dest="score_threshold",
|
163 |
+
help="threshold between 0.0 and 1.0 by which to filter out bad predictions",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--input-format",
|
167 |
+
default="RGB",
|
168 |
+
dest="input_format",
|
169 |
+
help="input format of image. Must be one of RGB, RGBD, or depth",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--cpu",
|
173 |
+
action="store_true",
|
174 |
+
help="flag to require code to use CPU only",
|
175 |
+
)
|
176 |
+
|
177 |
+
return parser
|
178 |
+
|
179 |
+
|
180 |
+
def setup_cfg(args: argparse.Namespace) -> CfgNode:
|
181 |
+
"""
|
182 |
+
Create configs and perform basic setups.
|
183 |
+
"""
|
184 |
+
cfg = get_cfg()
|
185 |
+
# add model configurations
|
186 |
+
add_deeplab_config(cfg)
|
187 |
+
add_maskformer2_config(cfg)
|
188 |
+
add_motionnet_config(cfg)
|
189 |
+
cfg.merge_from_file(args.config_file)
|
190 |
+
|
191 |
+
# set additional config parameters
|
192 |
+
cfg.MODEL.WEIGHTS = args.model
|
193 |
+
cfg.OBJ_DETECT = False # TODO: figure out if this is needed, and parameterize it
|
194 |
+
cfg.MODEL.MOTIONNET.VOTING = "none"
|
195 |
+
# Output directory
|
196 |
+
cfg.OUTPUT_DIR = args.output
|
197 |
+
cfg.MODEL.DEVICE = "cpu" if args.cpu else "cuda"
|
198 |
+
|
199 |
+
cfg.MODEL.MODELATTRPATH = None
|
200 |
+
|
201 |
+
# Input format
|
202 |
+
cfg.INPUT.FORMAT = args.input_format
|
203 |
+
if args.input_format == "RGB":
|
204 |
+
cfg.MODEL.PIXEL_MEAN = cfg.MODEL.PIXEL_MEAN[0:3]
|
205 |
+
cfg.MODEL.PIXEL_STD = cfg.MODEL.PIXEL_STD[0:3]
|
206 |
+
elif args.input_format == "depth":
|
207 |
+
cfg.MODEL.PIXEL_MEAN = cfg.MODEL.PIXEL_MEAN[3:4]
|
208 |
+
cfg.MODEL.PIXEL_STD = cfg.MODEL.PIXEL_STD[3:4]
|
209 |
+
elif args.input_format == "RGBD":
|
210 |
+
pass
|
211 |
+
else:
|
212 |
+
raise ValueError("Invalid input format")
|
213 |
+
|
214 |
+
cfg.freeze()
|
215 |
+
engine.default_setup(cfg, args)
|
216 |
+
|
217 |
+
# Setup logger for "mask_former" module
|
218 |
+
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="opdformer")
|
219 |
+
return cfg
|
220 |
+
|
221 |
+
|
222 |
+
def format_input(rgb_path: str) -> list[dict[str, Any]]:
|
223 |
+
"""
|
224 |
+
Read and format input image into detectron2 form so that it can be passed to the model.
|
225 |
+
|
226 |
+
:param rgb_path: path to RGB image file
|
227 |
+
:return: list of dictionaries per image, where each dictionary is of the form
|
228 |
+
{
|
229 |
+
"file_name": path to RGB image,
|
230 |
+
"image": torch.Tensor of dimensions [channel, height, width] representing the image
|
231 |
+
}
|
232 |
+
"""
|
233 |
+
image = imageio.imread(rgb_path).astype(np.float32)
|
234 |
+
image_tensor = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) # dim: [channel, height, width]
|
235 |
+
return [{"file_name": rgb_path, "image": image_tensor}]
|
236 |
+
|
237 |
+
|
238 |
+
def load_model(model: nn.Module, checkpoint: Any) -> None:
|
239 |
+
"""
|
240 |
+
Load weights from a checkpoint.
|
241 |
+
|
242 |
+
The majority of the function definition is taken from the DetectionCheckpointer implementation provided in
|
243 |
+
detectron2. While not all of this code is necessarily needed for model loading, it was ported with the intention
|
244 |
+
of keeping the implementation and output as close to the original as possible, and reusing the checkpoint class here
|
245 |
+
in isolation was determined to be infeasible.
|
246 |
+
|
247 |
+
:param model: model for which to load weights
|
248 |
+
:param checkpoint: checkpoint contains the weights.
|
249 |
+
"""
|
250 |
+
|
251 |
+
def _strip_prefix_if_present(state_dict: dict[str, Any], prefix: str) -> None:
|
252 |
+
"""If prefix is found on all keys in state dict, remove prefix."""
|
253 |
+
keys = sorted(state_dict.keys())
|
254 |
+
if not all(len(key) == 0 or key.startswith(prefix) for key in keys):
|
255 |
+
return
|
256 |
+
|
257 |
+
for key in keys:
|
258 |
+
newkey = key[len(prefix) :]
|
259 |
+
state_dict[newkey] = state_dict.pop(key)
|
260 |
+
|
261 |
+
checkpoint_state_dict = checkpoint.pop("model")
|
262 |
+
|
263 |
+
# convert from numpy to tensor
|
264 |
+
for k, v in checkpoint_state_dict.items():
|
265 |
+
if not isinstance(v, np.ndarray) and not isinstance(v, torch.Tensor):
|
266 |
+
raise ValueError("Unsupported type found in checkpoint! {}: {}".format(k, type(v)))
|
267 |
+
if not isinstance(v, torch.Tensor):
|
268 |
+
checkpoint_state_dict[k] = torch.from_numpy(v)
|
269 |
+
|
270 |
+
# if the state_dict comes from a model that was wrapped in a
|
271 |
+
# DataParallel or DistributedDataParallel during serialization,
|
272 |
+
# remove the "module" prefix before performing the matching.
|
273 |
+
_strip_prefix_if_present(checkpoint_state_dict, "module.")
|
274 |
+
|
275 |
+
# workaround https://github.com/pytorch/pytorch/issues/24139
|
276 |
+
model_state_dict = model.state_dict()
|
277 |
+
incorrect_shapes = []
|
278 |
+
for k in list(checkpoint_state_dict.keys()): # state dict is modified in loop, so list op is necessary
|
279 |
+
if k in model_state_dict:
|
280 |
+
model_param = model_state_dict[k]
|
281 |
+
# Allow mismatch for uninitialized parameters
|
282 |
+
if TORCH_VERSION >= (1, 8) and isinstance(model_param, nn.parameter.UninitializedParameter):
|
283 |
+
continue
|
284 |
+
shape_model = tuple(model_param.shape)
|
285 |
+
shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
|
286 |
+
if shape_model != shape_checkpoint:
|
287 |
+
has_observer_base_classes = (
|
288 |
+
TORCH_VERSION >= (1, 8)
|
289 |
+
and hasattr(quantization, "ObserverBase")
|
290 |
+
and hasattr(quantization, "FakeQuantizeBase")
|
291 |
+
)
|
292 |
+
if has_observer_base_classes:
|
293 |
+
# Handle the special case of quantization per channel observers,
|
294 |
+
# where buffer shape mismatches are expected.
|
295 |
+
def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
|
296 |
+
# foo.bar.param_or_buffer_name -> [foo, bar]
|
297 |
+
key_parts = key.split(".")[:-1]
|
298 |
+
cur_module = model
|
299 |
+
for key_part in key_parts:
|
300 |
+
cur_module = getattr(cur_module, key_part)
|
301 |
+
return cur_module
|
302 |
+
|
303 |
+
cls_to_skip = (
|
304 |
+
ObserverBase,
|
305 |
+
FakeQuantizeBase,
|
306 |
+
)
|
307 |
+
target_module = _get_module_for_key(model, k)
|
308 |
+
if isinstance(target_module, cls_to_skip):
|
309 |
+
# Do not remove modules with expected shape mismatches
|
310 |
+
# them from the state_dict loading. They have special logic
|
311 |
+
# in _load_from_state_dict to handle the mismatches.
|
312 |
+
continue
|
313 |
+
|
314 |
+
incorrect_shapes.append((k, shape_checkpoint, shape_model))
|
315 |
+
checkpoint_state_dict.pop(k)
|
316 |
+
|
317 |
+
model.load_state_dict(checkpoint_state_dict, strict=False)
|
318 |
+
|
319 |
+
|
320 |
+
def predict(model: nn.Module, inp: list[dict[str, Any]]) -> list[dict[str, instances.Instances]]:
|
321 |
+
"""
|
322 |
+
Compute model predictions.
|
323 |
+
|
324 |
+
:param model: model to run on input
|
325 |
+
:param inp: input, in the form
|
326 |
+
{
|
327 |
+
"image_file": path to image,
|
328 |
+
"image": float32 torch.tensor of dimensions [channel, height, width] as RGB/RGBD/depth image
|
329 |
+
}
|
330 |
+
:return: list of detected instances and predicted openable parameters
|
331 |
+
"""
|
332 |
+
with torch.no_grad(), evaluation.inference_context(model):
|
333 |
+
out = model(inp)
|
334 |
+
return out
|
335 |
+
|
336 |
+
|
337 |
+
def generate_rotation_visualization(
|
338 |
+
pcd: o3d.geometry.PointCloud,
|
339 |
+
axis_arrow: o3d.geometry.TriangleMesh,
|
340 |
+
mask: np.ndarray,
|
341 |
+
axis_vector: np.ndarray,
|
342 |
+
origin: np.ndarray,
|
343 |
+
range_min: float,
|
344 |
+
range_max: float,
|
345 |
+
num_samples: int,
|
346 |
+
output_dir: str,
|
347 |
+
) -> None:
|
348 |
+
"""
|
349 |
+
Generate visualization files for a rotation motion of a part.
|
350 |
+
|
351 |
+
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
352 |
+
:param axis_arrow: mesh object representing axis arrow of rotation to be rendered in visualization
|
353 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
354 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
355 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
356 |
+
:param range_min: float representing the minimum range of motion in radians
|
357 |
+
:param range_max: float representing the maximum range of motion in radians
|
358 |
+
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
359 |
+
:param output_dir: string path to directory in which to save visualization output
|
360 |
+
"""
|
361 |
+
angle_in_radians = np.linspace(range_min, range_max, num_samples)
|
362 |
+
angles_in_degrees = angle_in_radians * 180 / np.pi
|
363 |
+
|
364 |
+
for idx, angle_in_degrees in enumerate(angles_in_degrees):
|
365 |
+
# Make a copy of your original point cloud and arrow for each rotation
|
366 |
+
rotated_pcd = deepcopy(pcd)
|
367 |
+
rotated_arrow = deepcopy(axis_arrow)
|
368 |
+
|
369 |
+
angle_rad = np.radians(angle_in_degrees)
|
370 |
+
rotated_pcd = rotate_part(rotated_pcd, mask, axis_vector, origin, angle_rad)
|
371 |
+
|
372 |
+
# Create a Visualizer object for each rotation
|
373 |
+
vis = o3d.visualization.Visualizer()
|
374 |
+
vis.create_window()
|
375 |
+
|
376 |
+
# Add the rotated geometries
|
377 |
+
vis.add_geometry(rotated_pcd)
|
378 |
+
vis.add_geometry(rotated_arrow)
|
379 |
+
|
380 |
+
# Apply the additional rotation around x-axis if desired
|
381 |
+
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
382 |
+
rotation_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
383 |
+
rotated_pcd.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
384 |
+
rotated_arrow.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
385 |
+
|
386 |
+
# Capture and save the image
|
387 |
+
output_filename = f"{output_dir}/{idx}.png"
|
388 |
+
vis.capture_screen_image(output_filename, do_render=True)
|
389 |
+
vis.destroy_window()
|
390 |
+
|
391 |
+
|
392 |
+
def generate_translation_visualization(
|
393 |
+
pcd: o3d.geometry.PointCloud,
|
394 |
+
axis_arrow: o3d.geometry.TriangleMesh,
|
395 |
+
mask: np.ndarray,
|
396 |
+
end: np.ndarray,
|
397 |
+
range_min: float,
|
398 |
+
range_max: float,
|
399 |
+
num_samples: int,
|
400 |
+
output_dir: str,
|
401 |
+
) -> None:
|
402 |
+
"""
|
403 |
+
Generate visualization files for a translation motion of a part.
|
404 |
+
|
405 |
+
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
406 |
+
:param axis_arrow: mesh object representing axis arrow of translation to be rendered in visualization
|
407 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
408 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
409 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of translation
|
410 |
+
:param range_min: float representing the minimum range of motion
|
411 |
+
:param range_max: float representing the maximum range of motion
|
412 |
+
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
413 |
+
:param output_dir: string path to directory in which to save visualization output
|
414 |
+
"""
|
415 |
+
translate_distances = np.linspace(range_min, range_max, num_samples)
|
416 |
+
for idx, translate_distance in enumerate(translate_distances):
|
417 |
+
translated_pcd = deepcopy(pcd)
|
418 |
+
translated_arrow = deepcopy(axis_arrow)
|
419 |
+
|
420 |
+
translated_pcd = translate_part(translated_pcd, mask, end, translate_distance.item())
|
421 |
+
|
422 |
+
# Create a Visualizer object for each rotation
|
423 |
+
vis = o3d.visualization.Visualizer()
|
424 |
+
vis.create_window()
|
425 |
+
|
426 |
+
# Add the translated geometries
|
427 |
+
vis.add_geometry(translated_pcd)
|
428 |
+
vis.add_geometry(translated_arrow)
|
429 |
+
|
430 |
+
# Apply the additional rotation around x-axis if desired
|
431 |
+
# TODO: not sure why we need this rotation for the translation, and when it would be desired
|
432 |
+
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
433 |
+
R = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
434 |
+
translated_pcd.rotate(R, center=translated_pcd.get_center())
|
435 |
+
translated_arrow.rotate(R, center=translated_pcd.get_center())
|
436 |
+
|
437 |
+
# Capture and save the image
|
438 |
+
output_filename = f"{output_dir}/{idx}.png"
|
439 |
+
vis.capture_screen_image(output_filename, do_render=True)
|
440 |
+
vis.destroy_window()
|
441 |
+
|
442 |
+
|
443 |
+
def get_rotation_matrix_from_vectors(vec1: np.ndarray, vec2: np.ndarray) -> np.ndarray:
|
444 |
+
"""
|
445 |
+
Find the rotation matrix that aligns vec1 to vec2
|
446 |
+
|
447 |
+
:param vec1: A 3d "source" vector
|
448 |
+
:param vec2: A 3d "destination" vector
|
449 |
+
:return: A transform matrix (3x3) which when applied to vec1, aligns it with vec2.
|
450 |
+
"""
|
451 |
+
a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3)
|
452 |
+
v = np.cross(a, b)
|
453 |
+
c = np.dot(a, b)
|
454 |
+
s = np.linalg.norm(v)
|
455 |
+
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
|
456 |
+
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s**2))
|
457 |
+
return rotation_matrix
|
458 |
+
|
459 |
+
|
460 |
+
def draw_line(start_point: np.ndarray, end_point: np.ndarray) -> o3d.geometry.TriangleMesh:
|
461 |
+
"""
|
462 |
+
Generate 3D mesh representing axis from start_point to end_point.
|
463 |
+
|
464 |
+
:param start_point: np.ndarray of dimensions (3, ) representing the start point of the axis
|
465 |
+
:param end_point: np.ndarray of dimensions (3, ) representing the end point of the axis
|
466 |
+
:return: mesh object representing axis from start to end
|
467 |
+
"""
|
468 |
+
# Compute direction vector and normalize it
|
469 |
+
direction_vector = end_point - start_point
|
470 |
+
normalized_vector = direction_vector / np.linalg.norm(direction_vector)
|
471 |
+
|
472 |
+
# Compute the rotation matrix to align the Z-axis with the desired direction
|
473 |
+
target_vector = np.array([0, 0, 1])
|
474 |
+
rot_mat = get_rotation_matrix_from_vectors(target_vector, normalized_vector)
|
475 |
+
|
476 |
+
# Create the cylinder (shaft of the arrow)
|
477 |
+
cylinder_length = 0.9 # 90% of the total arrow length, you can adjust as needed
|
478 |
+
cylinder_radius = 0.01 # Adjust the thickness of the arrow shaft
|
479 |
+
cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=cylinder_radius, height=cylinder_length)
|
480 |
+
|
481 |
+
# Move base of cylinder to origin, rotate, then translate to start_point
|
482 |
+
cylinder.translate([0, 0, 0])
|
483 |
+
cylinder.rotate(rot_mat, center=[0, 0, 0])
|
484 |
+
cylinder.translate(start_point)
|
485 |
+
|
486 |
+
# Create the cone (head of the arrow)
|
487 |
+
cone_height = 0.1 # 10% of the total arrow length, adjust as needed
|
488 |
+
cone_radius = 0.03 # Adjust the size of the arrowhead
|
489 |
+
cone = o3d.geometry.TriangleMesh.create_cone(radius=cone_radius, height=cone_height)
|
490 |
+
|
491 |
+
# Move base of cone to origin, rotate, then translate to end of cylinder
|
492 |
+
cone.translate([-0, 0, 0])
|
493 |
+
cone.rotate(rot_mat, center=[0, 0, 0])
|
494 |
+
cone.translate(start_point + normalized_vector * 0.4)
|
495 |
+
|
496 |
+
arrow = cylinder + cone
|
497 |
+
return arrow
|
498 |
+
|
499 |
+
|
500 |
+
def rotate_part(
|
501 |
+
pcd: o3d.geometry.PointCloud, mask: np.ndarray, axis_vector: np.ndarray, origin: np.ndarray, angle_rad: float
|
502 |
+
) -> o3d.geometry.PointCloud:
|
503 |
+
"""
|
504 |
+
Generate rotated point cloud of mask based on provided angle around axis.
|
505 |
+
|
506 |
+
:param pcd: point cloud object representing points of image
|
507 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
508 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
509 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
510 |
+
:param angle_rad: angle in radians to rotate mask part
|
511 |
+
:return: point cloud object after rotation of masked part
|
512 |
+
"""
|
513 |
+
# Get the coordinates of the point cloud as a numpy array
|
514 |
+
points_np = np.asarray(pcd.points)
|
515 |
+
|
516 |
+
# Convert point cloud colors to numpy array for easier manipulation
|
517 |
+
colors_np = np.asarray(pcd.colors)
|
518 |
+
|
519 |
+
# Create skew-symmetric matrix from end
|
520 |
+
K = np.array(
|
521 |
+
[
|
522 |
+
[0, -axis_vector[2], axis_vector[1]],
|
523 |
+
[axis_vector[2], 0, -axis_vector[0]],
|
524 |
+
[-axis_vector[1], axis_vector[0], 0],
|
525 |
+
]
|
526 |
+
)
|
527 |
+
|
528 |
+
# Compute rotation matrix using Rodrigues' formula
|
529 |
+
R = np.eye(3) + np.sin(angle_rad) * K + (1 - np.cos(angle_rad)) * np.dot(K, K)
|
530 |
+
|
531 |
+
# Iterate over the mask and rotate the points corresponding to the object pixels
|
532 |
+
for i in range(mask.shape[0]):
|
533 |
+
for j in range(mask.shape[1]):
|
534 |
+
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
535 |
+
point_index = i * mask.shape[1] + j
|
536 |
+
|
537 |
+
# Translate the point such that the rotation origin is at the world origin
|
538 |
+
translated_point = points_np[point_index] - origin
|
539 |
+
|
540 |
+
# Rotate the translated point
|
541 |
+
rotated_point = np.dot(R, translated_point)
|
542 |
+
|
543 |
+
# Translate the point back
|
544 |
+
points_np[point_index] = rotated_point + origin
|
545 |
+
|
546 |
+
colors_np[point_index] = POINT_COLOR
|
547 |
+
|
548 |
+
# Update the point cloud's coordinates
|
549 |
+
pcd.points = o3d.utility.Vector3dVector(points_np)
|
550 |
+
|
551 |
+
# Update point cloud colors
|
552 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
553 |
+
|
554 |
+
return pcd
|
555 |
+
|
556 |
+
|
557 |
+
def translate_part(pcd, mask, axis_vector, distance):
|
558 |
+
"""
|
559 |
+
Generate translated point cloud of mask based on provided angle around axis.
|
560 |
+
|
561 |
+
:param pcd: point cloud object representing points of image
|
562 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
563 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
564 |
+
:param distance: distance within coordinate system to translate mask part
|
565 |
+
:return: point cloud object after translation of masked part
|
566 |
+
"""
|
567 |
+
normalized_vector = axis_vector / np.linalg.norm(axis_vector)
|
568 |
+
translation_vector = normalized_vector * distance
|
569 |
+
|
570 |
+
# Convert point cloud colors to numpy array for easier manipulation
|
571 |
+
colors_np = np.asarray(pcd.colors)
|
572 |
+
|
573 |
+
# Get the coordinates of the point cloud as a numpy array
|
574 |
+
points_np = np.asarray(pcd.points)
|
575 |
+
|
576 |
+
# Iterate over the mask and assign the color to the points corresponding to the object pixels
|
577 |
+
for i in range(mask.shape[0]):
|
578 |
+
for j in range(mask.shape[1]):
|
579 |
+
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
580 |
+
point_index = i * mask.shape[1] + j
|
581 |
+
colors_np[point_index] = POINT_COLOR
|
582 |
+
points_np[point_index] += translation_vector
|
583 |
+
|
584 |
+
# Update point cloud colors
|
585 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
586 |
+
|
587 |
+
# Update the point cloud's coordinates
|
588 |
+
pcd.points = o3d.utility.Vector3dVector(points_np)
|
589 |
+
|
590 |
+
return pcd
|
591 |
+
|
592 |
+
|
593 |
+
def batch_trim(images_path: str, save_path: str, identical: bool = False) -> None:
|
594 |
+
"""
|
595 |
+
Trim white spaces from all images in the given path and save new images to folder.
|
596 |
+
|
597 |
+
:param images_path: local path to folder containing all images. Images must have the extension ".png", ".jpg", or
|
598 |
+
".jpeg".
|
599 |
+
:param save_path: local path to folder in which to save trimmed images
|
600 |
+
:param identical: if True, will apply same crop to all images, else each image will have its whitespace trimmed
|
601 |
+
independently. Note that in the latter case, each image may have a slightly different size.
|
602 |
+
"""
|
603 |
+
|
604 |
+
def get_trim(im):
|
605 |
+
"""Trim whitespace from an image and return the cropped image."""
|
606 |
+
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
|
607 |
+
diff = ImageChops.difference(im, bg)
|
608 |
+
diff = ImageChops.add(diff, diff, 2.0, -100)
|
609 |
+
bbox = diff.getbbox()
|
610 |
+
return bbox
|
611 |
+
|
612 |
+
if identical: #
|
613 |
+
images = []
|
614 |
+
optimal_box = None
|
615 |
+
|
616 |
+
# load all images
|
617 |
+
for image_file in os.listdir(images_path):
|
618 |
+
if image_file.endswith(IMAGE_EXTENSIONS):
|
619 |
+
image_path = os.path.join(images_path, image_file)
|
620 |
+
images.append(Image.open(image_path))
|
621 |
+
|
622 |
+
# find optimal box size
|
623 |
+
for im in images:
|
624 |
+
bbox = get_trim(im)
|
625 |
+
if bbox is None:
|
626 |
+
bbox = (0, 0, im.size[0], im.size[1]) # bound entire image
|
627 |
+
|
628 |
+
if optimal_box is None:
|
629 |
+
optimal_box = bbox
|
630 |
+
else:
|
631 |
+
optimal_box = (
|
632 |
+
min(optimal_box[0], bbox[0]),
|
633 |
+
min(optimal_box[1], bbox[1]),
|
634 |
+
max(optimal_box[2], bbox[2]),
|
635 |
+
max(optimal_box[3], bbox[3]),
|
636 |
+
)
|
637 |
+
|
638 |
+
# apply cropping, if optimal box was found
|
639 |
+
if optimal_box:
|
640 |
+
for im in images:
|
641 |
+
im.crop(optimal_box)
|
642 |
+
im.close()
|
643 |
+
|
644 |
+
else: # trim each image separately
|
645 |
+
for image_file in os.listdir(images_path):
|
646 |
+
if image_file.endswith(IMAGE_EXTENSIONS):
|
647 |
+
image_path = os.path.join(images_path, image_file)
|
648 |
+
with Image.open(image_path) as im:
|
649 |
+
bbox = get_trim(im)
|
650 |
+
trimmed = im.crop(bbox) if bbox else im
|
651 |
+
trimmed.save(os.path.join(save_path, image_file))
|
652 |
+
|
653 |
+
|
654 |
+
def create_gif(image_folder_path: str, num_samples: int, gif_filename: str = "output.gif") -> None:
|
655 |
+
"""
|
656 |
+
Create gif out of folder of images and save to file.
|
657 |
+
|
658 |
+
:param image_folder_path: path to folder containing images (non-recursive). Assumes images are named as {i}.png for
|
659 |
+
each of i from 0 to num_samples.
|
660 |
+
:param num_samples: number of sampled images to compile into gif.
|
661 |
+
:param gif_filename: filename for gif, defaults to "output.gif"
|
662 |
+
"""
|
663 |
+
# Generate a list of image filenames (assuming the images are saved as 0.png, 1.png, etc.)
|
664 |
+
image_files = [f"{image_folder_path}/{i}.png" for i in range(num_samples)]
|
665 |
+
|
666 |
+
# Read the images using imageio
|
667 |
+
images = [imageio.imread(image_file) for image_file in image_files]
|
668 |
+
|
669 |
+
# Save images as a gif
|
670 |
+
gif_output_path = f"{image_folder_path}/{gif_filename}"
|
671 |
+
imageio.mimsave(gif_output_path, images, duration=0.1)
|
672 |
+
|
673 |
+
return
|
674 |
+
|
675 |
+
|
676 |
+
def main(
|
677 |
+
cfg: CfgNode,
|
678 |
+
rgb_image: str,
|
679 |
+
depth_image: str,
|
680 |
+
intrinsics: list[float],
|
681 |
+
num_samples: int,
|
682 |
+
crop: bool,
|
683 |
+
score_threshold: float,
|
684 |
+
) -> None:
|
685 |
+
"""
|
686 |
+
Main inference method.
|
687 |
+
|
688 |
+
:param cfg: configuration object
|
689 |
+
:param rgb_image: local path to RGB image
|
690 |
+
:param depth_image: local path to depth image
|
691 |
+
:param intrinsics: camera intrinsics matrix as a list of 9 values
|
692 |
+
:param num_samples: number of sample visualization states to generate
|
693 |
+
:param crop: if True, images will be cropped to remove whitespace before visualization
|
694 |
+
:param score_threshold: float between 0 and 1 representing threshold at which to filter instances based on score
|
695 |
+
"""
|
696 |
+
logger = logging.getLogger("detectron2")
|
697 |
+
|
698 |
+
# setup data
|
699 |
+
logger.info("Loading image.")
|
700 |
+
inp = format_input(rgb_image)
|
701 |
+
|
702 |
+
# setup model
|
703 |
+
logger.info("Loading model.")
|
704 |
+
model = build_model(cfg)
|
705 |
+
weights = torch.load(cfg.MODEL.WEIGHTS, map_location=torch.device("cpu"))
|
706 |
+
if "model" not in weights:
|
707 |
+
weights = {"model": weights}
|
708 |
+
load_model(model, weights)
|
709 |
+
|
710 |
+
# run model on data
|
711 |
+
logger.info("Running model.")
|
712 |
+
prediction = predict(model, inp)[0] # index 0 since there is only one image
|
713 |
+
|
714 |
+
# select best prediction to visualize
|
715 |
+
pred_instances = prediction["instances"]
|
716 |
+
score_ranking = np.argsort([-1 * pred_instances[i].scores.item() for i in range(len(pred_instances))])
|
717 |
+
score_ranking = [idx for idx in score_ranking if pred_instances[int(idx)].scores.item() > score_threshold]
|
718 |
+
if len(score_ranking) == 0:
|
719 |
+
logging.warning("The model did not predict any moving parts above the score threshold.")
|
720 |
+
return
|
721 |
+
|
722 |
+
for idx in score_ranking: # iterate through all best predictions, by score threshold
|
723 |
+
pred = pred_instances[int(idx)] # take highest predicted one
|
724 |
+
logger.info("Rendering prediction for instance %d", int(idx))
|
725 |
+
output_dir = os.path.join(cfg.OUTPUT_DIR, str(idx))
|
726 |
+
os.makedirs(output_dir, exist_ok=True)
|
727 |
+
|
728 |
+
# extract predicted values for visualization
|
729 |
+
mask = np.squeeze(pred.pred_masks.cpu().numpy()) # dim: [height, width]
|
730 |
+
origin = pred.morigin.cpu().numpy().flatten() # dim: [3, ]
|
731 |
+
axis_vector = pred.maxis.cpu().numpy().flatten() # dim: [3, ]
|
732 |
+
pred_type = TYPE_CLASSIFICATION.get(pred.mtype.item())
|
733 |
+
range_min = 0 - pred.mstate.cpu().numpy()
|
734 |
+
range_max = pred.mstatemax.cpu().numpy() - pred.mstate.cpu().numpy()
|
735 |
+
|
736 |
+
# process visualization
|
737 |
+
color = o3d.io.read_image(rgb_image)
|
738 |
+
depth = o3d.io.read_image(depth_image)
|
739 |
+
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(color, depth, convert_rgb_to_intensity=False)
|
740 |
+
color_np = np.asarray(color)
|
741 |
+
height, width = color_np.shape[:2]
|
742 |
+
|
743 |
+
# generate intrinsics
|
744 |
+
intrinsic_matrix = np.reshape(intrinsics, (3, 3), order="F")
|
745 |
+
intrinsic_obj = o3d.camera.PinholeCameraIntrinsic(
|
746 |
+
width,
|
747 |
+
height,
|
748 |
+
intrinsic_matrix[0, 0],
|
749 |
+
intrinsic_matrix[1, 1],
|
750 |
+
intrinsic_matrix[0, 2],
|
751 |
+
intrinsic_matrix[1, 2],
|
752 |
+
)
|
753 |
+
|
754 |
+
# Convert the RGBD image to a point cloud
|
755 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic_obj)
|
756 |
+
|
757 |
+
# Create a LineSet to visualize the direction vector
|
758 |
+
axis_arrow = draw_line(origin, axis_vector + origin)
|
759 |
+
axis_arrow.paint_uniform_color([0, 1, 0])
|
760 |
+
|
761 |
+
# if USE_GT:
|
762 |
+
# anno_path = f"/localhome/atw7/projects/opdmulti/data/data_demo_dev/59-4860.json"
|
763 |
+
# part_id = 32
|
764 |
+
|
765 |
+
# # get annotation for the frame
|
766 |
+
# import json
|
767 |
+
|
768 |
+
# with open(anno_path, "r") as f:
|
769 |
+
# anno = json.load(f)
|
770 |
+
|
771 |
+
# articulations = anno["articulation"]
|
772 |
+
# for articulation in articulations:
|
773 |
+
# if articulation["partId"] == part_id:
|
774 |
+
# range_min = articulation["rangeMin"] - articulation["state"]
|
775 |
+
# range_max = articulation["rangeMax"] - articulation["state"]
|
776 |
+
# break
|
777 |
+
|
778 |
+
if pred_type == "rotation":
|
779 |
+
generate_rotation_visualization(
|
780 |
+
pcd,
|
781 |
+
axis_arrow,
|
782 |
+
mask,
|
783 |
+
axis_vector,
|
784 |
+
origin,
|
785 |
+
range_min,
|
786 |
+
range_max,
|
787 |
+
num_samples,
|
788 |
+
output_dir,
|
789 |
+
)
|
790 |
+
elif pred_type == "translation":
|
791 |
+
generate_translation_visualization(
|
792 |
+
pcd,
|
793 |
+
axis_arrow,
|
794 |
+
mask,
|
795 |
+
axis_vector,
|
796 |
+
range_min,
|
797 |
+
range_max,
|
798 |
+
num_samples,
|
799 |
+
output_dir,
|
800 |
+
)
|
801 |
+
else:
|
802 |
+
raise ValueError(f"Invalid motion prediction type: {pred_type}")
|
803 |
+
|
804 |
+
if pred_type:
|
805 |
+
if crop: # crop images to remove shared extraneous whitespace
|
806 |
+
output_dir_cropped = f"{output_dir}_cropped"
|
807 |
+
if not os.path.isdir(output_dir_cropped):
|
808 |
+
os.makedirs(output_dir_cropped)
|
809 |
+
batch_trim(output_dir, output_dir_cropped, identical=True)
|
810 |
+
create_gif(output_dir_cropped, num_samples)
|
811 |
+
else: # leave original dimensions of image as-is
|
812 |
+
create_gif(output_dir, num_samples)
|
813 |
+
|
814 |
+
|
815 |
+
if __name__ == "__main__":
|
816 |
+
# parse arguments
|
817 |
+
start_time = time.time()
|
818 |
+
args = get_parser().parse_args()
|
819 |
+
cfg = setup_cfg(args)
|
820 |
+
|
821 |
+
# run main code
|
822 |
+
engine.launch(
|
823 |
+
main,
|
824 |
+
args.num_processes,
|
825 |
+
args=(
|
826 |
+
cfg,
|
827 |
+
args.rgb_image,
|
828 |
+
args.depth_image,
|
829 |
+
args.intrinsics,
|
830 |
+
args.num_samples,
|
831 |
+
args.crop,
|
832 |
+
args.score_threshold,
|
833 |
+
),
|
834 |
+
)
|
835 |
+
end_time = time.time()
|
836 |
+
print(f"Inference time: {end_time - start_time:.2f} seconds")
|
mask2former/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates
|
2 |
+
from . import modeling
|
3 |
+
|
4 |
+
# config
|
5 |
+
from .config import add_maskformer2_config, add_motionnet_config
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"modeling",
|
9 |
+
"add_maskformer2_config",
|
10 |
+
"add_motionnet_config",
|
11 |
+
]
|
mask2former/config.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
from detectron2.config import CfgNode as CN
|
4 |
+
|
5 |
+
|
6 |
+
def add_motionnet_config(cfg: CN):
|
7 |
+
_C = cfg
|
8 |
+
_C.MODEL.MOTIONNET = CN()
|
9 |
+
_C.MODEL.MOTIONNET.TYPE = "BMOC_V0"
|
10 |
+
cfg.MODEL.MASK_FORMER.MTYPE_WEIGHT = 2.0
|
11 |
+
cfg.MODEL.MASK_FORMER.MORIGIN_WEIGHT = 16.0
|
12 |
+
cfg.MODEL.MASK_FORMER.MAXIS_WEIGHT = 16.0
|
13 |
+
cfg.MODEL.MASK_FORMER.MSTATE_WEIGHT = 16.0
|
14 |
+
cfg.MODEL.MASK_FORMER.MSTATEMAX_WEIGHT = 16.0
|
15 |
+
cfg.MODEL.MASK_FORMER.EXTRINSIC_WEIGHT = 30.0
|
16 |
+
|
17 |
+
def add_maskformer2_config(cfg):
|
18 |
+
"""
|
19 |
+
Add config for MASK_FORMER.
|
20 |
+
"""
|
21 |
+
# NOTE: configs from original maskformer
|
22 |
+
# data config
|
23 |
+
# select the dataset mapper
|
24 |
+
cfg.INPUT.DATASET_MAPPER_NAME = "mask_former_semantic"
|
25 |
+
# Color augmentation
|
26 |
+
cfg.INPUT.COLOR_AUG_SSD = False
|
27 |
+
# We retry random cropping until no single category in semantic segmentation GT occupies more
|
28 |
+
# than `SINGLE_CATEGORY_MAX_AREA` part of the crop.
|
29 |
+
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0
|
30 |
+
# Pad image and segmentation GT in dataset mapper.
|
31 |
+
cfg.INPUT.SIZE_DIVISIBILITY = -1
|
32 |
+
|
33 |
+
# solver config
|
34 |
+
# weight decay on embedding
|
35 |
+
cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0
|
36 |
+
# optimizer
|
37 |
+
cfg.SOLVER.OPTIMIZER = "ADAMW"
|
38 |
+
cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
|
39 |
+
|
40 |
+
# mask_former model config
|
41 |
+
cfg.MODEL.MASK_FORMER = CN()
|
42 |
+
|
43 |
+
# loss
|
44 |
+
cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
|
45 |
+
cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = 0.1
|
46 |
+
cfg.MODEL.MASK_FORMER.CLASS_WEIGHT = 1.0
|
47 |
+
cfg.MODEL.MASK_FORMER.DICE_WEIGHT = 1.0
|
48 |
+
cfg.MODEL.MASK_FORMER.MASK_WEIGHT = 20.0
|
49 |
+
|
50 |
+
# transformer config
|
51 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
52 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.1
|
53 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
54 |
+
cfg.MODEL.MASK_FORMER.ENC_LAYERS = 0
|
55 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 6
|
56 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
57 |
+
|
58 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
59 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 100
|
60 |
+
|
61 |
+
cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE = "res5"
|
62 |
+
cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ = False
|
63 |
+
|
64 |
+
# mask_former inference config
|
65 |
+
cfg.MODEL.MASK_FORMER.TEST = CN()
|
66 |
+
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True
|
67 |
+
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = False
|
68 |
+
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = False
|
69 |
+
cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD = 0.0
|
70 |
+
cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD = 0.0
|
71 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False
|
72 |
+
|
73 |
+
# Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
|
74 |
+
# you can use this config to override
|
75 |
+
cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY = 32
|
76 |
+
|
77 |
+
# pixel decoder config
|
78 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
79 |
+
# adding transformer in pixel decoder
|
80 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
|
81 |
+
# pixel decoder
|
82 |
+
cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder"
|
83 |
+
|
84 |
+
# swin transformer backbone
|
85 |
+
cfg.MODEL.SWIN = CN()
|
86 |
+
cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
|
87 |
+
cfg.MODEL.SWIN.PATCH_SIZE = 4
|
88 |
+
cfg.MODEL.SWIN.EMBED_DIM = 96
|
89 |
+
cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
|
90 |
+
cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
|
91 |
+
cfg.MODEL.SWIN.WINDOW_SIZE = 7
|
92 |
+
cfg.MODEL.SWIN.MLP_RATIO = 4.0
|
93 |
+
cfg.MODEL.SWIN.QKV_BIAS = True
|
94 |
+
cfg.MODEL.SWIN.QK_SCALE = None
|
95 |
+
cfg.MODEL.SWIN.DROP_RATE = 0.0
|
96 |
+
cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
|
97 |
+
cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
|
98 |
+
cfg.MODEL.SWIN.APE = False
|
99 |
+
cfg.MODEL.SWIN.PATCH_NORM = True
|
100 |
+
cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
|
101 |
+
cfg.MODEL.SWIN.USE_CHECKPOINT = False
|
102 |
+
|
103 |
+
# NOTE: maskformer2 extra configs
|
104 |
+
# transformer module
|
105 |
+
cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME = "MultiScaleMaskedTransformerDecoder"
|
106 |
+
|
107 |
+
# LSJ aug
|
108 |
+
cfg.INPUT.IMAGE_SIZE = 1024
|
109 |
+
cfg.INPUT.MIN_SCALE = 0.1
|
110 |
+
cfg.INPUT.MAX_SCALE = 2.0
|
111 |
+
|
112 |
+
# MSDeformAttn encoder configs
|
113 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"]
|
114 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4
|
115 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8
|
116 |
+
|
117 |
+
# point loss configs
|
118 |
+
# Number of points sampled during training for a mask point head.
|
119 |
+
cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS = 112 * 112
|
120 |
+
# Oversampling parameter for PointRend point sampling during training. Parameter `k` in the
|
121 |
+
# original paper.
|
122 |
+
cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO = 3.0
|
123 |
+
# Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in
|
124 |
+
# the original paper.
|
125 |
+
cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75
|
mask2former/maskformer_model.py
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import pdb
|
3 |
+
from typing import Tuple
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import device, nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.data import MetadataCatalog
|
12 |
+
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
|
13 |
+
from detectron2.modeling.backbone import Backbone
|
14 |
+
from detectron2.modeling.postprocessing import sem_seg_postprocess
|
15 |
+
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
|
16 |
+
from detectron2.utils.memory import retry_if_cuda_oom
|
17 |
+
|
18 |
+
from .modeling.criterion import SetCriterion
|
19 |
+
from .modeling.matcher import HungarianMatcher
|
20 |
+
from .utils.tranform import matrix_to_quaternion, quaternion_to_matrix, rotation_6d_to_matrix, matrix_to_rotation_6d, geometric_median
|
21 |
+
from .modeling.criterion import convert_to_filled_tensor
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
@META_ARCH_REGISTRY.register()
|
26 |
+
class MaskFormer(nn.Module):
|
27 |
+
"""
|
28 |
+
Main class for mask classification semantic segmentation architectures.
|
29 |
+
"""
|
30 |
+
|
31 |
+
@configurable
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
*,
|
35 |
+
backbone: Backbone,
|
36 |
+
sem_seg_head: nn.Module,
|
37 |
+
criterion: nn.Module,
|
38 |
+
mask2former_backbone: nn.Module,
|
39 |
+
mask2former_sem_seg_head: nn.Module,
|
40 |
+
num_queries: int,
|
41 |
+
object_mask_threshold: float,
|
42 |
+
overlap_threshold: float,
|
43 |
+
metadata,
|
44 |
+
size_divisibility: int,
|
45 |
+
sem_seg_postprocess_before_inference: bool,
|
46 |
+
pixel_mean: Tuple[float],
|
47 |
+
pixel_std: Tuple[float],
|
48 |
+
# inference
|
49 |
+
semantic_on: bool,
|
50 |
+
panoptic_on: bool,
|
51 |
+
instance_on: bool,
|
52 |
+
test_topk_per_image: int,
|
53 |
+
# OPD
|
54 |
+
motionnet_type,
|
55 |
+
voting,
|
56 |
+
gtdet,
|
57 |
+
inference_matcher,
|
58 |
+
gtextrinsic,
|
59 |
+
only_DET,
|
60 |
+
obj_method
|
61 |
+
):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
backbone: a backbone module, must follow detectron2's backbone interface
|
65 |
+
sem_seg_head: a module that predicts semantic segmentation from backbone features
|
66 |
+
criterion: a module that defines the loss
|
67 |
+
num_queries: int, number of queries
|
68 |
+
object_mask_threshold: float, threshold to filter query based on classification score
|
69 |
+
for panoptic segmentation inference
|
70 |
+
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
|
71 |
+
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
|
72 |
+
segmentation inference
|
73 |
+
size_divisibility: Some backbones require the input height and width to be divisible by a
|
74 |
+
specific integer. We can use this to override such requirement.
|
75 |
+
sem_seg_postprocess_before_inference: whether to resize the prediction back
|
76 |
+
to original input size before semantic segmentation inference or after.
|
77 |
+
For high-resolution dataset like Mapillary, resizing predictions before
|
78 |
+
inference will cause OOM error.
|
79 |
+
pixel_mean, pixel_std: list or tuple with #channels element, representing
|
80 |
+
the per-channel mean and std to be used to normalize the input image
|
81 |
+
semantic_on: bool, whether to output semantic segmentation prediction
|
82 |
+
instance_on: bool, whether to output instance segmentation prediction
|
83 |
+
panoptic_on: bool, whether to output panoptic segmentation prediction
|
84 |
+
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.backbone = backbone
|
88 |
+
self.sem_seg_head = sem_seg_head
|
89 |
+
self.mask2former_backbone = mask2former_backbone
|
90 |
+
self.mask2former_sem_seg_head = mask2former_sem_seg_head
|
91 |
+
|
92 |
+
self.criterion = criterion
|
93 |
+
self.num_queries = num_queries
|
94 |
+
self.overlap_threshold = overlap_threshold
|
95 |
+
self.object_mask_threshold = object_mask_threshold
|
96 |
+
self.metadata = metadata
|
97 |
+
if size_divisibility < 0:
|
98 |
+
# use backbone size_divisibility if not set
|
99 |
+
size_divisibility = self.backbone.size_divisibility
|
100 |
+
self.size_divisibility = size_divisibility
|
101 |
+
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
|
102 |
+
self.register_buffer("pixel_mean", torch.Tensor(
|
103 |
+
pixel_mean).view(-1, 1, 1), False)
|
104 |
+
self.register_buffer("pixel_std", torch.Tensor(
|
105 |
+
pixel_std).view(-1, 1, 1), False)
|
106 |
+
|
107 |
+
# additional args
|
108 |
+
self.semantic_on = semantic_on
|
109 |
+
self.instance_on = instance_on
|
110 |
+
self.panoptic_on = panoptic_on
|
111 |
+
self.test_topk_per_image = test_topk_per_image
|
112 |
+
|
113 |
+
if not self.semantic_on:
|
114 |
+
assert self.sem_seg_postprocess_before_inference
|
115 |
+
|
116 |
+
# OPD
|
117 |
+
self.motionnet_type = motionnet_type
|
118 |
+
self.voting = voting
|
119 |
+
self.gtdet = gtdet
|
120 |
+
self.inference_matcher = inference_matcher
|
121 |
+
self.gtextrinsic = gtextrinsic
|
122 |
+
self.only_DET = only_DET
|
123 |
+
self.obj_method = obj_method
|
124 |
+
|
125 |
+
@classmethod
|
126 |
+
def from_config(cls, cfg):
|
127 |
+
backbone = build_backbone(cfg)
|
128 |
+
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
|
129 |
+
|
130 |
+
# TODO: add mask2former backbone and semseghead to get object mask
|
131 |
+
if cfg.OBJ_DETECT:
|
132 |
+
mask2former_backbone = build_backbone(cfg.MASK2FORMER)
|
133 |
+
mask2former_sem_seg_head = build_sem_seg_head(
|
134 |
+
cfg.MASK2FORMER, backbone.output_shape())
|
135 |
+
else:
|
136 |
+
mask2former_backbone = None
|
137 |
+
mask2former_sem_seg_head = None
|
138 |
+
|
139 |
+
# Loss parameters:
|
140 |
+
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
141 |
+
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
|
142 |
+
|
143 |
+
# loss weights
|
144 |
+
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
|
145 |
+
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
|
146 |
+
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
|
147 |
+
# OPD
|
148 |
+
mtype_weight = cfg.MODEL.MASK_FORMER.MTYPE_WEIGHT
|
149 |
+
morigin_weight = cfg.MODEL.MASK_FORMER.MORIGIN_WEIGHT
|
150 |
+
maxis_weight = cfg.MODEL.MASK_FORMER.MAXIS_WEIGHT
|
151 |
+
extrinsic_weight = cfg.MODEL.MASK_FORMER.EXTRINSIC_WEIGHT
|
152 |
+
mstate_weight = cfg.MODEL.MASK_FORMER.MSTATE_WEIGHT
|
153 |
+
mstatemax_weight = cfg.MODEL.MASK_FORMER.MSTATEMAX_WEIGHT
|
154 |
+
|
155 |
+
motionnet_type = cfg.MODEL.MOTIONNET.TYPE
|
156 |
+
|
157 |
+
# building criterion
|
158 |
+
matcher = HungarianMatcher(
|
159 |
+
cost_class=class_weight,
|
160 |
+
cost_mask=mask_weight,
|
161 |
+
cost_dice=dice_weight,
|
162 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
163 |
+
)
|
164 |
+
|
165 |
+
if "GTDET" in cfg.MODEL:
|
166 |
+
gtdet = cfg.MODEL.GTDET
|
167 |
+
else:
|
168 |
+
gtdet = False
|
169 |
+
|
170 |
+
if "GTEXTRINSIC" in cfg.MODEL:
|
171 |
+
gtextrinsic = cfg.MODEL.GTEXTRINSIC
|
172 |
+
else:
|
173 |
+
gtextrinsic = None
|
174 |
+
|
175 |
+
if gtdet or gtextrinsic:
|
176 |
+
# This inference matcher is used for GT ablation when inferencing
|
177 |
+
inference_matcher = matcher
|
178 |
+
else:
|
179 |
+
inference_matcher = None
|
180 |
+
|
181 |
+
if "ONLY_DET" in cfg.MODEL:
|
182 |
+
only_DET = cfg.MODEL.ONLY_DET
|
183 |
+
else:
|
184 |
+
only_DET = False
|
185 |
+
|
186 |
+
# OPD
|
187 |
+
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight, "loss_mtype": mtype_weight,
|
188 |
+
"loss_morigin": morigin_weight, "loss_maxis": maxis_weight, "loss_mstate": mstate_weight, "loss_mstatemax": mstatemax_weight}
|
189 |
+
if motionnet_type == "BMOC_V1" or motionnet_type == "BMOC_V2" or motionnet_type == "BMOC_V3" or motionnet_type == "BMOC_V4" or motionnet_type == "BMOC_V5" or motionnet_type == "BMOC_V6":
|
190 |
+
weight_dict["loss_extrinsic"] = extrinsic_weight
|
191 |
+
|
192 |
+
if deep_supervision:
|
193 |
+
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
194 |
+
aux_weight_dict = {}
|
195 |
+
for i in range(dec_layers - 1):
|
196 |
+
aux_weight_dict.update(
|
197 |
+
{k + f"_{i}": v for k, v in weight_dict.items()})
|
198 |
+
weight_dict.update(aux_weight_dict)
|
199 |
+
|
200 |
+
# OPD
|
201 |
+
if motionnet_type == "BMOC_V0":
|
202 |
+
weight_dict["loss_extrinsic"] = extrinsic_weight
|
203 |
+
|
204 |
+
# OPD
|
205 |
+
losses = ["labels", "masks", "mtypes", "morigins",
|
206 |
+
"maxises", "extrinsics", "mstates", "mstatemaxs"]
|
207 |
+
|
208 |
+
criterion = SetCriterion(
|
209 |
+
sem_seg_head.num_classes,
|
210 |
+
matcher=matcher,
|
211 |
+
weight_dict=weight_dict,
|
212 |
+
eos_coef=no_object_weight,
|
213 |
+
losses=losses,
|
214 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
215 |
+
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
|
216 |
+
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
|
217 |
+
motionnet_type=motionnet_type,
|
218 |
+
only_DET=only_DET,
|
219 |
+
)
|
220 |
+
|
221 |
+
# OPD
|
222 |
+
if "VOTING" in cfg.MODEL.MOTIONNET:
|
223 |
+
voting = cfg.MODEL.MOTIONNET.VOTING
|
224 |
+
else:
|
225 |
+
voting = None
|
226 |
+
|
227 |
+
return {
|
228 |
+
"backbone": backbone,
|
229 |
+
"sem_seg_head": sem_seg_head,
|
230 |
+
"mask2former_backbone": mask2former_backbone,
|
231 |
+
"mask2former_sem_seg_head": mask2former_sem_seg_head,
|
232 |
+
"criterion": criterion,
|
233 |
+
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
|
234 |
+
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
|
235 |
+
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
|
236 |
+
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
|
237 |
+
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
|
238 |
+
"sem_seg_postprocess_before_inference": (
|
239 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
|
240 |
+
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
|
241 |
+
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
|
242 |
+
),
|
243 |
+
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
|
244 |
+
"pixel_std": cfg.MODEL.PIXEL_STD,
|
245 |
+
# inference
|
246 |
+
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
|
247 |
+
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
|
248 |
+
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
|
249 |
+
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
|
250 |
+
# OPD
|
251 |
+
"motionnet_type": motionnet_type,
|
252 |
+
"voting": voting,
|
253 |
+
"gtdet": gtdet,
|
254 |
+
"inference_matcher": inference_matcher,
|
255 |
+
"gtextrinsic": gtextrinsic,
|
256 |
+
"only_DET": only_DET,
|
257 |
+
"obj_method": cfg.OBJ_DETECT
|
258 |
+
}
|
259 |
+
|
260 |
+
@property
|
261 |
+
def device(self):
|
262 |
+
return self.pixel_mean.device
|
263 |
+
|
264 |
+
def forward(self, batched_inputs):
|
265 |
+
"""
|
266 |
+
Args:
|
267 |
+
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
|
268 |
+
Each item in the list contains the inputs for one image.
|
269 |
+
For now, each item in the list is a dict that contains:
|
270 |
+
* "image": Tensor, image in (C, H, W) format.
|
271 |
+
* "instances": per-region ground truth
|
272 |
+
* Other information that's included in the original dicts, such as:
|
273 |
+
"height", "width" (int): the output resolution of the model (may be different
|
274 |
+
from input resolution), used in inference.
|
275 |
+
Returns:
|
276 |
+
list[dict]:
|
277 |
+
each dict has the results for one image. The dict contains the following keys:
|
278 |
+
|
279 |
+
* "sem_seg":
|
280 |
+
A Tensor that represents the
|
281 |
+
per-pixel segmentation prediced by the head.
|
282 |
+
The prediction has shape KxHxW that represents the logits of
|
283 |
+
each class for each pixel.
|
284 |
+
* "panoptic_seg":
|
285 |
+
A tuple that represent panoptic output
|
286 |
+
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
|
287 |
+
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
|
288 |
+
Each dict contains keys "id", "category_id", "isthing".
|
289 |
+
"""
|
290 |
+
images = [x["image"].to(self.device) for x in batched_inputs]
|
291 |
+
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
|
292 |
+
images = ImageList.from_tensors(images, self.size_divisibility)
|
293 |
+
|
294 |
+
# Load the targets if it's training or it's in the groundtruth ablation study
|
295 |
+
if self.training or self.gtdet or self.gtextrinsic:
|
296 |
+
# get the grpundtruth
|
297 |
+
if "instances" in batched_inputs[0]:
|
298 |
+
gt_instances = [x["instances"].to(
|
299 |
+
self.device) for x in batched_inputs]
|
300 |
+
targets = self.prepare_targets(gt_instances, images)
|
301 |
+
else:
|
302 |
+
targets = None
|
303 |
+
|
304 |
+
if not self.obj_method:
|
305 |
+
features = self.backbone(images.tensor)
|
306 |
+
outputs = self.sem_seg_head(features)
|
307 |
+
else:
|
308 |
+
# TODO: add freezed model to extract object mask.
|
309 |
+
for para in self.mask2former_backbone.parameters():
|
310 |
+
para.requires_grad = False
|
311 |
+
for para in self.mask2former_sem_seg_head.parameters():
|
312 |
+
para.requires_grad = False
|
313 |
+
|
314 |
+
obj_feature = self.mask2former_backbone(images.tensor)
|
315 |
+
obj_output = self.mask2former_sem_seg_head(obj_feature)
|
316 |
+
|
317 |
+
pred_obj_masks = obj_output["pred_masks"]
|
318 |
+
# prob_masks = torch.sigmoid(pred_obj_masks)
|
319 |
+
pred_cls_results = obj_output["pred_logits"]
|
320 |
+
|
321 |
+
# TODO: use object prediction to help object pose prediction, find a way to calculate the IoU of part and object mask
|
322 |
+
for indice, pred_obj_mask in enumerate(pred_obj_masks):
|
323 |
+
# get binary mask
|
324 |
+
for idx, mask in enumerate(pred_obj_mask):
|
325 |
+
max_score = torch.max(mask)
|
326 |
+
pred_obj_mask[idx] = (mask > (max_score*0.5)).float()
|
327 |
+
|
328 |
+
# replace the pred masks with binary masks
|
329 |
+
pred_obj_masks[indice] = pred_obj_mask
|
330 |
+
|
331 |
+
# import pdb
|
332 |
+
# pdb.set_trace()
|
333 |
+
|
334 |
+
features = self.backbone(images.tensor)
|
335 |
+
outputs = self.sem_seg_head(features, pred_obj_masks)
|
336 |
+
|
337 |
+
# import pdb
|
338 |
+
# pdb.set_trace()
|
339 |
+
|
340 |
+
if self.training:
|
341 |
+
# bipartite matching-based loss
|
342 |
+
losses = self.criterion(outputs, targets)
|
343 |
+
|
344 |
+
for k in list(losses.keys()):
|
345 |
+
if k in self.criterion.weight_dict:
|
346 |
+
losses[k] *= self.criterion.weight_dict[k]
|
347 |
+
else:
|
348 |
+
# remove this loss if not specified in `weight_dict`
|
349 |
+
print(f"Warning: {k} is not in loss")
|
350 |
+
losses.pop(k)
|
351 |
+
return losses
|
352 |
+
else:
|
353 |
+
mask_cls_results = outputs["pred_logits"]
|
354 |
+
mask_pred_results = outputs["pred_masks"]
|
355 |
+
# OPD
|
356 |
+
mask_mtype_results = outputs["pred_mtypes"]
|
357 |
+
mask_morigin_results = outputs["pred_morigins"]
|
358 |
+
mask_maxis_results = outputs["pred_maxises"]
|
359 |
+
mask_mstate_results = outputs["pred_mstates"]
|
360 |
+
mask_mstatemax_results = outputs["pred_mstatemaxs"]
|
361 |
+
if "BMOC" in self.motionnet_type:
|
362 |
+
mask_extrinsic_results = outputs["pred_extrinsics"]
|
363 |
+
|
364 |
+
# upsample masks
|
365 |
+
mask_pred_results = F.interpolate(
|
366 |
+
mask_pred_results,
|
367 |
+
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
|
368 |
+
mode="bilinear",
|
369 |
+
align_corners=False,
|
370 |
+
)
|
371 |
+
|
372 |
+
if self.gtdet or self.gtextrinsic:
|
373 |
+
if self.gtdet:
|
374 |
+
# Make other predictions be bad, so that they will not consider when evaluating
|
375 |
+
mask_pred_results[:, :, :, :] = -30
|
376 |
+
mask_cls_results[:, :, :3] = 0
|
377 |
+
mask_cls_results[:, :, 3] = 15 # weight for softmax
|
378 |
+
# Initialize the predicted class and predicted mask to the default value
|
379 |
+
if targets[0]["masks"].shape[0] != 0:
|
380 |
+
outputs_without_aux = {
|
381 |
+
k: v for k, v in outputs.items() if k != "aux_outputs"}
|
382 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
383 |
+
indices = self.inference_matcher(
|
384 |
+
outputs_without_aux, targets)
|
385 |
+
|
386 |
+
def _get_src_permutation_idx(indices):
|
387 |
+
# permute predictions following indices
|
388 |
+
batch_idx = torch.cat(
|
389 |
+
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
390 |
+
src_idx = torch.cat([src for (src, _) in indices])
|
391 |
+
return batch_idx, src_idx
|
392 |
+
|
393 |
+
def _get_tgt_permutation_idx(indices):
|
394 |
+
# permute targets following indices
|
395 |
+
batch_idx = torch.cat(
|
396 |
+
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
397 |
+
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
398 |
+
return batch_idx, tgt_idx
|
399 |
+
|
400 |
+
src_idx = _get_src_permutation_idx(indices)
|
401 |
+
tgt_idx = _get_tgt_permutation_idx(indices)
|
402 |
+
if self.gtdet:
|
403 |
+
mask_pred_results[src_idx] = targets[0]["masks"].unsqueeze(0)[
|
404 |
+
tgt_idx].float() * 30
|
405 |
+
mask_pred_results[mask_pred_results == 0] = -30
|
406 |
+
mask_cls_results[src_idx] = F.one_hot(
|
407 |
+
targets[0]["labels"][tgt_idx[1]], num_classes=self.sem_seg_head.num_classes+1).float() * 15
|
408 |
+
if self.gtextrinsic:
|
409 |
+
if self.motionnet_type == "BMOC_V6":
|
410 |
+
gt_extrinsic_raw = targets[0]["gt_extrinsic"][0]
|
411 |
+
gt_extrinsic = torch.cat(
|
412 |
+
[
|
413 |
+
gt_extrinsic_raw[0:3],
|
414 |
+
gt_extrinsic_raw[4:7],
|
415 |
+
gt_extrinsic_raw[8:11],
|
416 |
+
gt_extrinsic_raw[12:15],
|
417 |
+
],
|
418 |
+
0,
|
419 |
+
)
|
420 |
+
mask_extrinsic_results[0] = gt_extrinsic
|
421 |
+
else:
|
422 |
+
raise ValueError("Not Implemented")
|
423 |
+
|
424 |
+
del outputs
|
425 |
+
|
426 |
+
if "BMOC" in self.motionnet_type:
|
427 |
+
processed_results = []
|
428 |
+
for mask_cls_result, mask_pred_result, input_per_image, image_size, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, mask_extrinsic_result in zip(
|
429 |
+
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes, mask_mtype_results, mask_morigin_results, mask_maxis_results, mask_mstate_results, mask_mstatemax_results, mask_extrinsic_results
|
430 |
+
):
|
431 |
+
height = input_per_image.get("height", image_size[0])
|
432 |
+
width = input_per_image.get("width", image_size[1])
|
433 |
+
processed_results.append({})
|
434 |
+
|
435 |
+
if self.sem_seg_postprocess_before_inference:
|
436 |
+
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
|
437 |
+
mask_pred_result, image_size, height, width
|
438 |
+
)
|
439 |
+
mask_cls_result = mask_cls_result.to(mask_pred_result)
|
440 |
+
# OPD
|
441 |
+
mask_mtype_result = mask_mtype_result.to(
|
442 |
+
mask_pred_result)
|
443 |
+
mask_morigin_result = mask_morigin_result.to(
|
444 |
+
mask_pred_result)
|
445 |
+
mask_maxis_result = mask_maxis_result.to(
|
446 |
+
mask_pred_result)
|
447 |
+
mask_mstate_result = mask_mstate_result.to(
|
448 |
+
mask_pred_result)
|
449 |
+
mask_mstatemax_result = mask_mstatemax_result.to(
|
450 |
+
mask_pred_result)
|
451 |
+
mask_extrinsic_result = mask_extrinsic_result.to(
|
452 |
+
mask_pred_result)
|
453 |
+
|
454 |
+
# semantic segmentation inference
|
455 |
+
if self.semantic_on:
|
456 |
+
r = retry_if_cuda_oom(self.semantic_inference)(
|
457 |
+
mask_cls_result, mask_pred_result)
|
458 |
+
if not self.sem_seg_postprocess_before_inference:
|
459 |
+
r = retry_if_cuda_oom(sem_seg_postprocess)(
|
460 |
+
r, image_size, height, width)
|
461 |
+
processed_results[-1]["sem_seg"] = r
|
462 |
+
|
463 |
+
# panoptic segmentation inference
|
464 |
+
if self.panoptic_on:
|
465 |
+
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(
|
466 |
+
mask_cls_result, mask_pred_result)
|
467 |
+
processed_results[-1]["panoptic_seg"] = panoptic_r
|
468 |
+
|
469 |
+
# instance segmentation inference
|
470 |
+
if self.instance_on:
|
471 |
+
instance_r = retry_if_cuda_oom(self.instance_inference)(
|
472 |
+
mask_cls_result, mask_pred_result, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, mask_extrinsic_result)
|
473 |
+
processed_results[-1]["instances"] = instance_r
|
474 |
+
else:
|
475 |
+
processed_results = []
|
476 |
+
for mask_cls_result, mask_pred_result, input_per_image, image_size, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result in zip(
|
477 |
+
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes, mask_mtype_results, mask_morigin_results, mask_maxis_results, mask_mstate_results, mask_mstatemax_results
|
478 |
+
):
|
479 |
+
height = input_per_image.get("height", image_size[0])
|
480 |
+
width = input_per_image.get("width", image_size[1])
|
481 |
+
processed_results.append({})
|
482 |
+
|
483 |
+
if self.sem_seg_postprocess_before_inference:
|
484 |
+
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
|
485 |
+
mask_pred_result, image_size, height, width
|
486 |
+
)
|
487 |
+
mask_cls_result = mask_cls_result.to(mask_pred_result)
|
488 |
+
# OPD
|
489 |
+
mask_mtype_result = mask_mtype_result.to(
|
490 |
+
mask_pred_result)
|
491 |
+
mask_morigin_result = mask_morigin_result.to(
|
492 |
+
mask_pred_result)
|
493 |
+
mask_maxis_result = mask_maxis_result.to(
|
494 |
+
mask_pred_result)
|
495 |
+
mask_mstate_result = mask_mstate_result.to(
|
496 |
+
mask_pred_result)
|
497 |
+
mask_mstatemax_result = mask_mstatemax_result.to(
|
498 |
+
mask_pred_result)
|
499 |
+
|
500 |
+
# semantic segmentation inference
|
501 |
+
if self.semantic_on:
|
502 |
+
r = retry_if_cuda_oom(self.semantic_inference)(
|
503 |
+
mask_cls_result, mask_pred_result)
|
504 |
+
if not self.sem_seg_postprocess_before_inference:
|
505 |
+
r = retry_if_cuda_oom(sem_seg_postprocess)(
|
506 |
+
r, image_size, height, width)
|
507 |
+
processed_results[-1]["sem_seg"] = r
|
508 |
+
|
509 |
+
# panoptic segmentation inference
|
510 |
+
if self.panoptic_on:
|
511 |
+
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(
|
512 |
+
mask_cls_result, mask_pred_result)
|
513 |
+
processed_results[-1]["panoptic_seg"] = panoptic_r
|
514 |
+
|
515 |
+
# instance segmentation inference
|
516 |
+
if self.instance_on:
|
517 |
+
instance_r = retry_if_cuda_oom(self.instance_inference)(
|
518 |
+
mask_cls_result, mask_pred_result, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, None)
|
519 |
+
processed_results[-1]["instances"] = instance_r
|
520 |
+
|
521 |
+
return processed_results
|
522 |
+
|
523 |
+
def prepare_targets(self, targets, images):
|
524 |
+
h_pad, w_pad = images.tensor.shape[-2:]
|
525 |
+
new_targets = []
|
526 |
+
for targets_per_image in targets:
|
527 |
+
if hasattr(targets_per_image, "gt_masks"):
|
528 |
+
# pad gt
|
529 |
+
gt_masks = targets_per_image.gt_masks
|
530 |
+
padded_masks = torch.zeros(
|
531 |
+
(gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
|
532 |
+
padded_masks[:, : gt_masks.shape[1],
|
533 |
+
: gt_masks.shape[2]] = gt_masks
|
534 |
+
else:
|
535 |
+
padded_masks = torch.tensor([])
|
536 |
+
if "BMOC" in self.motionnet_type:
|
537 |
+
new_targets.append(
|
538 |
+
{
|
539 |
+
"labels": targets_per_image.gt_classes,
|
540 |
+
"masks": padded_masks,
|
541 |
+
# OPD
|
542 |
+
"gt_motion_valids": targets_per_image.gt_motion_valids,
|
543 |
+
"gt_types": targets_per_image.gt_types,
|
544 |
+
"gt_origins": targets_per_image.gt_origins,
|
545 |
+
"gt_axises": targets_per_image.gt_axises,
|
546 |
+
"gt_states": targets_per_image.gt_states,
|
547 |
+
"gt_statemaxs": targets_per_image.gt_statemaxs,
|
548 |
+
"gt_extrinsic": targets_per_image.gt_extrinsic,
|
549 |
+
"gt_extrinsic_quaternion": targets_per_image.gt_extrinsic_quaternion,
|
550 |
+
"gt_extrinsic_6d": targets_per_image.gt_extrinsic_6d,
|
551 |
+
}
|
552 |
+
)
|
553 |
+
else:
|
554 |
+
new_targets.append(
|
555 |
+
{
|
556 |
+
"labels": targets_per_image.gt_classes,
|
557 |
+
"masks": padded_masks,
|
558 |
+
# OPD
|
559 |
+
"gt_motion_valids": targets_per_image.gt_motion_valids,
|
560 |
+
"gt_types": targets_per_image.gt_types,
|
561 |
+
"gt_origins": targets_per_image.gt_origins,
|
562 |
+
"gt_axises": targets_per_image.gt_axises,
|
563 |
+
"gt_states": targets_per_image.gt_states,
|
564 |
+
"gt_statemaxs": targets_per_image.gt_statemaxs,
|
565 |
+
}
|
566 |
+
)
|
567 |
+
return new_targets
|
568 |
+
|
569 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
570 |
+
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
|
571 |
+
mask_pred = mask_pred.sigmoid()
|
572 |
+
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
|
573 |
+
return semseg
|
574 |
+
|
575 |
+
def panoptic_inference(self, mask_cls, mask_pred):
|
576 |
+
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
|
577 |
+
mask_pred = mask_pred.sigmoid()
|
578 |
+
|
579 |
+
keep = labels.ne(self.sem_seg_head.num_classes) & (
|
580 |
+
scores > self.object_mask_threshold)
|
581 |
+
cur_scores = scores[keep]
|
582 |
+
cur_classes = labels[keep]
|
583 |
+
cur_masks = mask_pred[keep]
|
584 |
+
cur_mask_cls = mask_cls[keep]
|
585 |
+
cur_mask_cls = cur_mask_cls[:, :-1]
|
586 |
+
|
587 |
+
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
|
588 |
+
|
589 |
+
h, w = cur_masks.shape[-2:]
|
590 |
+
panoptic_seg = torch.zeros(
|
591 |
+
(h, w), dtype=torch.int32, device=cur_masks.device)
|
592 |
+
segments_info = []
|
593 |
+
|
594 |
+
current_segment_id = 0
|
595 |
+
|
596 |
+
if cur_masks.shape[0] == 0:
|
597 |
+
# We didn't detect any mask :(
|
598 |
+
return panoptic_seg, segments_info
|
599 |
+
else:
|
600 |
+
# take argmax
|
601 |
+
cur_mask_ids = cur_prob_masks.argmax(0)
|
602 |
+
stuff_memory_list = {}
|
603 |
+
for k in range(cur_classes.shape[0]):
|
604 |
+
pred_class = cur_classes[k].item()
|
605 |
+
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
606 |
+
mask_area = (cur_mask_ids == k).sum().item()
|
607 |
+
original_area = (cur_masks[k] >= 0.5).sum().item()
|
608 |
+
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
|
609 |
+
|
610 |
+
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
|
611 |
+
if mask_area / original_area < self.overlap_threshold:
|
612 |
+
continue
|
613 |
+
|
614 |
+
# merge stuff regions
|
615 |
+
if not isthing:
|
616 |
+
if int(pred_class) in stuff_memory_list.keys():
|
617 |
+
panoptic_seg[mask] = stuff_memory_list[int(
|
618 |
+
pred_class)]
|
619 |
+
continue
|
620 |
+
else:
|
621 |
+
stuff_memory_list[int(
|
622 |
+
pred_class)] = current_segment_id + 1
|
623 |
+
|
624 |
+
current_segment_id += 1
|
625 |
+
panoptic_seg[mask] = current_segment_id
|
626 |
+
|
627 |
+
segments_info.append(
|
628 |
+
{
|
629 |
+
"id": current_segment_id,
|
630 |
+
"isthing": bool(isthing),
|
631 |
+
"category_id": int(pred_class),
|
632 |
+
}
|
633 |
+
)
|
634 |
+
|
635 |
+
return panoptic_seg, segments_info
|
636 |
+
|
637 |
+
# Voting algorithms for inference
|
638 |
+
def votingProcess(self, x, voting):
|
639 |
+
device = x.device
|
640 |
+
if voting == "median":
|
641 |
+
final = torch.median(x, axis=0)[0]
|
642 |
+
elif voting == "mean":
|
643 |
+
final = torch.mean(x, axis=0)
|
644 |
+
elif voting == "geo-median":
|
645 |
+
x = x.detach().cpu().numpy()
|
646 |
+
final = geometric_median(x)
|
647 |
+
final = torch.from_numpy(final).to(device)
|
648 |
+
return final
|
649 |
+
|
650 |
+
def convert_to_valid_extrinsic(self, mask_extrinsic, dim=0):
|
651 |
+
if dim == 0:
|
652 |
+
translation = mask_extrinsic[9:12]
|
653 |
+
rotation_mat = quaternion_to_matrix(matrix_to_quaternion(
|
654 |
+
torch.transpose(mask_extrinsic[:9].reshape(3, 3), 0, 1)))
|
655 |
+
rotation_vector = torch.flatten(rotation_mat.transpose(0, 1))
|
656 |
+
final_mask_extrinsic = torch.cat((rotation_vector, translation))
|
657 |
+
elif dim == 1:
|
658 |
+
translation = mask_extrinsic[:, 9:12]
|
659 |
+
rotation_mat = quaternion_to_matrix(matrix_to_quaternion(
|
660 |
+
torch.transpose(mask_extrinsic[:, :9].reshape(-1, 3, 3), 1, 2)))
|
661 |
+
rotation_vector = torch.flatten(
|
662 |
+
rotation_mat.transpose(1, 2), start_dim=1)
|
663 |
+
final_mask_extrinsic = torch.cat(
|
664 |
+
(rotation_vector, translation), dim=1)
|
665 |
+
return final_mask_extrinsic
|
666 |
+
|
667 |
+
def instance_inference(self, mask_cls, mask_pred, mask_mtype, mask_morigin, mask_maxis, mask_mstate, mask_mstatemax, mask_extrinsic):
|
668 |
+
# mask_pred is already processed to have the same shape as original input
|
669 |
+
image_size = mask_pred.shape[-2:]
|
670 |
+
|
671 |
+
# [Q, K]
|
672 |
+
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
|
673 |
+
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(
|
674 |
+
0).repeat(self.num_queries, 1).flatten(0, 1)
|
675 |
+
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
|
676 |
+
scores_per_image, topk_indices = scores.flatten(
|
677 |
+
0, 1).topk(self.test_topk_per_image, sorted=False)
|
678 |
+
labels_per_image = labels[topk_indices]
|
679 |
+
|
680 |
+
topk_indices = topk_indices // self.sem_seg_head.num_classes
|
681 |
+
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
|
682 |
+
mask_pred = mask_pred[topk_indices]
|
683 |
+
|
684 |
+
# OPD
|
685 |
+
mask_mtype = mask_mtype[topk_indices]
|
686 |
+
pred_probs = F.softmax(mask_mtype, dim=1)
|
687 |
+
mask_mtype = torch.argmax(pred_probs, 1).float()
|
688 |
+
|
689 |
+
mask_morigin = mask_morigin[topk_indices]
|
690 |
+
mask_maxis = mask_maxis[topk_indices]
|
691 |
+
mask_mstate = mask_mstate[topk_indices]
|
692 |
+
mask_mstatemax = mask_mstatemax[topk_indices]
|
693 |
+
|
694 |
+
if self.motionnet_type == "BMOC_V1":
|
695 |
+
mask_extrinsic = mask_extrinsic[topk_indices]
|
696 |
+
mask_extrinsic = self.convert_to_valid_extrinsic(
|
697 |
+
mask_extrinsic, dim=1)
|
698 |
+
if self.voting != "none":
|
699 |
+
final_translation = torch.median(
|
700 |
+
mask_extrinsic[:, 9:12], axis=0)[0]
|
701 |
+
quaternions = matrix_to_quaternion(torch.transpose(
|
702 |
+
mask_extrinsic[:, :9].reshape(-1, 3, 3), 1, 2))
|
703 |
+
final_quaternion = self.votingProcess(quaternions, self.voting)
|
704 |
+
final_rotation = quaternion_to_matrix(final_quaternion)
|
705 |
+
final_rotation_vector = torch.flatten(
|
706 |
+
final_rotation.transpose(0, 1))
|
707 |
+
mask_extrinsic = torch.cat(
|
708 |
+
(final_rotation_vector, final_translation))
|
709 |
+
elif self.motionnet_type == "BMOC_V2":
|
710 |
+
mask_extrinsic = mask_extrinsic[topk_indices]
|
711 |
+
if self.voting != "none":
|
712 |
+
final_translation = torch.median(
|
713 |
+
mask_extrinsic[:, 4:7], axis=0)[0]
|
714 |
+
final_quaternion = self.votingProcess(
|
715 |
+
mask_extrinsic[:, :4], self.voting)
|
716 |
+
final_rotation = quaternion_to_matrix(final_quaternion)
|
717 |
+
final_rotation_vector = torch.flatten(
|
718 |
+
final_rotation.transpose(0, 1))
|
719 |
+
mask_extrinsic = torch.cat(
|
720 |
+
(final_rotation_vector, final_translation))
|
721 |
+
elif self.voting == "none":
|
722 |
+
translations = mask_extrinsic[:, 4:7]
|
723 |
+
quaternions = mask_extrinsic[:, :4]
|
724 |
+
rotation_vector = torch.flatten(
|
725 |
+
quaternion_to_matrix(quaternions).transpose(1, 2), 1)
|
726 |
+
mask_extrinsic = torch.cat((rotation_vector, translations), 1)
|
727 |
+
elif self.motionnet_type == "BMOC_V3":
|
728 |
+
mask_extrinsic = mask_extrinsic[topk_indices]
|
729 |
+
if self.voting != "none":
|
730 |
+
final_translation = torch.median(
|
731 |
+
mask_extrinsic[:, 6:9], axis=0)[0]
|
732 |
+
final_6d = self.votingProcess(
|
733 |
+
mask_extrinsic[:, :6], self.voting)
|
734 |
+
final_rotation = rotation_6d_to_matrix(final_6d)
|
735 |
+
final_rotation_vector = torch.flatten(
|
736 |
+
final_rotation.transpose(0, 1))
|
737 |
+
mask_extrinsic = torch.cat(
|
738 |
+
(final_rotation_vector, final_translation))
|
739 |
+
elif self.voting == "none":
|
740 |
+
translations = mask_extrinsic[:, 6:9]
|
741 |
+
rotation_6ds = mask_extrinsic[:, :6]
|
742 |
+
rotation_vector = torch.flatten(
|
743 |
+
rotation_6d_to_matrix(rotation_6ds).transpose(1, 2), 1)
|
744 |
+
mask_extrinsic = torch.cat((rotation_vector, translations), 1)
|
745 |
+
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5":
|
746 |
+
translation = mask_extrinsic[4:7]
|
747 |
+
quaternion = mask_extrinsic[:4]
|
748 |
+
rotation_vector = torch.flatten(
|
749 |
+
quaternion_to_matrix(quaternion).transpose(0, 1))
|
750 |
+
mask_extrinsic = torch.cat((rotation_vector, translation))
|
751 |
+
elif self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6":
|
752 |
+
mask_extrinsic = self.convert_to_valid_extrinsic(
|
753 |
+
mask_extrinsic, dim=0)
|
754 |
+
|
755 |
+
if "BMOC" in self.motionnet_type:
|
756 |
+
# Use the predicted extrinsic matrix to convert the predicted morigin and maxis back to camera coordinate
|
757 |
+
maxis_end = mask_morigin + mask_maxis
|
758 |
+
mextrinsic_c2w = torch.eye(4, device=mask_morigin.device).repeat(
|
759 |
+
mask_morigin.shape[0], 1, 1
|
760 |
+
)
|
761 |
+
|
762 |
+
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6" or (self.motionnet_type == "BMOC_V1" and self.voting != "none") or (self.motionnet_type == "BMOC_V2" and self.voting != "none") or (self.motionnet_type == "BMOC_V3" and self.voting != "none"):
|
763 |
+
mextrinsic_c2w[:, 0:3, 0:4] = torch.transpose(
|
764 |
+
mask_extrinsic.reshape(4, 3).repeat(
|
765 |
+
mask_morigin.shape[0], 1, 1), 1, 2
|
766 |
+
)
|
767 |
+
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3":
|
768 |
+
mextrinsic_c2w[:, 0:3, 0:4] = torch.transpose(
|
769 |
+
mask_extrinsic.reshape(-1, 4, 3), 1, 2
|
770 |
+
)
|
771 |
+
mextrinsic_w2c = torch.inverse(mextrinsic_c2w)
|
772 |
+
mask_morigin = (
|
773 |
+
torch.matmul(
|
774 |
+
mextrinsic_w2c[:, :3,
|
775 |
+
:3], mask_morigin.unsqueeze(2)
|
776 |
+
).squeeze(2)
|
777 |
+
+ mextrinsic_w2c[:, :3, 3]
|
778 |
+
)
|
779 |
+
end_in_cam = (
|
780 |
+
torch.matmul(
|
781 |
+
mextrinsic_w2c[:, :3, :3], maxis_end.unsqueeze(2)
|
782 |
+
).squeeze(2)
|
783 |
+
+ mextrinsic_w2c[:, :3, 3]
|
784 |
+
)
|
785 |
+
mask_maxis = end_in_cam - mask_morigin
|
786 |
+
|
787 |
+
# if this is panoptic segmentation, we only keep the "thing" classes
|
788 |
+
if self.panoptic_on:
|
789 |
+
keep = torch.zeros_like(scores_per_image).bool()
|
790 |
+
for i, lab in enumerate(labels_per_image):
|
791 |
+
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
792 |
+
|
793 |
+
scores_per_image = scores_per_image[keep]
|
794 |
+
labels_per_image = labels_per_image[keep]
|
795 |
+
mask_pred = mask_pred[keep]
|
796 |
+
|
797 |
+
result = Instances(image_size)
|
798 |
+
# mask (before sigmoid)
|
799 |
+
result.pred_masks = (mask_pred > 0).float()
|
800 |
+
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
|
801 |
+
# Uncomment the following to get boxes from masks (this is slow)
|
802 |
+
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
|
803 |
+
|
804 |
+
# calculate average mask prob
|
805 |
+
mask_scores_per_image = (mask_pred.sigmoid().flatten(
|
806 |
+
1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
|
807 |
+
result.scores = scores_per_image * mask_scores_per_image
|
808 |
+
result.pred_classes = labels_per_image
|
809 |
+
|
810 |
+
# OPD
|
811 |
+
result.mtype = mask_mtype
|
812 |
+
result.morigin = mask_morigin
|
813 |
+
result.maxis = mask_maxis
|
814 |
+
result.mstate = mask_mstate
|
815 |
+
result.mstatemax = mask_mstatemax
|
816 |
+
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6" or (self.motionnet_type == "BMOC_V1" and self.voting != "none") or (self.motionnet_type == "BMOC_V2" and self.voting != "none") or (self.motionnet_type == "BMOC_V3" and self.voting != "none"):
|
817 |
+
result.mextrinsic = mask_extrinsic.repeat(mask_morigin.shape[0], 1)
|
818 |
+
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3":
|
819 |
+
result.mextrinsic = mask_extrinsic
|
820 |
+
return result
|
mask2former/modeling/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .backbone.swin import D2SwinTransformer
|
3 |
+
from .pixel_decoder.fpn import BasePixelDecoder
|
4 |
+
from .pixel_decoder.msdeformattn import MSDeformAttnPixelDecoder
|
5 |
+
from .meta_arch.mask_former_head import MaskFormerHead
|
6 |
+
from .meta_arch.per_pixel_baseline import PerPixelBaselineHead, PerPixelBaselinePlusHead
|
mask2former/modeling/backbone/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
mask2former/modeling/backbone/swin.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
9 |
+
# Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.utils.checkpoint as checkpoint
|
16 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
17 |
+
|
18 |
+
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
|
19 |
+
|
20 |
+
|
21 |
+
class Mlp(nn.Module):
|
22 |
+
"""Multilayer perceptron."""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
def window_partition(x, window_size):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x: (B, H, W, C)
|
48 |
+
window_size (int): window size
|
49 |
+
Returns:
|
50 |
+
windows: (num_windows*B, window_size, window_size, C)
|
51 |
+
"""
|
52 |
+
B, H, W, C = x.shape
|
53 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
54 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
55 |
+
return windows
|
56 |
+
|
57 |
+
|
58 |
+
def window_reverse(windows, window_size, H, W):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
windows: (num_windows*B, window_size, window_size, C)
|
62 |
+
window_size (int): Window size
|
63 |
+
H (int): Height of image
|
64 |
+
W (int): Width of image
|
65 |
+
Returns:
|
66 |
+
x: (B, H, W, C)
|
67 |
+
"""
|
68 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
69 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
70 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class WindowAttention(nn.Module):
|
75 |
+
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
76 |
+
It supports both of shifted and non-shifted window.
|
77 |
+
Args:
|
78 |
+
dim (int): Number of input channels.
|
79 |
+
window_size (tuple[int]): The height and width of the window.
|
80 |
+
num_heads (int): Number of attention heads.
|
81 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
82 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
83 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
84 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
dim,
|
90 |
+
window_size,
|
91 |
+
num_heads,
|
92 |
+
qkv_bias=True,
|
93 |
+
qk_scale=None,
|
94 |
+
attn_drop=0.0,
|
95 |
+
proj_drop=0.0,
|
96 |
+
):
|
97 |
+
|
98 |
+
super().__init__()
|
99 |
+
self.dim = dim
|
100 |
+
self.window_size = window_size # Wh, Ww
|
101 |
+
self.num_heads = num_heads
|
102 |
+
head_dim = dim // num_heads
|
103 |
+
self.scale = qk_scale or head_dim ** -0.5
|
104 |
+
|
105 |
+
# define a parameter table of relative position bias
|
106 |
+
self.relative_position_bias_table = nn.Parameter(
|
107 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
108 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
109 |
+
|
110 |
+
# get pair-wise relative position index for each token inside the window
|
111 |
+
coords_h = torch.arange(self.window_size[0])
|
112 |
+
coords_w = torch.arange(self.window_size[1])
|
113 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
114 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
115 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
116 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
117 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
118 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
119 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
120 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
121 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
122 |
+
|
123 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
124 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
125 |
+
self.proj = nn.Linear(dim, dim)
|
126 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
127 |
+
|
128 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
129 |
+
self.softmax = nn.Softmax(dim=-1)
|
130 |
+
|
131 |
+
def forward(self, x, mask=None):
|
132 |
+
"""Forward function.
|
133 |
+
Args:
|
134 |
+
x: input features with shape of (num_windows*B, N, C)
|
135 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
136 |
+
"""
|
137 |
+
B_, N, C = x.shape
|
138 |
+
qkv = (
|
139 |
+
self.qkv(x)
|
140 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
141 |
+
.permute(2, 0, 3, 1, 4)
|
142 |
+
)
|
143 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
144 |
+
|
145 |
+
q = q * self.scale
|
146 |
+
attn = q @ k.transpose(-2, -1)
|
147 |
+
|
148 |
+
relative_position_bias = self.relative_position_bias_table[
|
149 |
+
self.relative_position_index.view(-1)
|
150 |
+
].view(
|
151 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
152 |
+
) # Wh*Ww,Wh*Ww,nH
|
153 |
+
relative_position_bias = relative_position_bias.permute(
|
154 |
+
2, 0, 1
|
155 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
156 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
157 |
+
|
158 |
+
if mask is not None:
|
159 |
+
nW = mask.shape[0]
|
160 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
161 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
162 |
+
attn = self.softmax(attn)
|
163 |
+
else:
|
164 |
+
attn = self.softmax(attn)
|
165 |
+
|
166 |
+
attn = self.attn_drop(attn)
|
167 |
+
|
168 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
169 |
+
x = self.proj(x)
|
170 |
+
x = self.proj_drop(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
|
174 |
+
class SwinTransformerBlock(nn.Module):
|
175 |
+
"""Swin Transformer Block.
|
176 |
+
Args:
|
177 |
+
dim (int): Number of input channels.
|
178 |
+
num_heads (int): Number of attention heads.
|
179 |
+
window_size (int): Window size.
|
180 |
+
shift_size (int): Shift size for SW-MSA.
|
181 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
182 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
183 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
184 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
185 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
186 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
187 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
188 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
dim,
|
194 |
+
num_heads,
|
195 |
+
window_size=7,
|
196 |
+
shift_size=0,
|
197 |
+
mlp_ratio=4.0,
|
198 |
+
qkv_bias=True,
|
199 |
+
qk_scale=None,
|
200 |
+
drop=0.0,
|
201 |
+
attn_drop=0.0,
|
202 |
+
drop_path=0.0,
|
203 |
+
act_layer=nn.GELU,
|
204 |
+
norm_layer=nn.LayerNorm,
|
205 |
+
):
|
206 |
+
super().__init__()
|
207 |
+
self.dim = dim
|
208 |
+
self.num_heads = num_heads
|
209 |
+
self.window_size = window_size
|
210 |
+
self.shift_size = shift_size
|
211 |
+
self.mlp_ratio = mlp_ratio
|
212 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
213 |
+
|
214 |
+
self.norm1 = norm_layer(dim)
|
215 |
+
self.attn = WindowAttention(
|
216 |
+
dim,
|
217 |
+
window_size=to_2tuple(self.window_size),
|
218 |
+
num_heads=num_heads,
|
219 |
+
qkv_bias=qkv_bias,
|
220 |
+
qk_scale=qk_scale,
|
221 |
+
attn_drop=attn_drop,
|
222 |
+
proj_drop=drop,
|
223 |
+
)
|
224 |
+
|
225 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
226 |
+
self.norm2 = norm_layer(dim)
|
227 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
228 |
+
self.mlp = Mlp(
|
229 |
+
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
230 |
+
)
|
231 |
+
|
232 |
+
self.H = None
|
233 |
+
self.W = None
|
234 |
+
|
235 |
+
def forward(self, x, mask_matrix):
|
236 |
+
"""Forward function.
|
237 |
+
Args:
|
238 |
+
x: Input feature, tensor size (B, H*W, C).
|
239 |
+
H, W: Spatial resolution of the input feature.
|
240 |
+
mask_matrix: Attention mask for cyclic shift.
|
241 |
+
"""
|
242 |
+
B, L, C = x.shape
|
243 |
+
H, W = self.H, self.W
|
244 |
+
assert L == H * W, "input feature has wrong size"
|
245 |
+
|
246 |
+
shortcut = x
|
247 |
+
x = self.norm1(x)
|
248 |
+
x = x.view(B, H, W, C)
|
249 |
+
|
250 |
+
# pad feature maps to multiples of window size
|
251 |
+
pad_l = pad_t = 0
|
252 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
253 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
254 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
255 |
+
_, Hp, Wp, _ = x.shape
|
256 |
+
|
257 |
+
# cyclic shift
|
258 |
+
if self.shift_size > 0:
|
259 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
260 |
+
attn_mask = mask_matrix
|
261 |
+
else:
|
262 |
+
shifted_x = x
|
263 |
+
attn_mask = None
|
264 |
+
|
265 |
+
# partition windows
|
266 |
+
x_windows = window_partition(
|
267 |
+
shifted_x, self.window_size
|
268 |
+
) # nW*B, window_size, window_size, C
|
269 |
+
x_windows = x_windows.view(
|
270 |
+
-1, self.window_size * self.window_size, C
|
271 |
+
) # nW*B, window_size*window_size, C
|
272 |
+
|
273 |
+
# W-MSA/SW-MSA
|
274 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
275 |
+
|
276 |
+
# merge windows
|
277 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
278 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
279 |
+
|
280 |
+
# reverse cyclic shift
|
281 |
+
if self.shift_size > 0:
|
282 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
283 |
+
else:
|
284 |
+
x = shifted_x
|
285 |
+
|
286 |
+
if pad_r > 0 or pad_b > 0:
|
287 |
+
x = x[:, :H, :W, :].contiguous()
|
288 |
+
|
289 |
+
x = x.view(B, H * W, C)
|
290 |
+
|
291 |
+
# FFN
|
292 |
+
x = shortcut + self.drop_path(x)
|
293 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
294 |
+
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class PatchMerging(nn.Module):
|
299 |
+
"""Patch Merging Layer
|
300 |
+
Args:
|
301 |
+
dim (int): Number of input channels.
|
302 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
306 |
+
super().__init__()
|
307 |
+
self.dim = dim
|
308 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
309 |
+
self.norm = norm_layer(4 * dim)
|
310 |
+
|
311 |
+
def forward(self, x, H, W):
|
312 |
+
"""Forward function.
|
313 |
+
Args:
|
314 |
+
x: Input feature, tensor size (B, H*W, C).
|
315 |
+
H, W: Spatial resolution of the input feature.
|
316 |
+
"""
|
317 |
+
B, L, C = x.shape
|
318 |
+
assert L == H * W, "input feature has wrong size"
|
319 |
+
|
320 |
+
x = x.view(B, H, W, C)
|
321 |
+
|
322 |
+
# padding
|
323 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
324 |
+
if pad_input:
|
325 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
326 |
+
|
327 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
328 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
329 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
330 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
331 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
332 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
333 |
+
|
334 |
+
x = self.norm(x)
|
335 |
+
x = self.reduction(x)
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
|
340 |
+
class BasicLayer(nn.Module):
|
341 |
+
"""A basic Swin Transformer layer for one stage.
|
342 |
+
Args:
|
343 |
+
dim (int): Number of feature channels
|
344 |
+
depth (int): Depths of this stage.
|
345 |
+
num_heads (int): Number of attention head.
|
346 |
+
window_size (int): Local window size. Default: 7.
|
347 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
348 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
349 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
350 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
351 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
352 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
353 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
354 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
355 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
356 |
+
"""
|
357 |
+
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
dim,
|
361 |
+
depth,
|
362 |
+
num_heads,
|
363 |
+
window_size=7,
|
364 |
+
mlp_ratio=4.0,
|
365 |
+
qkv_bias=True,
|
366 |
+
qk_scale=None,
|
367 |
+
drop=0.0,
|
368 |
+
attn_drop=0.0,
|
369 |
+
drop_path=0.0,
|
370 |
+
norm_layer=nn.LayerNorm,
|
371 |
+
downsample=None,
|
372 |
+
use_checkpoint=False,
|
373 |
+
):
|
374 |
+
super().__init__()
|
375 |
+
self.window_size = window_size
|
376 |
+
self.shift_size = window_size // 2
|
377 |
+
self.depth = depth
|
378 |
+
self.use_checkpoint = use_checkpoint
|
379 |
+
|
380 |
+
# build blocks
|
381 |
+
self.blocks = nn.ModuleList(
|
382 |
+
[
|
383 |
+
SwinTransformerBlock(
|
384 |
+
dim=dim,
|
385 |
+
num_heads=num_heads,
|
386 |
+
window_size=window_size,
|
387 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
388 |
+
mlp_ratio=mlp_ratio,
|
389 |
+
qkv_bias=qkv_bias,
|
390 |
+
qk_scale=qk_scale,
|
391 |
+
drop=drop,
|
392 |
+
attn_drop=attn_drop,
|
393 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
394 |
+
norm_layer=norm_layer,
|
395 |
+
)
|
396 |
+
for i in range(depth)
|
397 |
+
]
|
398 |
+
)
|
399 |
+
|
400 |
+
# patch merging layer
|
401 |
+
if downsample is not None:
|
402 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
403 |
+
else:
|
404 |
+
self.downsample = None
|
405 |
+
|
406 |
+
def forward(self, x, H, W):
|
407 |
+
"""Forward function.
|
408 |
+
Args:
|
409 |
+
x: Input feature, tensor size (B, H*W, C).
|
410 |
+
H, W: Spatial resolution of the input feature.
|
411 |
+
"""
|
412 |
+
|
413 |
+
# calculate attention mask for SW-MSA
|
414 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
415 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
416 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
417 |
+
h_slices = (
|
418 |
+
slice(0, -self.window_size),
|
419 |
+
slice(-self.window_size, -self.shift_size),
|
420 |
+
slice(-self.shift_size, None),
|
421 |
+
)
|
422 |
+
w_slices = (
|
423 |
+
slice(0, -self.window_size),
|
424 |
+
slice(-self.window_size, -self.shift_size),
|
425 |
+
slice(-self.shift_size, None),
|
426 |
+
)
|
427 |
+
cnt = 0
|
428 |
+
for h in h_slices:
|
429 |
+
for w in w_slices:
|
430 |
+
img_mask[:, h, w, :] = cnt
|
431 |
+
cnt += 1
|
432 |
+
|
433 |
+
mask_windows = window_partition(
|
434 |
+
img_mask, self.window_size
|
435 |
+
) # nW, window_size, window_size, 1
|
436 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
437 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
438 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
439 |
+
attn_mask == 0, float(0.0)
|
440 |
+
)
|
441 |
+
|
442 |
+
for blk in self.blocks:
|
443 |
+
blk.H, blk.W = H, W
|
444 |
+
if self.use_checkpoint:
|
445 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
446 |
+
else:
|
447 |
+
x = blk(x, attn_mask)
|
448 |
+
if self.downsample is not None:
|
449 |
+
x_down = self.downsample(x, H, W)
|
450 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
451 |
+
return x, H, W, x_down, Wh, Ww
|
452 |
+
else:
|
453 |
+
return x, H, W, x, H, W
|
454 |
+
|
455 |
+
|
456 |
+
class PatchEmbed(nn.Module):
|
457 |
+
"""Image to Patch Embedding
|
458 |
+
Args:
|
459 |
+
patch_size (int): Patch token size. Default: 4.
|
460 |
+
in_chans (int): Number of input image channels. Default: 3.
|
461 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
462 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
466 |
+
super().__init__()
|
467 |
+
patch_size = to_2tuple(patch_size)
|
468 |
+
self.patch_size = patch_size
|
469 |
+
|
470 |
+
self.in_chans = in_chans
|
471 |
+
self.embed_dim = embed_dim
|
472 |
+
|
473 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
474 |
+
if norm_layer is not None:
|
475 |
+
self.norm = norm_layer(embed_dim)
|
476 |
+
else:
|
477 |
+
self.norm = None
|
478 |
+
|
479 |
+
def forward(self, x):
|
480 |
+
"""Forward function."""
|
481 |
+
# padding
|
482 |
+
_, _, H, W = x.size()
|
483 |
+
if W % self.patch_size[1] != 0:
|
484 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
485 |
+
if H % self.patch_size[0] != 0:
|
486 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
487 |
+
|
488 |
+
x = self.proj(x) # B C Wh Ww
|
489 |
+
if self.norm is not None:
|
490 |
+
Wh, Ww = x.size(2), x.size(3)
|
491 |
+
x = x.flatten(2).transpose(1, 2)
|
492 |
+
x = self.norm(x)
|
493 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
494 |
+
|
495 |
+
return x
|
496 |
+
|
497 |
+
|
498 |
+
class SwinTransformer(nn.Module):
|
499 |
+
"""Swin Transformer backbone.
|
500 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
501 |
+
https://arxiv.org/pdf/2103.14030
|
502 |
+
Args:
|
503 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
504 |
+
used in absolute postion embedding. Default 224.
|
505 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
506 |
+
in_chans (int): Number of input image channels. Default: 3.
|
507 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
508 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
509 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
510 |
+
window_size (int): Window size. Default: 7.
|
511 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
512 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
513 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
514 |
+
drop_rate (float): Dropout rate.
|
515 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
516 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
517 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
518 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
519 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
520 |
+
out_indices (Sequence[int]): Output from which stages.
|
521 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
522 |
+
-1 means not freezing any parameters.
|
523 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(
|
527 |
+
self,
|
528 |
+
pretrain_img_size=224,
|
529 |
+
patch_size=4,
|
530 |
+
in_chans=3,
|
531 |
+
embed_dim=96,
|
532 |
+
depths=[2, 2, 6, 2],
|
533 |
+
num_heads=[3, 6, 12, 24],
|
534 |
+
window_size=7,
|
535 |
+
mlp_ratio=4.0,
|
536 |
+
qkv_bias=True,
|
537 |
+
qk_scale=None,
|
538 |
+
drop_rate=0.0,
|
539 |
+
attn_drop_rate=0.0,
|
540 |
+
drop_path_rate=0.2,
|
541 |
+
norm_layer=nn.LayerNorm,
|
542 |
+
ape=False,
|
543 |
+
patch_norm=True,
|
544 |
+
out_indices=(0, 1, 2, 3),
|
545 |
+
frozen_stages=-1,
|
546 |
+
use_checkpoint=False,
|
547 |
+
):
|
548 |
+
super().__init__()
|
549 |
+
|
550 |
+
self.pretrain_img_size = pretrain_img_size
|
551 |
+
self.num_layers = len(depths)
|
552 |
+
self.embed_dim = embed_dim
|
553 |
+
self.ape = ape
|
554 |
+
self.patch_norm = patch_norm
|
555 |
+
self.out_indices = out_indices
|
556 |
+
self.frozen_stages = frozen_stages
|
557 |
+
|
558 |
+
# split image into non-overlapping patches
|
559 |
+
self.patch_embed = PatchEmbed(
|
560 |
+
patch_size=patch_size,
|
561 |
+
in_chans=in_chans,
|
562 |
+
embed_dim=embed_dim,
|
563 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
564 |
+
)
|
565 |
+
|
566 |
+
# absolute position embedding
|
567 |
+
if self.ape:
|
568 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
569 |
+
patch_size = to_2tuple(patch_size)
|
570 |
+
patches_resolution = [
|
571 |
+
pretrain_img_size[0] // patch_size[0],
|
572 |
+
pretrain_img_size[1] // patch_size[1],
|
573 |
+
]
|
574 |
+
|
575 |
+
self.absolute_pos_embed = nn.Parameter(
|
576 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
577 |
+
)
|
578 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
579 |
+
|
580 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
581 |
+
|
582 |
+
# stochastic depth
|
583 |
+
dpr = [
|
584 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
585 |
+
] # stochastic depth decay rule
|
586 |
+
|
587 |
+
# build layers
|
588 |
+
self.layers = nn.ModuleList()
|
589 |
+
for i_layer in range(self.num_layers):
|
590 |
+
layer = BasicLayer(
|
591 |
+
dim=int(embed_dim * 2 ** i_layer),
|
592 |
+
depth=depths[i_layer],
|
593 |
+
num_heads=num_heads[i_layer],
|
594 |
+
window_size=window_size,
|
595 |
+
mlp_ratio=mlp_ratio,
|
596 |
+
qkv_bias=qkv_bias,
|
597 |
+
qk_scale=qk_scale,
|
598 |
+
drop=drop_rate,
|
599 |
+
attn_drop=attn_drop_rate,
|
600 |
+
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
601 |
+
norm_layer=norm_layer,
|
602 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
603 |
+
use_checkpoint=use_checkpoint,
|
604 |
+
)
|
605 |
+
self.layers.append(layer)
|
606 |
+
|
607 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
608 |
+
self.num_features = num_features
|
609 |
+
|
610 |
+
# add a norm layer for each output
|
611 |
+
for i_layer in out_indices:
|
612 |
+
layer = norm_layer(num_features[i_layer])
|
613 |
+
layer_name = f"norm{i_layer}"
|
614 |
+
self.add_module(layer_name, layer)
|
615 |
+
|
616 |
+
self._freeze_stages()
|
617 |
+
|
618 |
+
def _freeze_stages(self):
|
619 |
+
if self.frozen_stages >= 0:
|
620 |
+
self.patch_embed.eval()
|
621 |
+
for param in self.patch_embed.parameters():
|
622 |
+
param.requires_grad = False
|
623 |
+
|
624 |
+
if self.frozen_stages >= 1 and self.ape:
|
625 |
+
self.absolute_pos_embed.requires_grad = False
|
626 |
+
|
627 |
+
if self.frozen_stages >= 2:
|
628 |
+
self.pos_drop.eval()
|
629 |
+
for i in range(0, self.frozen_stages - 1):
|
630 |
+
m = self.layers[i]
|
631 |
+
m.eval()
|
632 |
+
for param in m.parameters():
|
633 |
+
param.requires_grad = False
|
634 |
+
|
635 |
+
def init_weights(self, pretrained=None):
|
636 |
+
"""Initialize the weights in backbone.
|
637 |
+
Args:
|
638 |
+
pretrained (str, optional): Path to pre-trained weights.
|
639 |
+
Defaults to None.
|
640 |
+
"""
|
641 |
+
|
642 |
+
def _init_weights(m):
|
643 |
+
if isinstance(m, nn.Linear):
|
644 |
+
trunc_normal_(m.weight, std=0.02)
|
645 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
646 |
+
nn.init.constant_(m.bias, 0)
|
647 |
+
elif isinstance(m, nn.LayerNorm):
|
648 |
+
nn.init.constant_(m.bias, 0)
|
649 |
+
nn.init.constant_(m.weight, 1.0)
|
650 |
+
|
651 |
+
def forward(self, x):
|
652 |
+
"""Forward function."""
|
653 |
+
x = self.patch_embed(x)
|
654 |
+
|
655 |
+
Wh, Ww = x.size(2), x.size(3)
|
656 |
+
if self.ape:
|
657 |
+
# interpolate the position embedding to the corresponding size
|
658 |
+
absolute_pos_embed = F.interpolate(
|
659 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
660 |
+
)
|
661 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
662 |
+
else:
|
663 |
+
x = x.flatten(2).transpose(1, 2)
|
664 |
+
x = self.pos_drop(x)
|
665 |
+
|
666 |
+
outs = {}
|
667 |
+
for i in range(self.num_layers):
|
668 |
+
layer = self.layers[i]
|
669 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
670 |
+
|
671 |
+
if i in self.out_indices:
|
672 |
+
norm_layer = getattr(self, f"norm{i}")
|
673 |
+
x_out = norm_layer(x_out)
|
674 |
+
|
675 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
676 |
+
outs["res{}".format(i + 2)] = out
|
677 |
+
|
678 |
+
return outs
|
679 |
+
|
680 |
+
def train(self, mode=True):
|
681 |
+
"""Convert the model into training mode while keep layers freezed."""
|
682 |
+
super(SwinTransformer, self).train(mode)
|
683 |
+
self._freeze_stages()
|
684 |
+
|
685 |
+
|
686 |
+
@BACKBONE_REGISTRY.register()
|
687 |
+
class D2SwinTransformer(SwinTransformer, Backbone):
|
688 |
+
def __init__(self, cfg, input_shape):
|
689 |
+
|
690 |
+
pretrain_img_size = cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE
|
691 |
+
patch_size = cfg.MODEL.SWIN.PATCH_SIZE
|
692 |
+
in_chans = 3
|
693 |
+
embed_dim = cfg.MODEL.SWIN.EMBED_DIM
|
694 |
+
depths = cfg.MODEL.SWIN.DEPTHS
|
695 |
+
num_heads = cfg.MODEL.SWIN.NUM_HEADS
|
696 |
+
window_size = cfg.MODEL.SWIN.WINDOW_SIZE
|
697 |
+
mlp_ratio = cfg.MODEL.SWIN.MLP_RATIO
|
698 |
+
qkv_bias = cfg.MODEL.SWIN.QKV_BIAS
|
699 |
+
qk_scale = cfg.MODEL.SWIN.QK_SCALE
|
700 |
+
drop_rate = cfg.MODEL.SWIN.DROP_RATE
|
701 |
+
attn_drop_rate = cfg.MODEL.SWIN.ATTN_DROP_RATE
|
702 |
+
drop_path_rate = cfg.MODEL.SWIN.DROP_PATH_RATE
|
703 |
+
norm_layer = nn.LayerNorm
|
704 |
+
ape = cfg.MODEL.SWIN.APE
|
705 |
+
patch_norm = cfg.MODEL.SWIN.PATCH_NORM
|
706 |
+
use_checkpoint = cfg.MODEL.SWIN.USE_CHECKPOINT
|
707 |
+
|
708 |
+
super().__init__(
|
709 |
+
pretrain_img_size,
|
710 |
+
patch_size,
|
711 |
+
in_chans,
|
712 |
+
embed_dim,
|
713 |
+
depths,
|
714 |
+
num_heads,
|
715 |
+
window_size,
|
716 |
+
mlp_ratio,
|
717 |
+
qkv_bias,
|
718 |
+
qk_scale,
|
719 |
+
drop_rate,
|
720 |
+
attn_drop_rate,
|
721 |
+
drop_path_rate,
|
722 |
+
norm_layer,
|
723 |
+
ape,
|
724 |
+
patch_norm,
|
725 |
+
use_checkpoint=use_checkpoint,
|
726 |
+
)
|
727 |
+
|
728 |
+
self._out_features = cfg.MODEL.SWIN.OUT_FEATURES
|
729 |
+
|
730 |
+
self._out_feature_strides = {
|
731 |
+
"res2": 4,
|
732 |
+
"res3": 8,
|
733 |
+
"res4": 16,
|
734 |
+
"res5": 32,
|
735 |
+
}
|
736 |
+
self._out_feature_channels = {
|
737 |
+
"res2": self.num_features[0],
|
738 |
+
"res3": self.num_features[1],
|
739 |
+
"res4": self.num_features[2],
|
740 |
+
"res5": self.num_features[3],
|
741 |
+
}
|
742 |
+
|
743 |
+
def forward(self, x):
|
744 |
+
"""
|
745 |
+
Args:
|
746 |
+
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
|
747 |
+
Returns:
|
748 |
+
dict[str->Tensor]: names and the corresponding features
|
749 |
+
"""
|
750 |
+
assert (
|
751 |
+
x.dim() == 4
|
752 |
+
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
|
753 |
+
outputs = {}
|
754 |
+
y = super().forward(x)
|
755 |
+
for k in y.keys():
|
756 |
+
if k in self._out_features:
|
757 |
+
outputs[k] = y[k]
|
758 |
+
return outputs
|
759 |
+
|
760 |
+
def output_shape(self):
|
761 |
+
return {
|
762 |
+
name: ShapeSpec(
|
763 |
+
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
|
764 |
+
)
|
765 |
+
for name in self._out_features
|
766 |
+
}
|
767 |
+
|
768 |
+
@property
|
769 |
+
def size_divisibility(self):
|
770 |
+
return 32
|
mask2former/modeling/criterion.py
ADDED
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
"""
|
4 |
+
MaskFormer criterion.
|
5 |
+
"""
|
6 |
+
import logging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from detectron2.utils.comm import get_world_size
|
13 |
+
from detectron2.projects.point_rend.point_features import (
|
14 |
+
get_uncertain_point_coords_with_randomness,
|
15 |
+
point_sample,
|
16 |
+
)
|
17 |
+
|
18 |
+
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, _max_by_axis
|
19 |
+
from ..utils.tranform import matrix_to_quaternion, quaternion_to_matrix
|
20 |
+
|
21 |
+
def dice_loss(
|
22 |
+
inputs: torch.Tensor,
|
23 |
+
targets: torch.Tensor,
|
24 |
+
num_masks: float,
|
25 |
+
):
|
26 |
+
"""
|
27 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
28 |
+
Args:
|
29 |
+
inputs: A float tensor of arbitrary shape.
|
30 |
+
The predictions for each example.
|
31 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
32 |
+
classification label for each element in inputs
|
33 |
+
(0 for the negative class and 1 for the positive class).
|
34 |
+
"""
|
35 |
+
inputs = inputs.sigmoid()
|
36 |
+
inputs = inputs.flatten(1)
|
37 |
+
numerator = 2 * (inputs * targets).sum(-1)
|
38 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
39 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
40 |
+
return loss.sum() / num_masks
|
41 |
+
|
42 |
+
|
43 |
+
dice_loss_jit = torch.jit.script(
|
44 |
+
dice_loss
|
45 |
+
) # type: torch.jit.ScriptModule
|
46 |
+
|
47 |
+
|
48 |
+
def sigmoid_ce_loss(
|
49 |
+
inputs: torch.Tensor,
|
50 |
+
targets: torch.Tensor,
|
51 |
+
num_masks: float,
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Args:
|
55 |
+
inputs: A float tensor of arbitrary shape.
|
56 |
+
The predictions for each example.
|
57 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
58 |
+
classification label for each element in inputs
|
59 |
+
(0 for the negative class and 1 for the positive class).
|
60 |
+
Returns:
|
61 |
+
Loss tensor
|
62 |
+
"""
|
63 |
+
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
64 |
+
|
65 |
+
return loss.mean(1).sum() / num_masks
|
66 |
+
|
67 |
+
|
68 |
+
sigmoid_ce_loss_jit = torch.jit.script(
|
69 |
+
sigmoid_ce_loss
|
70 |
+
) # type: torch.jit.ScriptModule
|
71 |
+
|
72 |
+
|
73 |
+
def calculate_uncertainty(logits):
|
74 |
+
"""
|
75 |
+
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
|
76 |
+
foreground class in `classes`.
|
77 |
+
Args:
|
78 |
+
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
|
79 |
+
class-agnostic, where R is the total number of predicted masks in all images and C is
|
80 |
+
the number of foreground classes. The values are logits.
|
81 |
+
Returns:
|
82 |
+
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
|
83 |
+
the most uncertain locations having the highest uncertainty score.
|
84 |
+
"""
|
85 |
+
assert logits.shape[1] == 1
|
86 |
+
gt_class_logits = logits.clone()
|
87 |
+
return -(torch.abs(gt_class_logits))
|
88 |
+
|
89 |
+
def convert_to_filled_tensor(tensor_list):
|
90 |
+
max_size = _max_by_axis([list(tensor.shape) for tensor in tensor_list])
|
91 |
+
batch_shape = [len(tensor_list)] + max_size
|
92 |
+
dtype = tensor_list[0].dtype
|
93 |
+
device = tensor_list[0].device
|
94 |
+
filled_tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
95 |
+
for old, new in zip(tensor_list, filled_tensor):
|
96 |
+
new[:old.shape[0]] = old
|
97 |
+
return filled_tensor
|
98 |
+
|
99 |
+
def smooth_l1_loss(
|
100 |
+
input: torch.Tensor, target: torch.Tensor, beta: float, reduction: str = "none"
|
101 |
+
) -> torch.Tensor:
|
102 |
+
"""
|
103 |
+
Smooth L1 loss defined in the Fast R-CNN paper as:
|
104 |
+
::
|
105 |
+
| 0.5 * x ** 2 / beta if abs(x) < beta
|
106 |
+
smoothl1(x) = |
|
107 |
+
| abs(x) - 0.5 * beta otherwise,
|
108 |
+
|
109 |
+
where x = input - target.
|
110 |
+
|
111 |
+
Smooth L1 loss is related to Huber loss, which is defined as:
|
112 |
+
::
|
113 |
+
| 0.5 * x ** 2 if abs(x) < beta
|
114 |
+
huber(x) = |
|
115 |
+
| beta * (abs(x) - 0.5 * beta) otherwise
|
116 |
+
|
117 |
+
Smooth L1 loss is equal to huber(x) / beta. This leads to the following
|
118 |
+
differences:
|
119 |
+
|
120 |
+
- As beta -> 0, Smooth L1 loss converges to L1 loss, while Huber loss
|
121 |
+
converges to a constant 0 loss.
|
122 |
+
- As beta -> +inf, Smooth L1 converges to a constant 0 loss, while Huber loss
|
123 |
+
converges to L2 loss.
|
124 |
+
- For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant
|
125 |
+
slope of 1. For Huber loss, the slope of the L1 segment is beta.
|
126 |
+
|
127 |
+
Smooth L1 loss can be seen as exactly L1 loss, but with the abs(x) < beta
|
128 |
+
portion replaced with a quadratic function such that at abs(x) = beta, its
|
129 |
+
slope is 1. The quadratic segment smooths the L1 loss near x = 0.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
input (Tensor): input tensor of any shape
|
133 |
+
target (Tensor): target value tensor with the same shape as input
|
134 |
+
beta (float): L1 to L2 change point.
|
135 |
+
For beta values < 1e-5, L1 loss is computed.
|
136 |
+
reduction: 'none' | 'mean' | 'sum'
|
137 |
+
'none': No reduction will be applied to the output.
|
138 |
+
'mean': The output will be averaged.
|
139 |
+
'sum': The output will be summed.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
The loss with the reduction option applied.
|
143 |
+
|
144 |
+
Note:
|
145 |
+
PyTorch's builtin "Smooth L1 loss" implementation does not actually
|
146 |
+
implement Smooth L1 loss, nor does it implement Huber loss. It implements
|
147 |
+
the special case of both in which they are equal (beta=1).
|
148 |
+
See: https://pytorch.org/docs/stable/nn.html#torch.nn.SmoothL1Loss.
|
149 |
+
"""
|
150 |
+
if beta < 1e-5:
|
151 |
+
# if beta == 0, then torch.where will result in nan gradients when
|
152 |
+
# the chain rule is applied due to pytorch implementation details
|
153 |
+
# (the False branch "0.5 * n ** 2 / 0" has an incoming gradient of
|
154 |
+
# zeros, rather than "no gradient"). To avoid this issue, we define
|
155 |
+
# small values of beta to be exactly l1 loss.
|
156 |
+
loss = torch.abs(input - target)
|
157 |
+
else:
|
158 |
+
n = torch.abs(input - target)
|
159 |
+
cond = n < beta
|
160 |
+
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
|
161 |
+
|
162 |
+
if reduction == "mean":
|
163 |
+
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
|
164 |
+
elif reduction == "sum":
|
165 |
+
loss = loss.sum()
|
166 |
+
return loss
|
167 |
+
|
168 |
+
class SetCriterion(nn.Module):
|
169 |
+
"""This class computes the loss for DETR.
|
170 |
+
The process happens in two steps:
|
171 |
+
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
172 |
+
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
|
176 |
+
num_points, oversample_ratio, importance_sample_ratio, motionnet_type, only_DET):
|
177 |
+
"""Create the criterion.
|
178 |
+
Parameters:
|
179 |
+
num_classes: number of object categories, omitting the special no-object category
|
180 |
+
matcher: module able to compute a matching between targets and proposals
|
181 |
+
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
182 |
+
eos_coef: relative classification weight applied to the no-object category
|
183 |
+
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
184 |
+
"""
|
185 |
+
super().__init__()
|
186 |
+
self.num_classes = num_classes
|
187 |
+
self.matcher = matcher
|
188 |
+
self.weight_dict = weight_dict
|
189 |
+
self.eos_coef = eos_coef
|
190 |
+
self.losses = losses
|
191 |
+
empty_weight = torch.ones(self.num_classes + 1)
|
192 |
+
empty_weight[-1] = self.eos_coef
|
193 |
+
self.register_buffer("empty_weight", empty_weight)
|
194 |
+
|
195 |
+
# pointwise mask loss parameters
|
196 |
+
self.num_points = num_points
|
197 |
+
self.oversample_ratio = oversample_ratio
|
198 |
+
self.importance_sample_ratio = importance_sample_ratio
|
199 |
+
|
200 |
+
# OPD
|
201 |
+
self.motionnet_type = motionnet_type
|
202 |
+
self.only_DET = only_DET
|
203 |
+
|
204 |
+
def loss_labels(self, outputs, targets, indices, num_masks):
|
205 |
+
"""Classification loss (NLL)
|
206 |
+
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
207 |
+
"""
|
208 |
+
assert "pred_logits" in outputs
|
209 |
+
src_logits = outputs["pred_logits"].float()
|
210 |
+
|
211 |
+
idx = self._get_src_permutation_idx(indices)
|
212 |
+
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
213 |
+
target_classes = torch.full(
|
214 |
+
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
|
215 |
+
)
|
216 |
+
target_classes[idx] = target_classes_o
|
217 |
+
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
|
218 |
+
losses = {"loss_ce": loss_ce}
|
219 |
+
return losses
|
220 |
+
|
221 |
+
# OPD
|
222 |
+
def loss_mtypes(self, outputs, targets, indices, num_masks):
|
223 |
+
assert "pred_mtypes" in outputs
|
224 |
+
|
225 |
+
src_idx = self._get_src_permutation_idx(indices)
|
226 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
227 |
+
|
228 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
229 |
+
src_mtypes = outputs["pred_mtypes"][src_idx][target_motion_valid]
|
230 |
+
target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
|
231 |
+
|
232 |
+
if src_mtypes.shape[0] == 0:
|
233 |
+
return {"loss_mtype": 0.0 * src_mtypes.sum()}
|
234 |
+
|
235 |
+
loss_mtype = F.cross_entropy(src_mtypes, target_mtypes.long(), reduction="sum") / num_masks
|
236 |
+
losses = {"loss_mtype": loss_mtype}
|
237 |
+
return losses
|
238 |
+
|
239 |
+
def loss_morigins(self, outputs, targets, indices, num_masks):
|
240 |
+
assert "pred_morigins" in outputs
|
241 |
+
|
242 |
+
src_idx = self._get_src_permutation_idx(indices)
|
243 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
244 |
+
|
245 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
246 |
+
# Only calculate origin loss for the rotation axis
|
247 |
+
target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
|
248 |
+
rot_inds = (
|
249 |
+
(target_mtypes == 0).nonzero().unbind(1)[0]
|
250 |
+
)
|
251 |
+
src_morigins = outputs["pred_morigins"][src_idx][target_motion_valid][rot_inds]
|
252 |
+
target_morigins = convert_to_filled_tensor([t["gt_origins"] for t in targets])[tgt_idx][target_motion_valid][rot_inds]
|
253 |
+
|
254 |
+
if src_morigins.shape[0] == 0:
|
255 |
+
return {"loss_morigin": 0.0 * src_morigins.sum()}
|
256 |
+
|
257 |
+
loss_morigin = smooth_l1_loss(src_morigins, target_morigins, 1.0, reduction="sum") / num_masks
|
258 |
+
losses = {"loss_morigin": loss_morigin}
|
259 |
+
return losses
|
260 |
+
|
261 |
+
def loss_maxises(self, outputs, targets, indices, num_masks):
|
262 |
+
assert "pred_maxises" in outputs
|
263 |
+
|
264 |
+
src_idx = self._get_src_permutation_idx(indices)
|
265 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
266 |
+
|
267 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
268 |
+
src_maxises = outputs["pred_maxises"][src_idx][target_motion_valid]
|
269 |
+
target_maxises = convert_to_filled_tensor([t["gt_axises"] for t in targets])[tgt_idx][target_motion_valid]
|
270 |
+
|
271 |
+
if src_maxises.shape[0] == 0:
|
272 |
+
return {"loss_maxis": 0.0 * src_maxises.sum()}
|
273 |
+
|
274 |
+
loss_maxis = smooth_l1_loss(src_maxises, target_maxises, 1.0, reduction="sum") / num_masks
|
275 |
+
losses = {"loss_maxis": loss_maxis}
|
276 |
+
return losses
|
277 |
+
|
278 |
+
#TODO: add loss for motion state
|
279 |
+
def loss_mstates(self, outputs, targets, indices, num_masks):
|
280 |
+
assert "pred_mstates" in outputs
|
281 |
+
|
282 |
+
src_idx = self._get_src_permutation_idx(indices)
|
283 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
284 |
+
|
285 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
286 |
+
src_mstate = outputs["pred_mstates"][src_idx][target_motion_valid]
|
287 |
+
target_mstate = convert_to_filled_tensor([t["gt_states"] for t in targets])[tgt_idx][target_motion_valid]
|
288 |
+
|
289 |
+
if src_mstate.shape[0] == 0:
|
290 |
+
return {"loss_mstate": 0.0 * src_mstate.sum()}
|
291 |
+
|
292 |
+
loss_mstate = smooth_l1_loss(src_mstate, target_mstate, 1.0, reduction="sum") / num_masks
|
293 |
+
losses = {"loss_mstate": loss_mstate}
|
294 |
+
return losses
|
295 |
+
|
296 |
+
def loss_mstatemaxs(self, outputs, targets, indices, num_masks):
|
297 |
+
assert "pred_mstatemaxs" in outputs
|
298 |
+
|
299 |
+
src_idx = self._get_src_permutation_idx(indices)
|
300 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
301 |
+
|
302 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
303 |
+
src_mstatemax = outputs["pred_mstatemaxs"][src_idx][target_motion_valid]
|
304 |
+
target_mstatemax = convert_to_filled_tensor([t["gt_statemaxs"] for t in targets])[tgt_idx][target_motion_valid]
|
305 |
+
|
306 |
+
if src_mstatemax.shape[0] == 0:
|
307 |
+
return {"loss_mstatemax": 0.0 * src_mstatemax.sum()}
|
308 |
+
|
309 |
+
loss_mstatemax = smooth_l1_loss(src_mstatemax, target_mstatemax, 1.0, reduction="sum") / num_masks
|
310 |
+
losses = {"loss_mstatemax": loss_mstatemax}
|
311 |
+
return losses
|
312 |
+
|
313 |
+
def loss_extrinsics(self, outputs, targets, indices, num_masks):
|
314 |
+
assert "pred_extrinsics" in outputs
|
315 |
+
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6":
|
316 |
+
target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
|
317 |
+
src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
|
318 |
+
target_extrinsics_full = [t["gt_extrinsic"][0] for t in targets]
|
319 |
+
target_extrinsics = convert_to_filled_tensor([torch.cat(
|
320 |
+
[
|
321 |
+
extrinsic[0:3],
|
322 |
+
extrinsic[4:7],
|
323 |
+
extrinsic[8:11],
|
324 |
+
extrinsic[12:15],
|
325 |
+
],
|
326 |
+
0,
|
327 |
+
) for extrinsic in target_extrinsics_full])[target_motion_valid]
|
328 |
+
if src_extrinsics.shape[0] == 0:
|
329 |
+
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
|
330 |
+
|
331 |
+
# Much proper to make sure each valid image gives the same contribution to the loss
|
332 |
+
# Therefore, here use the number of images to average
|
333 |
+
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
|
334 |
+
elif self.motionnet_type == "BMOC_V1":
|
335 |
+
src_idx = self._get_src_permutation_idx(indices)
|
336 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
337 |
+
|
338 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
339 |
+
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
|
340 |
+
target_extrinsics_full = []
|
341 |
+
for t in targets:
|
342 |
+
extrinsics = t["gt_extrinsic"]
|
343 |
+
target_extrinsics_full.append(torch.cat(
|
344 |
+
[
|
345 |
+
extrinsics[:, 0:3],
|
346 |
+
extrinsics[:, 4:7],
|
347 |
+
extrinsics[:, 8:11],
|
348 |
+
extrinsics[:, 12:15],
|
349 |
+
],
|
350 |
+
1,
|
351 |
+
))
|
352 |
+
|
353 |
+
target_extrinsics = convert_to_filled_tensor(target_extrinsics_full)[tgt_idx][target_motion_valid]
|
354 |
+
if src_extrinsics.shape[0] == 0:
|
355 |
+
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
|
356 |
+
|
357 |
+
# Much proper to make sure each valid image gives the same contribution to the loss
|
358 |
+
# Therefore, here use the number of images to average
|
359 |
+
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
|
360 |
+
elif self.motionnet_type == "BMOC_V2":
|
361 |
+
src_idx = self._get_src_permutation_idx(indices)
|
362 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
363 |
+
|
364 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
365 |
+
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
|
366 |
+
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"] for t in targets])[tgt_idx][target_motion_valid]
|
367 |
+
|
368 |
+
if src_extrinsics.shape[0] == 0:
|
369 |
+
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
|
370 |
+
|
371 |
+
# Much proper to make sure each valid image gives the same contribution to the loss
|
372 |
+
# Therefore, here use the number of images to average
|
373 |
+
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
|
374 |
+
elif self.motionnet_type == "BMOC_V3":
|
375 |
+
src_idx = self._get_src_permutation_idx(indices)
|
376 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
377 |
+
|
378 |
+
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
|
379 |
+
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
|
380 |
+
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_6d"] for t in targets])[tgt_idx][target_motion_valid]
|
381 |
+
|
382 |
+
if src_extrinsics.shape[0] == 0:
|
383 |
+
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
|
384 |
+
|
385 |
+
# Much proper to make sure each valid image gives the same contribution to the loss
|
386 |
+
# Therefore, here use the number of images to average
|
387 |
+
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
|
388 |
+
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5":
|
389 |
+
target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
|
390 |
+
src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
|
391 |
+
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"][0] for t in targets])[target_motion_valid]
|
392 |
+
|
393 |
+
if src_extrinsics.shape[0] == 0:
|
394 |
+
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
|
395 |
+
|
396 |
+
# Much proper to make sure each valid image gives the same contribution to the loss
|
397 |
+
# Therefore, here use the number of images to average
|
398 |
+
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
|
399 |
+
|
400 |
+
return {"loss_extrinsic": loss_extrinsic}
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
def loss_masks(self, outputs, targets, indices, num_masks):
|
405 |
+
"""Compute the losses related to the masks: the focal loss and the dice loss.
|
406 |
+
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
|
407 |
+
"""
|
408 |
+
assert "pred_masks" in outputs
|
409 |
+
|
410 |
+
src_idx = self._get_src_permutation_idx(indices)
|
411 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
412 |
+
src_masks = outputs["pred_masks"]
|
413 |
+
src_masks = src_masks[src_idx]
|
414 |
+
masks = [t["masks"] for t in targets]
|
415 |
+
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
|
416 |
+
target_masks = target_masks.to(src_masks)
|
417 |
+
target_masks = target_masks[tgt_idx]
|
418 |
+
|
419 |
+
# No need to upsample predictions as we are using normalized coordinates :)
|
420 |
+
# N x 1 x H x W
|
421 |
+
src_masks = src_masks[:, None]
|
422 |
+
target_masks = target_masks[:, None]
|
423 |
+
|
424 |
+
with torch.no_grad():
|
425 |
+
# sample point_coords
|
426 |
+
point_coords = get_uncertain_point_coords_with_randomness(
|
427 |
+
src_masks,
|
428 |
+
lambda logits: calculate_uncertainty(logits),
|
429 |
+
self.num_points,
|
430 |
+
self.oversample_ratio,
|
431 |
+
self.importance_sample_ratio,
|
432 |
+
)
|
433 |
+
# get gt labels
|
434 |
+
point_labels = point_sample(
|
435 |
+
target_masks,
|
436 |
+
point_coords,
|
437 |
+
align_corners=False,
|
438 |
+
).squeeze(1)
|
439 |
+
|
440 |
+
point_logits = point_sample(
|
441 |
+
src_masks,
|
442 |
+
point_coords,
|
443 |
+
align_corners=False,
|
444 |
+
).squeeze(1)
|
445 |
+
|
446 |
+
losses = {
|
447 |
+
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
|
448 |
+
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
|
449 |
+
}
|
450 |
+
|
451 |
+
del src_masks
|
452 |
+
del target_masks
|
453 |
+
return losses
|
454 |
+
|
455 |
+
def _get_src_permutation_idx(self, indices):
|
456 |
+
# permute predictions following indices
|
457 |
+
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
458 |
+
src_idx = torch.cat([src for (src, _) in indices])
|
459 |
+
return batch_idx, src_idx
|
460 |
+
|
461 |
+
def _get_tgt_permutation_idx(self, indices):
|
462 |
+
# permute targets following indices
|
463 |
+
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
464 |
+
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
465 |
+
return batch_idx, tgt_idx
|
466 |
+
|
467 |
+
def get_loss(self, loss, outputs, targets, indices, num_masks):
|
468 |
+
tmp_device = outputs["pred_logits"].device
|
469 |
+
tmp_list = ["mtypes", "morigins", "maxises"]
|
470 |
+
loss_map = {
|
471 |
+
'labels': self.loss_labels,
|
472 |
+
'masks': self.loss_masks,
|
473 |
+
# OPD
|
474 |
+
"mtypes": self.loss_mtypes,
|
475 |
+
"morigins": self.loss_morigins,
|
476 |
+
"maxises": self.loss_maxises,
|
477 |
+
"extrinsics": self.loss_extrinsics,
|
478 |
+
"mstates": self.loss_mstates,
|
479 |
+
"mstatemaxs": self.loss_mstatemaxs,
|
480 |
+
}
|
481 |
+
assert loss in loss_map, f"do you really want to compute {loss} loss?"
|
482 |
+
tmp_loss = loss_map[loss](outputs, targets, indices, num_masks)
|
483 |
+
if self.only_DET and loss in tmp_list:
|
484 |
+
tmp_key = list(tmp_loss.keys())[0]
|
485 |
+
tmp_loss[tmp_key] = torch.tensor(0.0, device=tmp_device)
|
486 |
+
return tmp_loss
|
487 |
+
else:
|
488 |
+
return tmp_loss
|
489 |
+
# return loss_map[loss](outputs, targets, indices, num_masks)
|
490 |
+
|
491 |
+
def forward(self, outputs, targets):
|
492 |
+
"""This performs the loss computation.
|
493 |
+
Parameters:
|
494 |
+
outputs: dict of tensors, see the output specification of the model for the format
|
495 |
+
targets: list of dicts, such that len(targets) == batch_size.
|
496 |
+
The expected keys in each dict depends on the losses applied, see each loss' doc
|
497 |
+
"""
|
498 |
+
tmp_device = outputs["pred_logits"].device
|
499 |
+
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
|
500 |
+
|
501 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
502 |
+
indices = self.matcher(outputs_without_aux, targets)
|
503 |
+
|
504 |
+
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
505 |
+
num_masks = sum(len(t["labels"]) for t in targets)
|
506 |
+
num_masks = torch.as_tensor(
|
507 |
+
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
|
508 |
+
)
|
509 |
+
if is_dist_avail_and_initialized():
|
510 |
+
torch.distributed.all_reduce(num_masks)
|
511 |
+
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
|
512 |
+
|
513 |
+
# Compute all the requested losses
|
514 |
+
losses = {}
|
515 |
+
for loss in self.losses:
|
516 |
+
if loss == "extrinsics" and self.motionnet_type == "BMCC":
|
517 |
+
continue
|
518 |
+
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
|
519 |
+
|
520 |
+
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
521 |
+
if "aux_outputs" in outputs:
|
522 |
+
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
|
523 |
+
indices = self.matcher(aux_outputs, targets)
|
524 |
+
for loss in self.losses:
|
525 |
+
if loss == "extrinsics" and (self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC"):
|
526 |
+
continue
|
527 |
+
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
|
528 |
+
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
|
529 |
+
losses.update(l_dict)
|
530 |
+
|
531 |
+
return losses
|
532 |
+
|
533 |
+
def __repr__(self):
|
534 |
+
head = "Criterion " + self.__class__.__name__
|
535 |
+
body = [
|
536 |
+
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
|
537 |
+
"losses: {}".format(self.losses),
|
538 |
+
"weight_dict: {}".format(self.weight_dict),
|
539 |
+
"num_classes: {}".format(self.num_classes),
|
540 |
+
"eos_coef: {}".format(self.eos_coef),
|
541 |
+
"num_points: {}".format(self.num_points),
|
542 |
+
"oversample_ratio: {}".format(self.oversample_ratio),
|
543 |
+
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
|
544 |
+
]
|
545 |
+
_repr_indent = 4
|
546 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
547 |
+
return "\n".join(lines)
|
mask2former/modeling/matcher.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/matcher.py
|
3 |
+
"""
|
4 |
+
Modules to compute the matching cost and solve the corresponding LSAP.
|
5 |
+
"""
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from scipy.optimize import linear_sum_assignment
|
9 |
+
from torch import nn
|
10 |
+
from torch.cuda.amp import autocast
|
11 |
+
|
12 |
+
from detectron2.projects.point_rend.point_features import point_sample
|
13 |
+
|
14 |
+
|
15 |
+
def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
18 |
+
Args:
|
19 |
+
inputs: A float tensor of arbitrary shape.
|
20 |
+
The predictions for each example.
|
21 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
22 |
+
classification label for each element in inputs
|
23 |
+
(0 for the negative class and 1 for the positive class).
|
24 |
+
"""
|
25 |
+
inputs = inputs.sigmoid()
|
26 |
+
inputs = inputs.flatten(1)
|
27 |
+
numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets)
|
28 |
+
denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :]
|
29 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
30 |
+
return loss
|
31 |
+
|
32 |
+
|
33 |
+
batch_dice_loss_jit = torch.jit.script(
|
34 |
+
batch_dice_loss
|
35 |
+
) # type: torch.jit.ScriptModule
|
36 |
+
|
37 |
+
|
38 |
+
def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor):
|
39 |
+
"""
|
40 |
+
Args:
|
41 |
+
inputs: A float tensor of arbitrary shape.
|
42 |
+
The predictions for each example.
|
43 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
44 |
+
classification label for each element in inputs
|
45 |
+
(0 for the negative class and 1 for the positive class).
|
46 |
+
Returns:
|
47 |
+
Loss tensor
|
48 |
+
"""
|
49 |
+
hw = inputs.shape[1]
|
50 |
+
|
51 |
+
pos = F.binary_cross_entropy_with_logits(
|
52 |
+
inputs, torch.ones_like(inputs), reduction="none"
|
53 |
+
)
|
54 |
+
neg = F.binary_cross_entropy_with_logits(
|
55 |
+
inputs, torch.zeros_like(inputs), reduction="none"
|
56 |
+
)
|
57 |
+
|
58 |
+
loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum(
|
59 |
+
"nc,mc->nm", neg, (1 - targets)
|
60 |
+
)
|
61 |
+
|
62 |
+
return loss / hw
|
63 |
+
|
64 |
+
|
65 |
+
batch_sigmoid_ce_loss_jit = torch.jit.script(
|
66 |
+
batch_sigmoid_ce_loss
|
67 |
+
) # type: torch.jit.ScriptModule
|
68 |
+
|
69 |
+
|
70 |
+
class HungarianMatcher(nn.Module):
|
71 |
+
"""This class computes an assignment between the targets and the predictions of the network
|
72 |
+
|
73 |
+
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
74 |
+
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
75 |
+
while the others are un-matched (and thus treated as non-objects).
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0):
|
79 |
+
"""Creates the matcher
|
80 |
+
|
81 |
+
Params:
|
82 |
+
cost_class: This is the relative weight of the classification error in the matching cost
|
83 |
+
cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost
|
84 |
+
cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.cost_class = cost_class
|
88 |
+
self.cost_mask = cost_mask
|
89 |
+
self.cost_dice = cost_dice
|
90 |
+
|
91 |
+
assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0"
|
92 |
+
|
93 |
+
self.num_points = num_points
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def memory_efficient_forward(self, outputs, targets):
|
97 |
+
"""More memory-friendly matching"""
|
98 |
+
bs, num_queries = outputs["pred_logits"].shape[:2]
|
99 |
+
|
100 |
+
indices = []
|
101 |
+
|
102 |
+
# Iterate through batch size
|
103 |
+
for b in range(bs):
|
104 |
+
|
105 |
+
out_prob = outputs["pred_logits"][b].softmax(-1) # [num_queries, num_classes]
|
106 |
+
tgt_ids = targets[b]["labels"]
|
107 |
+
|
108 |
+
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
|
109 |
+
# but approximate it in 1 - proba[target class].
|
110 |
+
# The 1 is a constant that doesn't change the matching, it can be ommitted.
|
111 |
+
cost_class = -out_prob[:, tgt_ids]
|
112 |
+
|
113 |
+
out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred]
|
114 |
+
# gt masks are already padded when preparing target
|
115 |
+
tgt_mask = targets[b]["masks"].to(out_mask)
|
116 |
+
|
117 |
+
out_mask = out_mask[:, None]
|
118 |
+
tgt_mask = tgt_mask[:, None]
|
119 |
+
# all masks share the same set of points for efficient matching!
|
120 |
+
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device)
|
121 |
+
# get gt labels
|
122 |
+
tgt_mask = point_sample(
|
123 |
+
tgt_mask,
|
124 |
+
point_coords.repeat(tgt_mask.shape[0], 1, 1),
|
125 |
+
align_corners=False,
|
126 |
+
).squeeze(1)
|
127 |
+
|
128 |
+
out_mask = point_sample(
|
129 |
+
out_mask,
|
130 |
+
point_coords.repeat(out_mask.shape[0], 1, 1),
|
131 |
+
align_corners=False,
|
132 |
+
).squeeze(1)
|
133 |
+
|
134 |
+
with autocast(enabled=False):
|
135 |
+
out_mask = out_mask.float()
|
136 |
+
tgt_mask = tgt_mask.float()
|
137 |
+
# Compute the focal loss between masks
|
138 |
+
if out_mask.shape[0] == 0 or tgt_mask.shape[0] == 0:
|
139 |
+
cost_mask = batch_sigmoid_ce_loss(out_mask, tgt_mask)
|
140 |
+
# Compute the dice loss betwen masks
|
141 |
+
cost_dice = batch_dice_loss(out_mask, tgt_mask)
|
142 |
+
else:
|
143 |
+
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask)
|
144 |
+
# Compute the dice loss betwen masks
|
145 |
+
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask)
|
146 |
+
# Final cost matrix
|
147 |
+
C = (
|
148 |
+
self.cost_mask * cost_mask
|
149 |
+
+ self.cost_class * cost_class
|
150 |
+
+ self.cost_dice * cost_dice
|
151 |
+
)
|
152 |
+
C = C.reshape(num_queries, -1).cpu()
|
153 |
+
|
154 |
+
indices.append(linear_sum_assignment(C))
|
155 |
+
|
156 |
+
return [
|
157 |
+
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
|
158 |
+
for i, j in indices
|
159 |
+
]
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def forward(self, outputs, targets):
|
163 |
+
"""Performs the matching
|
164 |
+
|
165 |
+
Params:
|
166 |
+
outputs: This is a dict that contains at least these entries:
|
167 |
+
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
168 |
+
"pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks
|
169 |
+
|
170 |
+
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
171 |
+
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
172 |
+
objects in the target) containing the class labels
|
173 |
+
"masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
177 |
+
- index_i is the indices of the selected predictions (in order)
|
178 |
+
- index_j is the indices of the corresponding selected targets (in order)
|
179 |
+
For each batch element, it holds:
|
180 |
+
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
181 |
+
"""
|
182 |
+
return self.memory_efficient_forward(outputs, targets)
|
183 |
+
|
184 |
+
def __repr__(self, _repr_indent=4):
|
185 |
+
head = "Matcher " + self.__class__.__name__
|
186 |
+
body = [
|
187 |
+
"cost_class: {}".format(self.cost_class),
|
188 |
+
"cost_mask: {}".format(self.cost_mask),
|
189 |
+
"cost_dice: {}".format(self.cost_dice),
|
190 |
+
]
|
191 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
192 |
+
return "\n".join(lines)
|
mask2former/modeling/meta_arch/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
mask2former/modeling/meta_arch/mask_former_head.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from copy import deepcopy
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
12 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
13 |
+
|
14 |
+
from ..transformer_decoder.maskformer_transformer_decoder import build_transformer_decoder
|
15 |
+
from ..pixel_decoder.fpn import build_pixel_decoder
|
16 |
+
|
17 |
+
|
18 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
19 |
+
class MaskFormerHead(nn.Module):
|
20 |
+
|
21 |
+
_version = 2
|
22 |
+
|
23 |
+
def _load_from_state_dict(
|
24 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
25 |
+
):
|
26 |
+
version = local_metadata.get("version", None)
|
27 |
+
if version is None or version < 2:
|
28 |
+
# Do not warn if train from scratch
|
29 |
+
scratch = True
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
for k in list(state_dict.keys()):
|
32 |
+
newk = k
|
33 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
34 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
35 |
+
# logger.debug(f"{k} ==> {newk}")
|
36 |
+
if newk != k:
|
37 |
+
state_dict[newk] = state_dict[k]
|
38 |
+
del state_dict[k]
|
39 |
+
scratch = False
|
40 |
+
|
41 |
+
if not scratch:
|
42 |
+
logger.warning(
|
43 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
44 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
45 |
+
)
|
46 |
+
|
47 |
+
@configurable
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
input_shape: Dict[str, ShapeSpec],
|
51 |
+
*,
|
52 |
+
num_classes: int,
|
53 |
+
pixel_decoder: nn.Module,
|
54 |
+
loss_weight: float = 1.0,
|
55 |
+
ignore_value: int = -1,
|
56 |
+
# extra parameters
|
57 |
+
transformer_predictor: nn.Module,
|
58 |
+
transformer_in_feature: str,
|
59 |
+
):
|
60 |
+
"""
|
61 |
+
NOTE: this interface is experimental.
|
62 |
+
Args:
|
63 |
+
input_shape: shapes (channels and stride) of the input features
|
64 |
+
num_classes: number of classes to predict
|
65 |
+
pixel_decoder: the pixel decoder module
|
66 |
+
loss_weight: loss weight
|
67 |
+
ignore_value: category id to be ignored during training.
|
68 |
+
transformer_predictor: the transformer decoder that makes prediction
|
69 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
70 |
+
"""
|
71 |
+
super().__init__()
|
72 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
73 |
+
self.in_features = [k for k, v in input_shape]
|
74 |
+
feature_strides = [v.stride for k, v in input_shape]
|
75 |
+
feature_channels = [v.channels for k, v in input_shape]
|
76 |
+
|
77 |
+
self.ignore_value = ignore_value
|
78 |
+
self.common_stride = 4
|
79 |
+
self.loss_weight = loss_weight
|
80 |
+
|
81 |
+
self.pixel_decoder = pixel_decoder
|
82 |
+
self.predictor = transformer_predictor
|
83 |
+
self.transformer_in_feature = transformer_in_feature
|
84 |
+
|
85 |
+
self.num_classes = num_classes
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
89 |
+
# figure out in_channels to transformer predictor
|
90 |
+
if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder":
|
91 |
+
transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
92 |
+
elif cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "pixel_embedding":
|
93 |
+
transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
94 |
+
elif cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "multi_scale_pixel_decoder": # for maskformer2
|
95 |
+
transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
96 |
+
else:
|
97 |
+
transformer_predictor_in_channels = input_shape[cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE].channels
|
98 |
+
|
99 |
+
return {
|
100 |
+
"input_shape": {
|
101 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
102 |
+
},
|
103 |
+
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
104 |
+
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
105 |
+
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
|
106 |
+
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
|
107 |
+
"transformer_in_feature": cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE,
|
108 |
+
"transformer_predictor": build_transformer_decoder(
|
109 |
+
cfg,
|
110 |
+
transformer_predictor_in_channels,
|
111 |
+
mask_classification=True,
|
112 |
+
),
|
113 |
+
}
|
114 |
+
|
115 |
+
def forward(self, features, mask=None):
|
116 |
+
return self.layers(features, mask)
|
117 |
+
|
118 |
+
def layers(self, features, mask=None):
|
119 |
+
mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features)
|
120 |
+
if self.transformer_in_feature == "multi_scale_pixel_decoder":
|
121 |
+
# TODO: pass object mask prediction to this function
|
122 |
+
predictions = self.predictor(multi_scale_features, mask_features, mask)
|
123 |
+
else:
|
124 |
+
if self.transformer_in_feature == "transformer_encoder":
|
125 |
+
assert (
|
126 |
+
transformer_encoder_features is not None
|
127 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
128 |
+
predictions = self.predictor(transformer_encoder_features, mask_features, mask)
|
129 |
+
elif self.transformer_in_feature == "pixel_embedding":
|
130 |
+
predictions = self.predictor(mask_features, mask_features, mask)
|
131 |
+
else:
|
132 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask)
|
133 |
+
return predictions
|
mask2former/modeling/meta_arch/per_pixel_baseline.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import fvcore.nn.weight_init as weight_init
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from detectron2.config import configurable
|
10 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
11 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
12 |
+
|
13 |
+
from ..transformer_decoder.maskformer_transformer_decoder import StandardTransformerDecoder
|
14 |
+
from ..pixel_decoder.fpn import build_pixel_decoder
|
15 |
+
|
16 |
+
|
17 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
18 |
+
class PerPixelBaselineHead(nn.Module):
|
19 |
+
|
20 |
+
_version = 2
|
21 |
+
|
22 |
+
def _load_from_state_dict(
|
23 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
24 |
+
):
|
25 |
+
version = local_metadata.get("version", None)
|
26 |
+
if version is None or version < 2:
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
# Do not warn if train from scratch
|
29 |
+
scratch = True
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
for k in list(state_dict.keys()):
|
32 |
+
newk = k
|
33 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
34 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
35 |
+
# logger.warning(f"{k} ==> {newk}")
|
36 |
+
if newk != k:
|
37 |
+
state_dict[newk] = state_dict[k]
|
38 |
+
del state_dict[k]
|
39 |
+
scratch = False
|
40 |
+
|
41 |
+
if not scratch:
|
42 |
+
logger.warning(
|
43 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
44 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
45 |
+
)
|
46 |
+
|
47 |
+
@configurable
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
input_shape: Dict[str, ShapeSpec],
|
51 |
+
*,
|
52 |
+
num_classes: int,
|
53 |
+
pixel_decoder: nn.Module,
|
54 |
+
loss_weight: float = 1.0,
|
55 |
+
ignore_value: int = -1,
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
NOTE: this interface is experimental.
|
59 |
+
Args:
|
60 |
+
input_shape: shapes (channels and stride) of the input features
|
61 |
+
num_classes: number of classes to predict
|
62 |
+
pixel_decoder: the pixel decoder module
|
63 |
+
loss_weight: loss weight
|
64 |
+
ignore_value: category id to be ignored during training.
|
65 |
+
"""
|
66 |
+
super().__init__()
|
67 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
68 |
+
self.in_features = [k for k, v in input_shape]
|
69 |
+
feature_strides = [v.stride for k, v in input_shape]
|
70 |
+
feature_channels = [v.channels for k, v in input_shape]
|
71 |
+
|
72 |
+
self.ignore_value = ignore_value
|
73 |
+
self.common_stride = 4
|
74 |
+
self.loss_weight = loss_weight
|
75 |
+
|
76 |
+
self.pixel_decoder = pixel_decoder
|
77 |
+
self.predictor = Conv2d(
|
78 |
+
self.pixel_decoder.mask_dim, num_classes, kernel_size=1, stride=1, padding=0
|
79 |
+
)
|
80 |
+
weight_init.c2_msra_fill(self.predictor)
|
81 |
+
|
82 |
+
@classmethod
|
83 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
84 |
+
return {
|
85 |
+
"input_shape": {
|
86 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
87 |
+
},
|
88 |
+
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
89 |
+
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
90 |
+
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
|
91 |
+
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
|
92 |
+
}
|
93 |
+
|
94 |
+
def forward(self, features, targets=None):
|
95 |
+
"""
|
96 |
+
Returns:
|
97 |
+
In training, returns (None, dict of losses)
|
98 |
+
In inference, returns (CxHxW logits, {})
|
99 |
+
"""
|
100 |
+
x = self.layers(features)
|
101 |
+
if self.training:
|
102 |
+
return None, self.losses(x, targets)
|
103 |
+
else:
|
104 |
+
x = F.interpolate(
|
105 |
+
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
106 |
+
)
|
107 |
+
return x, {}
|
108 |
+
|
109 |
+
def layers(self, features):
|
110 |
+
x, _, _ = self.pixel_decoder.forward_features(features)
|
111 |
+
x = self.predictor(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
def losses(self, predictions, targets):
|
115 |
+
predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163
|
116 |
+
predictions = F.interpolate(
|
117 |
+
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
118 |
+
)
|
119 |
+
loss = F.cross_entropy(
|
120 |
+
predictions, targets, reduction="mean", ignore_index=self.ignore_value
|
121 |
+
)
|
122 |
+
losses = {"loss_sem_seg": loss * self.loss_weight}
|
123 |
+
return losses
|
124 |
+
|
125 |
+
|
126 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
127 |
+
class PerPixelBaselinePlusHead(PerPixelBaselineHead):
|
128 |
+
def _load_from_state_dict(
|
129 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
130 |
+
):
|
131 |
+
version = local_metadata.get("version", None)
|
132 |
+
if version is None or version < 2:
|
133 |
+
# Do not warn if train from scratch
|
134 |
+
scratch = True
|
135 |
+
logger = logging.getLogger(__name__)
|
136 |
+
for k in list(state_dict.keys()):
|
137 |
+
newk = k
|
138 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
139 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
140 |
+
logger.debug(f"{k} ==> {newk}")
|
141 |
+
if newk != k:
|
142 |
+
state_dict[newk] = state_dict[k]
|
143 |
+
del state_dict[k]
|
144 |
+
scratch = False
|
145 |
+
|
146 |
+
if not scratch:
|
147 |
+
logger.warning(
|
148 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
149 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
150 |
+
)
|
151 |
+
|
152 |
+
@configurable
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
input_shape: Dict[str, ShapeSpec],
|
156 |
+
*,
|
157 |
+
# extra parameters
|
158 |
+
transformer_predictor: nn.Module,
|
159 |
+
transformer_in_feature: str,
|
160 |
+
deep_supervision: bool,
|
161 |
+
# inherit parameters
|
162 |
+
num_classes: int,
|
163 |
+
pixel_decoder: nn.Module,
|
164 |
+
loss_weight: float = 1.0,
|
165 |
+
ignore_value: int = -1,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
NOTE: this interface is experimental.
|
169 |
+
Args:
|
170 |
+
input_shape: shapes (channels and stride) of the input features
|
171 |
+
transformer_predictor: the transformer decoder that makes prediction
|
172 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
173 |
+
deep_supervision: whether or not to add supervision to the output of
|
174 |
+
every transformer decoder layer
|
175 |
+
num_classes: number of classes to predict
|
176 |
+
pixel_decoder: the pixel decoder module
|
177 |
+
loss_weight: loss weight
|
178 |
+
ignore_value: category id to be ignored during training.
|
179 |
+
"""
|
180 |
+
super().__init__(
|
181 |
+
input_shape,
|
182 |
+
num_classes=num_classes,
|
183 |
+
pixel_decoder=pixel_decoder,
|
184 |
+
loss_weight=loss_weight,
|
185 |
+
ignore_value=ignore_value,
|
186 |
+
)
|
187 |
+
|
188 |
+
del self.predictor
|
189 |
+
|
190 |
+
self.predictor = transformer_predictor
|
191 |
+
self.transformer_in_feature = transformer_in_feature
|
192 |
+
self.deep_supervision = deep_supervision
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
196 |
+
ret = super().from_config(cfg, input_shape)
|
197 |
+
ret["transformer_in_feature"] = cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE
|
198 |
+
if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder":
|
199 |
+
in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
200 |
+
else:
|
201 |
+
in_channels = input_shape[ret["transformer_in_feature"]].channels
|
202 |
+
ret["transformer_predictor"] = StandardTransformerDecoder(
|
203 |
+
cfg, in_channels, mask_classification=False
|
204 |
+
)
|
205 |
+
ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
206 |
+
return ret
|
207 |
+
|
208 |
+
def forward(self, features, targets=None):
|
209 |
+
"""
|
210 |
+
Returns:
|
211 |
+
In training, returns (None, dict of losses)
|
212 |
+
In inference, returns (CxHxW logits, {})
|
213 |
+
"""
|
214 |
+
x, aux_outputs = self.layers(features)
|
215 |
+
if self.training:
|
216 |
+
if self.deep_supervision:
|
217 |
+
losses = self.losses(x, targets)
|
218 |
+
for i, aux_output in enumerate(aux_outputs):
|
219 |
+
losses["loss_sem_seg" + f"_{i}"] = self.losses(
|
220 |
+
aux_output["pred_masks"], targets
|
221 |
+
)["loss_sem_seg"]
|
222 |
+
return None, losses
|
223 |
+
else:
|
224 |
+
return None, self.losses(x, targets)
|
225 |
+
else:
|
226 |
+
x = F.interpolate(
|
227 |
+
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
228 |
+
)
|
229 |
+
return x, {}
|
230 |
+
|
231 |
+
def layers(self, features):
|
232 |
+
mask_features, transformer_encoder_features, _ = self.pixel_decoder.forward_features(features)
|
233 |
+
if self.transformer_in_feature == "transformer_encoder":
|
234 |
+
assert (
|
235 |
+
transformer_encoder_features is not None
|
236 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
237 |
+
predictions = self.predictor(transformer_encoder_features, mask_features)
|
238 |
+
else:
|
239 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features)
|
240 |
+
if self.deep_supervision:
|
241 |
+
return predictions["pred_masks"], predictions["aux_outputs"]
|
242 |
+
else:
|
243 |
+
return predictions["pred_masks"], None
|
mask2former/modeling/pixel_decoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
mask2former/modeling/pixel_decoder/fpn.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
|
11 |
+
from torch.cuda.amp import autocast
|
12 |
+
|
13 |
+
from detectron2.config import configurable
|
14 |
+
from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm
|
15 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
16 |
+
|
17 |
+
from ..transformer_decoder.position_encoding import PositionEmbeddingSine
|
18 |
+
from ..transformer_decoder.transformer import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn
|
19 |
+
|
20 |
+
|
21 |
+
def build_pixel_decoder(cfg, input_shape):
|
22 |
+
"""
|
23 |
+
Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
|
24 |
+
"""
|
25 |
+
name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME
|
26 |
+
model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
|
27 |
+
forward_features = getattr(model, "forward_features", None)
|
28 |
+
if not callable(forward_features):
|
29 |
+
raise ValueError(
|
30 |
+
"Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
|
31 |
+
f"Please implement forward_features for {name} to only return mask features."
|
32 |
+
)
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
# This is a modified FPN decoder.
|
37 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
38 |
+
class BasePixelDecoder(nn.Module):
|
39 |
+
@configurable
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
input_shape: Dict[str, ShapeSpec],
|
43 |
+
*,
|
44 |
+
conv_dim: int,
|
45 |
+
mask_dim: int,
|
46 |
+
norm: Optional[Union[str, Callable]] = None,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
NOTE: this interface is experimental.
|
50 |
+
Args:
|
51 |
+
input_shape: shapes (channels and stride) of the input features
|
52 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
53 |
+
mask_dim: number of output channels for the final conv layer.
|
54 |
+
norm (str or callable): normalization for all conv layers
|
55 |
+
"""
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
59 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
60 |
+
feature_channels = [v.channels for k, v in input_shape]
|
61 |
+
|
62 |
+
lateral_convs = []
|
63 |
+
output_convs = []
|
64 |
+
|
65 |
+
use_bias = norm == ""
|
66 |
+
for idx, in_channels in enumerate(feature_channels):
|
67 |
+
if idx == len(self.in_features) - 1:
|
68 |
+
output_norm = get_norm(norm, conv_dim)
|
69 |
+
output_conv = Conv2d(
|
70 |
+
in_channels,
|
71 |
+
conv_dim,
|
72 |
+
kernel_size=3,
|
73 |
+
stride=1,
|
74 |
+
padding=1,
|
75 |
+
bias=use_bias,
|
76 |
+
norm=output_norm,
|
77 |
+
activation=F.relu,
|
78 |
+
)
|
79 |
+
weight_init.c2_xavier_fill(output_conv)
|
80 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
81 |
+
|
82 |
+
lateral_convs.append(None)
|
83 |
+
output_convs.append(output_conv)
|
84 |
+
else:
|
85 |
+
lateral_norm = get_norm(norm, conv_dim)
|
86 |
+
output_norm = get_norm(norm, conv_dim)
|
87 |
+
|
88 |
+
lateral_conv = Conv2d(
|
89 |
+
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
|
90 |
+
)
|
91 |
+
output_conv = Conv2d(
|
92 |
+
conv_dim,
|
93 |
+
conv_dim,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1,
|
97 |
+
bias=use_bias,
|
98 |
+
norm=output_norm,
|
99 |
+
activation=F.relu,
|
100 |
+
)
|
101 |
+
weight_init.c2_xavier_fill(lateral_conv)
|
102 |
+
weight_init.c2_xavier_fill(output_conv)
|
103 |
+
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
|
104 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
105 |
+
|
106 |
+
lateral_convs.append(lateral_conv)
|
107 |
+
output_convs.append(output_conv)
|
108 |
+
# Place convs into top-down order (from low to high resolution)
|
109 |
+
# to make the top-down computation in forward clearer.
|
110 |
+
self.lateral_convs = lateral_convs[::-1]
|
111 |
+
self.output_convs = output_convs[::-1]
|
112 |
+
|
113 |
+
self.mask_dim = mask_dim
|
114 |
+
self.mask_features = Conv2d(
|
115 |
+
conv_dim,
|
116 |
+
mask_dim,
|
117 |
+
kernel_size=3,
|
118 |
+
stride=1,
|
119 |
+
padding=1,
|
120 |
+
)
|
121 |
+
weight_init.c2_xavier_fill(self.mask_features)
|
122 |
+
|
123 |
+
self.maskformer_num_feature_levels = 3 # always use 3 scales
|
124 |
+
|
125 |
+
@classmethod
|
126 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
127 |
+
ret = {}
|
128 |
+
ret["input_shape"] = {
|
129 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
130 |
+
}
|
131 |
+
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
132 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
133 |
+
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
|
134 |
+
return ret
|
135 |
+
|
136 |
+
def forward_features(self, features):
|
137 |
+
multi_scale_features = []
|
138 |
+
num_cur_levels = 0
|
139 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
140 |
+
for idx, f in enumerate(self.in_features[::-1]):
|
141 |
+
x = features[f]
|
142 |
+
lateral_conv = self.lateral_convs[idx]
|
143 |
+
output_conv = self.output_convs[idx]
|
144 |
+
if lateral_conv is None:
|
145 |
+
y = output_conv(x)
|
146 |
+
else:
|
147 |
+
cur_fpn = lateral_conv(x)
|
148 |
+
# Following FPN implementation, we use nearest upsampling here
|
149 |
+
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
|
150 |
+
y = output_conv(y)
|
151 |
+
if num_cur_levels < self.maskformer_num_feature_levels:
|
152 |
+
multi_scale_features.append(y)
|
153 |
+
num_cur_levels += 1
|
154 |
+
return self.mask_features(y), None, multi_scale_features
|
155 |
+
|
156 |
+
def forward(self, features, targets=None):
|
157 |
+
logger = logging.getLogger(__name__)
|
158 |
+
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
|
159 |
+
return self.forward_features(features)
|
160 |
+
|
161 |
+
|
162 |
+
class TransformerEncoderOnly(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
d_model=512,
|
166 |
+
nhead=8,
|
167 |
+
num_encoder_layers=6,
|
168 |
+
dim_feedforward=2048,
|
169 |
+
dropout=0.1,
|
170 |
+
activation="relu",
|
171 |
+
normalize_before=False,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
encoder_layer = TransformerEncoderLayer(
|
176 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
177 |
+
)
|
178 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
179 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
180 |
+
|
181 |
+
self._reset_parameters()
|
182 |
+
|
183 |
+
self.d_model = d_model
|
184 |
+
self.nhead = nhead
|
185 |
+
|
186 |
+
def _reset_parameters(self):
|
187 |
+
for p in self.parameters():
|
188 |
+
if p.dim() > 1:
|
189 |
+
nn.init.xavier_uniform_(p)
|
190 |
+
|
191 |
+
def forward(self, src, mask, pos_embed):
|
192 |
+
# flatten NxCxHxW to HWxNxC
|
193 |
+
bs, c, h, w = src.shape
|
194 |
+
src = src.flatten(2).permute(2, 0, 1)
|
195 |
+
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
|
196 |
+
if mask is not None:
|
197 |
+
mask = mask.flatten(1)
|
198 |
+
|
199 |
+
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
200 |
+
return memory.permute(1, 2, 0).view(bs, c, h, w)
|
201 |
+
|
202 |
+
|
203 |
+
# This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map.
|
204 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
205 |
+
class TransformerEncoderPixelDecoder(BasePixelDecoder):
|
206 |
+
@configurable
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
input_shape: Dict[str, ShapeSpec],
|
210 |
+
*,
|
211 |
+
transformer_dropout: float,
|
212 |
+
transformer_nheads: int,
|
213 |
+
transformer_dim_feedforward: int,
|
214 |
+
transformer_enc_layers: int,
|
215 |
+
transformer_pre_norm: bool,
|
216 |
+
conv_dim: int,
|
217 |
+
mask_dim: int,
|
218 |
+
norm: Optional[Union[str, Callable]] = None,
|
219 |
+
):
|
220 |
+
"""
|
221 |
+
NOTE: this interface is experimental.
|
222 |
+
Args:
|
223 |
+
input_shape: shapes (channels and stride) of the input features
|
224 |
+
transformer_dropout: dropout probability in transformer
|
225 |
+
transformer_nheads: number of heads in transformer
|
226 |
+
transformer_dim_feedforward: dimension of feedforward network
|
227 |
+
transformer_enc_layers: number of transformer encoder layers
|
228 |
+
transformer_pre_norm: whether to use pre-layernorm or not
|
229 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
230 |
+
mask_dim: number of output channels for the final conv layer.
|
231 |
+
norm (str or callable): normalization for all conv layers
|
232 |
+
"""
|
233 |
+
super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm)
|
234 |
+
|
235 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
236 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
237 |
+
feature_strides = [v.stride for k, v in input_shape]
|
238 |
+
feature_channels = [v.channels for k, v in input_shape]
|
239 |
+
|
240 |
+
in_channels = feature_channels[len(self.in_features) - 1]
|
241 |
+
self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
|
242 |
+
weight_init.c2_xavier_fill(self.input_proj)
|
243 |
+
self.transformer = TransformerEncoderOnly(
|
244 |
+
d_model=conv_dim,
|
245 |
+
dropout=transformer_dropout,
|
246 |
+
nhead=transformer_nheads,
|
247 |
+
dim_feedforward=transformer_dim_feedforward,
|
248 |
+
num_encoder_layers=transformer_enc_layers,
|
249 |
+
normalize_before=transformer_pre_norm,
|
250 |
+
)
|
251 |
+
N_steps = conv_dim // 2
|
252 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
253 |
+
|
254 |
+
# update layer
|
255 |
+
use_bias = norm == ""
|
256 |
+
output_norm = get_norm(norm, conv_dim)
|
257 |
+
output_conv = Conv2d(
|
258 |
+
conv_dim,
|
259 |
+
conv_dim,
|
260 |
+
kernel_size=3,
|
261 |
+
stride=1,
|
262 |
+
padding=1,
|
263 |
+
bias=use_bias,
|
264 |
+
norm=output_norm,
|
265 |
+
activation=F.relu,
|
266 |
+
)
|
267 |
+
weight_init.c2_xavier_fill(output_conv)
|
268 |
+
delattr(self, "layer_{}".format(len(self.in_features)))
|
269 |
+
self.add_module("layer_{}".format(len(self.in_features)), output_conv)
|
270 |
+
self.output_convs[0] = output_conv
|
271 |
+
|
272 |
+
@classmethod
|
273 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
274 |
+
ret = super().from_config(cfg, input_shape)
|
275 |
+
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
276 |
+
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
277 |
+
ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
278 |
+
ret[
|
279 |
+
"transformer_enc_layers"
|
280 |
+
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
|
281 |
+
ret["transformer_pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
282 |
+
return ret
|
283 |
+
|
284 |
+
def forward_features(self, features):
|
285 |
+
multi_scale_features = []
|
286 |
+
num_cur_levels = 0
|
287 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
288 |
+
for idx, f in enumerate(self.in_features[::-1]):
|
289 |
+
x = features[f]
|
290 |
+
lateral_conv = self.lateral_convs[idx]
|
291 |
+
output_conv = self.output_convs[idx]
|
292 |
+
if lateral_conv is None:
|
293 |
+
transformer = self.input_proj(x)
|
294 |
+
pos = self.pe_layer(x)
|
295 |
+
transformer = self.transformer(transformer, None, pos)
|
296 |
+
y = output_conv(transformer)
|
297 |
+
# save intermediate feature as input to Transformer decoder
|
298 |
+
transformer_encoder_features = transformer
|
299 |
+
else:
|
300 |
+
cur_fpn = lateral_conv(x)
|
301 |
+
# Following FPN implementation, we use nearest upsampling here
|
302 |
+
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
|
303 |
+
y = output_conv(y)
|
304 |
+
if num_cur_levels < self.maskformer_num_feature_levels:
|
305 |
+
multi_scale_features.append(y)
|
306 |
+
num_cur_levels += 1
|
307 |
+
return self.mask_features(y), transformer_encoder_features, multi_scale_features
|
308 |
+
|
309 |
+
def forward(self, features, targets=None):
|
310 |
+
logger = logging.getLogger(__name__)
|
311 |
+
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
|
312 |
+
return self.forward_features(features)
|
mask2former/modeling/pixel_decoder/msdeformattn.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
|
11 |
+
from torch.cuda.amp import autocast
|
12 |
+
|
13 |
+
from detectron2.config import configurable
|
14 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
15 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
16 |
+
|
17 |
+
from ..transformer_decoder.position_encoding import PositionEmbeddingSine
|
18 |
+
from ..transformer_decoder.transformer import _get_clones, _get_activation_fn
|
19 |
+
from .ops.modules import MSDeformAttn
|
20 |
+
|
21 |
+
|
22 |
+
# MSDeformAttn Transformer encoder in deformable detr
|
23 |
+
class MSDeformAttnTransformerEncoderOnly(nn.Module):
|
24 |
+
def __init__(self, d_model=256, nhead=8,
|
25 |
+
num_encoder_layers=6, dim_feedforward=1024, dropout=0.1,
|
26 |
+
activation="relu",
|
27 |
+
num_feature_levels=4, enc_n_points=4,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.d_model = d_model
|
32 |
+
self.nhead = nhead
|
33 |
+
|
34 |
+
encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model, dim_feedforward,
|
35 |
+
dropout, activation,
|
36 |
+
num_feature_levels, nhead, enc_n_points)
|
37 |
+
self.encoder = MSDeformAttnTransformerEncoder(encoder_layer, num_encoder_layers)
|
38 |
+
|
39 |
+
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
|
40 |
+
|
41 |
+
self._reset_parameters()
|
42 |
+
|
43 |
+
def _reset_parameters(self):
|
44 |
+
for p in self.parameters():
|
45 |
+
if p.dim() > 1:
|
46 |
+
nn.init.xavier_uniform_(p)
|
47 |
+
for m in self.modules():
|
48 |
+
if isinstance(m, MSDeformAttn):
|
49 |
+
m._reset_parameters()
|
50 |
+
normal_(self.level_embed)
|
51 |
+
|
52 |
+
def get_valid_ratio(self, mask):
|
53 |
+
_, H, W = mask.shape
|
54 |
+
valid_H = torch.sum(~mask[:, :, 0], 1)
|
55 |
+
valid_W = torch.sum(~mask[:, 0, :], 1)
|
56 |
+
valid_ratio_h = valid_H.float() / H
|
57 |
+
valid_ratio_w = valid_W.float() / W
|
58 |
+
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
59 |
+
return valid_ratio
|
60 |
+
|
61 |
+
def forward(self, srcs, pos_embeds):
|
62 |
+
masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs]
|
63 |
+
# prepare input for encoder
|
64 |
+
src_flatten = []
|
65 |
+
mask_flatten = []
|
66 |
+
lvl_pos_embed_flatten = []
|
67 |
+
spatial_shapes = []
|
68 |
+
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
69 |
+
bs, c, h, w = src.shape
|
70 |
+
spatial_shape = (h, w)
|
71 |
+
spatial_shapes.append(spatial_shape)
|
72 |
+
src = src.flatten(2).transpose(1, 2)
|
73 |
+
mask = mask.flatten(1)
|
74 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2)
|
75 |
+
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
76 |
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
77 |
+
src_flatten.append(src)
|
78 |
+
mask_flatten.append(mask)
|
79 |
+
src_flatten = torch.cat(src_flatten, 1)
|
80 |
+
mask_flatten = torch.cat(mask_flatten, 1)
|
81 |
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
|
82 |
+
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
|
83 |
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
84 |
+
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
85 |
+
|
86 |
+
# encoder
|
87 |
+
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)
|
88 |
+
|
89 |
+
return memory, spatial_shapes, level_start_index
|
90 |
+
|
91 |
+
|
92 |
+
class MSDeformAttnTransformerEncoderLayer(nn.Module):
|
93 |
+
def __init__(self,
|
94 |
+
d_model=256, d_ffn=1024,
|
95 |
+
dropout=0.1, activation="relu",
|
96 |
+
n_levels=4, n_heads=8, n_points=4):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
# self attention
|
100 |
+
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
101 |
+
self.dropout1 = nn.Dropout(dropout)
|
102 |
+
self.norm1 = nn.LayerNorm(d_model)
|
103 |
+
|
104 |
+
# ffn
|
105 |
+
self.linear1 = nn.Linear(d_model, d_ffn)
|
106 |
+
self.activation = _get_activation_fn(activation)
|
107 |
+
self.dropout2 = nn.Dropout(dropout)
|
108 |
+
self.linear2 = nn.Linear(d_ffn, d_model)
|
109 |
+
self.dropout3 = nn.Dropout(dropout)
|
110 |
+
self.norm2 = nn.LayerNorm(d_model)
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def with_pos_embed(tensor, pos):
|
114 |
+
return tensor if pos is None else tensor + pos
|
115 |
+
|
116 |
+
def forward_ffn(self, src):
|
117 |
+
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
118 |
+
src = src + self.dropout3(src2)
|
119 |
+
src = self.norm2(src)
|
120 |
+
return src
|
121 |
+
|
122 |
+
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
|
123 |
+
# self attention
|
124 |
+
src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)
|
125 |
+
src = src + self.dropout1(src2)
|
126 |
+
src = self.norm1(src)
|
127 |
+
|
128 |
+
# ffn
|
129 |
+
src = self.forward_ffn(src)
|
130 |
+
|
131 |
+
return src
|
132 |
+
|
133 |
+
|
134 |
+
class MSDeformAttnTransformerEncoder(nn.Module):
|
135 |
+
def __init__(self, encoder_layer, num_layers):
|
136 |
+
super().__init__()
|
137 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
138 |
+
self.num_layers = num_layers
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def get_reference_points(spatial_shapes, valid_ratios, device):
|
142 |
+
reference_points_list = []
|
143 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
144 |
+
|
145 |
+
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
146 |
+
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
|
147 |
+
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
148 |
+
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
149 |
+
ref = torch.stack((ref_x, ref_y), -1)
|
150 |
+
reference_points_list.append(ref)
|
151 |
+
reference_points = torch.cat(reference_points_list, 1)
|
152 |
+
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
153 |
+
return reference_points
|
154 |
+
|
155 |
+
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
|
156 |
+
output = src
|
157 |
+
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
|
158 |
+
for _, layer in enumerate(self.layers):
|
159 |
+
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
|
160 |
+
|
161 |
+
return output
|
162 |
+
|
163 |
+
|
164 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
165 |
+
class MSDeformAttnPixelDecoder(nn.Module):
|
166 |
+
@configurable
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
input_shape: Dict[str, ShapeSpec],
|
170 |
+
*,
|
171 |
+
transformer_dropout: float,
|
172 |
+
transformer_nheads: int,
|
173 |
+
transformer_dim_feedforward: int,
|
174 |
+
transformer_enc_layers: int,
|
175 |
+
conv_dim: int,
|
176 |
+
mask_dim: int,
|
177 |
+
norm: Optional[Union[str, Callable]] = None,
|
178 |
+
# deformable transformer encoder args
|
179 |
+
transformer_in_features: List[str],
|
180 |
+
common_stride: int,
|
181 |
+
):
|
182 |
+
"""
|
183 |
+
NOTE: this interface is experimental.
|
184 |
+
Args:
|
185 |
+
input_shape: shapes (channels and stride) of the input features
|
186 |
+
transformer_dropout: dropout probability in transformer
|
187 |
+
transformer_nheads: number of heads in transformer
|
188 |
+
transformer_dim_feedforward: dimension of feedforward network
|
189 |
+
transformer_enc_layers: number of transformer encoder layers
|
190 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
191 |
+
mask_dim: number of output channels for the final conv layer.
|
192 |
+
norm (str or callable): normalization for all conv layers
|
193 |
+
"""
|
194 |
+
super().__init__()
|
195 |
+
transformer_input_shape = {
|
196 |
+
k: v for k, v in input_shape.items() if k in transformer_in_features
|
197 |
+
}
|
198 |
+
|
199 |
+
# this is the input shape of pixel decoder
|
200 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
201 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
202 |
+
self.feature_strides = [v.stride for k, v in input_shape]
|
203 |
+
self.feature_channels = [v.channels for k, v in input_shape]
|
204 |
+
|
205 |
+
# this is the input shape of transformer encoder (could use less features than pixel decoder
|
206 |
+
transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride)
|
207 |
+
self.transformer_in_features = [k for k, v in transformer_input_shape] # starting from "res2" to "res5"
|
208 |
+
transformer_in_channels = [v.channels for k, v in transformer_input_shape]
|
209 |
+
self.transformer_feature_strides = [v.stride for k, v in transformer_input_shape] # to decide extra FPN layers
|
210 |
+
|
211 |
+
self.transformer_num_feature_levels = len(self.transformer_in_features)
|
212 |
+
if self.transformer_num_feature_levels > 1:
|
213 |
+
input_proj_list = []
|
214 |
+
# from low resolution to high resolution (res5 -> res2)
|
215 |
+
for in_channels in transformer_in_channels[::-1]:
|
216 |
+
input_proj_list.append(nn.Sequential(
|
217 |
+
nn.Conv2d(in_channels, conv_dim, kernel_size=1),
|
218 |
+
nn.GroupNorm(32, conv_dim),
|
219 |
+
))
|
220 |
+
self.input_proj = nn.ModuleList(input_proj_list)
|
221 |
+
else:
|
222 |
+
self.input_proj = nn.ModuleList([
|
223 |
+
nn.Sequential(
|
224 |
+
nn.Conv2d(transformer_in_channels[-1], conv_dim, kernel_size=1),
|
225 |
+
nn.GroupNorm(32, conv_dim),
|
226 |
+
)])
|
227 |
+
|
228 |
+
for proj in self.input_proj:
|
229 |
+
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
230 |
+
nn.init.constant_(proj[0].bias, 0)
|
231 |
+
|
232 |
+
self.transformer = MSDeformAttnTransformerEncoderOnly(
|
233 |
+
d_model=conv_dim,
|
234 |
+
dropout=transformer_dropout,
|
235 |
+
nhead=transformer_nheads,
|
236 |
+
dim_feedforward=transformer_dim_feedforward,
|
237 |
+
num_encoder_layers=transformer_enc_layers,
|
238 |
+
num_feature_levels=self.transformer_num_feature_levels,
|
239 |
+
)
|
240 |
+
N_steps = conv_dim // 2
|
241 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
242 |
+
|
243 |
+
self.mask_dim = mask_dim
|
244 |
+
# use 1x1 conv instead
|
245 |
+
self.mask_features = Conv2d(
|
246 |
+
conv_dim,
|
247 |
+
mask_dim,
|
248 |
+
kernel_size=1,
|
249 |
+
stride=1,
|
250 |
+
padding=0,
|
251 |
+
)
|
252 |
+
weight_init.c2_xavier_fill(self.mask_features)
|
253 |
+
|
254 |
+
self.maskformer_num_feature_levels = 3 # always use 3 scales
|
255 |
+
self.common_stride = common_stride
|
256 |
+
|
257 |
+
# extra fpn levels
|
258 |
+
stride = min(self.transformer_feature_strides)
|
259 |
+
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
|
260 |
+
|
261 |
+
lateral_convs = []
|
262 |
+
output_convs = []
|
263 |
+
|
264 |
+
use_bias = norm == ""
|
265 |
+
for idx, in_channels in enumerate(self.feature_channels[:self.num_fpn_levels]):
|
266 |
+
lateral_norm = get_norm(norm, conv_dim)
|
267 |
+
output_norm = get_norm(norm, conv_dim)
|
268 |
+
|
269 |
+
lateral_conv = Conv2d(
|
270 |
+
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
|
271 |
+
)
|
272 |
+
output_conv = Conv2d(
|
273 |
+
conv_dim,
|
274 |
+
conv_dim,
|
275 |
+
kernel_size=3,
|
276 |
+
stride=1,
|
277 |
+
padding=1,
|
278 |
+
bias=use_bias,
|
279 |
+
norm=output_norm,
|
280 |
+
activation=F.relu,
|
281 |
+
)
|
282 |
+
weight_init.c2_xavier_fill(lateral_conv)
|
283 |
+
weight_init.c2_xavier_fill(output_conv)
|
284 |
+
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
|
285 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
286 |
+
|
287 |
+
lateral_convs.append(lateral_conv)
|
288 |
+
output_convs.append(output_conv)
|
289 |
+
# Place convs into top-down order (from low to high resolution)
|
290 |
+
# to make the top-down computation in forward clearer.
|
291 |
+
self.lateral_convs = lateral_convs[::-1]
|
292 |
+
self.output_convs = output_convs[::-1]
|
293 |
+
|
294 |
+
@classmethod
|
295 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
296 |
+
ret = {}
|
297 |
+
ret["input_shape"] = {
|
298 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
299 |
+
}
|
300 |
+
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
301 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
302 |
+
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
|
303 |
+
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
304 |
+
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
305 |
+
# ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
306 |
+
ret["transformer_dim_feedforward"] = 1024 # use 1024 for deformable transformer encoder
|
307 |
+
ret[
|
308 |
+
"transformer_enc_layers"
|
309 |
+
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
|
310 |
+
ret["transformer_in_features"] = cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES
|
311 |
+
ret["common_stride"] = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE
|
312 |
+
return ret
|
313 |
+
|
314 |
+
@autocast(enabled=False)
|
315 |
+
def forward_features(self, features):
|
316 |
+
srcs = []
|
317 |
+
pos = []
|
318 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
319 |
+
for idx, f in enumerate(self.transformer_in_features[::-1]):
|
320 |
+
x = features[f].float() # deformable detr does not support half precision
|
321 |
+
srcs.append(self.input_proj[idx](x))
|
322 |
+
pos.append(self.pe_layer(x))
|
323 |
+
|
324 |
+
y, spatial_shapes, level_start_index = self.transformer(srcs, pos)
|
325 |
+
bs = y.shape[0]
|
326 |
+
|
327 |
+
split_size_or_sections = [None] * self.transformer_num_feature_levels
|
328 |
+
for i in range(self.transformer_num_feature_levels):
|
329 |
+
if i < self.transformer_num_feature_levels - 1:
|
330 |
+
split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i]
|
331 |
+
else:
|
332 |
+
split_size_or_sections[i] = y.shape[1] - level_start_index[i]
|
333 |
+
y = torch.split(y, split_size_or_sections, dim=1)
|
334 |
+
|
335 |
+
out = []
|
336 |
+
multi_scale_features = []
|
337 |
+
num_cur_levels = 0
|
338 |
+
for i, z in enumerate(y):
|
339 |
+
out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1]))
|
340 |
+
|
341 |
+
# append `out` with extra FPN levels
|
342 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
343 |
+
for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]):
|
344 |
+
x = features[f].float()
|
345 |
+
lateral_conv = self.lateral_convs[idx]
|
346 |
+
output_conv = self.output_convs[idx]
|
347 |
+
cur_fpn = lateral_conv(x)
|
348 |
+
# Following FPN implementation, we use nearest upsampling here
|
349 |
+
y = cur_fpn + F.interpolate(out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False)
|
350 |
+
y = output_conv(y)
|
351 |
+
out.append(y)
|
352 |
+
|
353 |
+
for o in out:
|
354 |
+
if num_cur_levels < self.maskformer_num_feature_levels:
|
355 |
+
multi_scale_features.append(o)
|
356 |
+
num_cur_levels += 1
|
357 |
+
|
358 |
+
return self.mask_features(out[-1]), out[0], multi_scale_features
|
mask2former/modeling/pixel_decoder/ops/functions/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from .ms_deform_attn_func import MSDeformAttnFunction
|
13 |
+
|
mask2former/modeling/pixel_decoder/ops/functions/ms_deform_attn_func.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import print_function
|
14 |
+
from __future__ import division
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.autograd import Function
|
19 |
+
from torch.autograd.function import once_differentiable
|
20 |
+
|
21 |
+
try:
|
22 |
+
import MultiScaleDeformableAttention as MSDA
|
23 |
+
except ModuleNotFoundError as e:
|
24 |
+
info_string = (
|
25 |
+
"\n\nPlease compile MultiScaleDeformableAttention CUDA op with the following commands:\n"
|
26 |
+
"\t`cd mask2former/modeling/pixel_decoder/ops`\n"
|
27 |
+
"\t`sh make.sh`\n"
|
28 |
+
)
|
29 |
+
raise ModuleNotFoundError(info_string)
|
30 |
+
|
31 |
+
|
32 |
+
class MSDeformAttnFunction(Function):
|
33 |
+
@staticmethod
|
34 |
+
def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step):
|
35 |
+
ctx.im2col_step = im2col_step
|
36 |
+
output = MSDA.ms_deform_attn_forward(
|
37 |
+
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step)
|
38 |
+
ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights)
|
39 |
+
return output
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
@once_differentiable
|
43 |
+
def backward(ctx, grad_output):
|
44 |
+
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors
|
45 |
+
grad_value, grad_sampling_loc, grad_attn_weight = \
|
46 |
+
MSDA.ms_deform_attn_backward(
|
47 |
+
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step)
|
48 |
+
|
49 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
50 |
+
|
51 |
+
|
52 |
+
def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):
|
53 |
+
# for debug and test only,
|
54 |
+
# need to use cuda version instead
|
55 |
+
N_, S_, M_, D_ = value.shape
|
56 |
+
_, Lq_, M_, L_, P_, _ = sampling_locations.shape
|
57 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
58 |
+
sampling_grids = 2 * sampling_locations - 1
|
59 |
+
sampling_value_list = []
|
60 |
+
for lid_, (H_, W_) in enumerate(value_spatial_shapes):
|
61 |
+
# N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
|
62 |
+
value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_)
|
63 |
+
# N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
|
64 |
+
sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)
|
65 |
+
# N_*M_, D_, Lq_, P_
|
66 |
+
sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,
|
67 |
+
mode='bilinear', padding_mode='zeros', align_corners=False)
|
68 |
+
sampling_value_list.append(sampling_value_l_)
|
69 |
+
# (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)
|
70 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_)
|
71 |
+
output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_)
|
72 |
+
return output.transpose(1, 2).contiguous()
|
mask2former/modeling/pixel_decoder/ops/make.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
# ------------------------------------------------------------------------------------------------
|
3 |
+
# Deformable DETR
|
4 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------------------------------
|
7 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
# ------------------------------------------------------------------------------------------------
|
9 |
+
|
10 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
11 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
12 |
+
|
13 |
+
python setup.py build install
|
mask2former/modeling/pixel_decoder/ops/modules/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from .ms_deform_attn import MSDeformAttn
|
mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import print_function
|
14 |
+
from __future__ import division
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
import math
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch.nn.init import xavier_uniform_, constant_
|
23 |
+
|
24 |
+
from ..functions import MSDeformAttnFunction
|
25 |
+
from ..functions.ms_deform_attn_func import ms_deform_attn_core_pytorch
|
26 |
+
|
27 |
+
|
28 |
+
def _is_power_of_2(n):
|
29 |
+
if (not isinstance(n, int)) or (n < 0):
|
30 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
31 |
+
return (n & (n-1) == 0) and n != 0
|
32 |
+
|
33 |
+
|
34 |
+
class MSDeformAttn(nn.Module):
|
35 |
+
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
36 |
+
"""
|
37 |
+
Multi-Scale Deformable Attention Module
|
38 |
+
:param d_model hidden dimension
|
39 |
+
:param n_levels number of feature levels
|
40 |
+
:param n_heads number of attention heads
|
41 |
+
:param n_points number of sampling points per attention head per feature level
|
42 |
+
"""
|
43 |
+
super().__init__()
|
44 |
+
if d_model % n_heads != 0:
|
45 |
+
raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
|
46 |
+
_d_per_head = d_model // n_heads
|
47 |
+
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
|
48 |
+
if not _is_power_of_2(_d_per_head):
|
49 |
+
warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
|
50 |
+
"which is more efficient in our CUDA implementation.")
|
51 |
+
|
52 |
+
self.im2col_step = 128
|
53 |
+
|
54 |
+
self.d_model = d_model
|
55 |
+
self.n_levels = n_levels
|
56 |
+
self.n_heads = n_heads
|
57 |
+
self.n_points = n_points
|
58 |
+
|
59 |
+
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
60 |
+
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
61 |
+
self.value_proj = nn.Linear(d_model, d_model)
|
62 |
+
self.output_proj = nn.Linear(d_model, d_model)
|
63 |
+
|
64 |
+
self._reset_parameters()
|
65 |
+
|
66 |
+
def _reset_parameters(self):
|
67 |
+
constant_(self.sampling_offsets.weight.data, 0.)
|
68 |
+
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
69 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
70 |
+
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
|
71 |
+
for i in range(self.n_points):
|
72 |
+
grid_init[:, :, i, :] *= i + 1
|
73 |
+
with torch.no_grad():
|
74 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
75 |
+
constant_(self.attention_weights.weight.data, 0.)
|
76 |
+
constant_(self.attention_weights.bias.data, 0.)
|
77 |
+
xavier_uniform_(self.value_proj.weight.data)
|
78 |
+
constant_(self.value_proj.bias.data, 0.)
|
79 |
+
xavier_uniform_(self.output_proj.weight.data)
|
80 |
+
constant_(self.output_proj.bias.data, 0.)
|
81 |
+
|
82 |
+
def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
|
83 |
+
"""
|
84 |
+
:param query (N, Length_{query}, C)
|
85 |
+
:param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
|
86 |
+
or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
|
87 |
+
:param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
|
88 |
+
:param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
89 |
+
:param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
|
90 |
+
:param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
|
91 |
+
|
92 |
+
:return output (N, Length_{query}, C)
|
93 |
+
"""
|
94 |
+
N, Len_q, _ = query.shape
|
95 |
+
N, Len_in, _ = input_flatten.shape
|
96 |
+
assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in
|
97 |
+
|
98 |
+
value = self.value_proj(input_flatten)
|
99 |
+
if input_padding_mask is not None:
|
100 |
+
value = value.masked_fill(input_padding_mask[..., None], float(0))
|
101 |
+
value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)
|
102 |
+
sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
103 |
+
attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)
|
104 |
+
attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)
|
105 |
+
# N, Len_q, n_heads, n_levels, n_points, 2
|
106 |
+
if reference_points.shape[-1] == 2:
|
107 |
+
offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
|
108 |
+
sampling_locations = reference_points[:, :, None, :, None, :] \
|
109 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
110 |
+
elif reference_points.shape[-1] == 4:
|
111 |
+
sampling_locations = reference_points[:, :, None, :, None, :2] \
|
112 |
+
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
113 |
+
else:
|
114 |
+
raise ValueError(
|
115 |
+
'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))
|
116 |
+
try:
|
117 |
+
output = MSDeformAttnFunction.apply(
|
118 |
+
value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
|
119 |
+
except:
|
120 |
+
# CPU
|
121 |
+
output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights)
|
122 |
+
# # For FLOPs calculation only
|
123 |
+
# output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights)
|
124 |
+
output = self.output_proj(output)
|
125 |
+
return output
|
mask2former/modeling/pixel_decoder/ops/setup.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
import os
|
13 |
+
import glob
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from torch.utils.cpp_extension import CUDA_HOME
|
18 |
+
from torch.utils.cpp_extension import CppExtension
|
19 |
+
from torch.utils.cpp_extension import CUDAExtension
|
20 |
+
|
21 |
+
from setuptools import find_packages
|
22 |
+
from setuptools import setup
|
23 |
+
|
24 |
+
requirements = ["torch", "torchvision"]
|
25 |
+
|
26 |
+
def get_extensions():
|
27 |
+
this_dir = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
extensions_dir = os.path.join(this_dir, "src")
|
29 |
+
|
30 |
+
main_file = glob.glob(os.path.join(extensions_dir, "*.cpp"))
|
31 |
+
source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp"))
|
32 |
+
source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu"))
|
33 |
+
|
34 |
+
sources = main_file + source_cpu
|
35 |
+
extension = CppExtension
|
36 |
+
extra_compile_args = {"cxx": []}
|
37 |
+
define_macros = []
|
38 |
+
|
39 |
+
# Force cuda since torch ask for a device, not if cuda is in fact available.
|
40 |
+
if (os.environ.get('FORCE_CUDA') or torch.cuda.is_available()) and CUDA_HOME is not None:
|
41 |
+
extension = CUDAExtension
|
42 |
+
sources += source_cuda
|
43 |
+
define_macros += [("WITH_CUDA", None)]
|
44 |
+
extra_compile_args["nvcc"] = [
|
45 |
+
"-DCUDA_HAS_FP16=1",
|
46 |
+
"-D__CUDA_NO_HALF_OPERATORS__",
|
47 |
+
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
48 |
+
"-D__CUDA_NO_HALF2_OPERATORS__",
|
49 |
+
]
|
50 |
+
else:
|
51 |
+
if CUDA_HOME is None:
|
52 |
+
raise NotImplementedError('CUDA_HOME is None. Please set environment variable CUDA_HOME.')
|
53 |
+
else:
|
54 |
+
raise NotImplementedError('No CUDA runtime is found. Please set FORCE_CUDA=1 or test it by running torch.cuda.is_available().')
|
55 |
+
|
56 |
+
sources = [os.path.join(extensions_dir, s) for s in sources]
|
57 |
+
include_dirs = [extensions_dir]
|
58 |
+
ext_modules = [
|
59 |
+
extension(
|
60 |
+
"MultiScaleDeformableAttention",
|
61 |
+
sources,
|
62 |
+
include_dirs=include_dirs,
|
63 |
+
define_macros=define_macros,
|
64 |
+
extra_compile_args=extra_compile_args,
|
65 |
+
)
|
66 |
+
]
|
67 |
+
return ext_modules
|
68 |
+
|
69 |
+
setup(
|
70 |
+
name="MultiScaleDeformableAttention",
|
71 |
+
version="1.0",
|
72 |
+
author="Weijie Su",
|
73 |
+
url="https://github.com/fundamentalvision/Deformable-DETR",
|
74 |
+
description="PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention",
|
75 |
+
packages=find_packages(exclude=("configs", "tests",)),
|
76 |
+
ext_modules=get_extensions(),
|
77 |
+
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
|
78 |
+
)
|
mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.cpp
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include <vector>
|
17 |
+
|
18 |
+
#include <ATen/ATen.h>
|
19 |
+
#include <ATen/cuda/CUDAContext.h>
|
20 |
+
|
21 |
+
|
22 |
+
at::Tensor
|
23 |
+
ms_deform_attn_cpu_forward(
|
24 |
+
const at::Tensor &value,
|
25 |
+
const at::Tensor &spatial_shapes,
|
26 |
+
const at::Tensor &level_start_index,
|
27 |
+
const at::Tensor &sampling_loc,
|
28 |
+
const at::Tensor &attn_weight,
|
29 |
+
const int im2col_step)
|
30 |
+
{
|
31 |
+
AT_ERROR("Not implement on cpu");
|
32 |
+
}
|
33 |
+
|
34 |
+
std::vector<at::Tensor>
|
35 |
+
ms_deform_attn_cpu_backward(
|
36 |
+
const at::Tensor &value,
|
37 |
+
const at::Tensor &spatial_shapes,
|
38 |
+
const at::Tensor &level_start_index,
|
39 |
+
const at::Tensor &sampling_loc,
|
40 |
+
const at::Tensor &attn_weight,
|
41 |
+
const at::Tensor &grad_output,
|
42 |
+
const int im2col_step)
|
43 |
+
{
|
44 |
+
AT_ERROR("Not implement on cpu");
|
45 |
+
}
|
46 |
+
|
mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#pragma once
|
17 |
+
#include <torch/extension.h>
|
18 |
+
|
19 |
+
at::Tensor
|
20 |
+
ms_deform_attn_cpu_forward(
|
21 |
+
const at::Tensor &value,
|
22 |
+
const at::Tensor &spatial_shapes,
|
23 |
+
const at::Tensor &level_start_index,
|
24 |
+
const at::Tensor &sampling_loc,
|
25 |
+
const at::Tensor &attn_weight,
|
26 |
+
const int im2col_step);
|
27 |
+
|
28 |
+
std::vector<at::Tensor>
|
29 |
+
ms_deform_attn_cpu_backward(
|
30 |
+
const at::Tensor &value,
|
31 |
+
const at::Tensor &spatial_shapes,
|
32 |
+
const at::Tensor &level_start_index,
|
33 |
+
const at::Tensor &sampling_loc,
|
34 |
+
const at::Tensor &attn_weight,
|
35 |
+
const at::Tensor &grad_output,
|
36 |
+
const int im2col_step);
|
37 |
+
|
38 |
+
|
mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.cu
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include <vector>
|
17 |
+
#include "cuda/ms_deform_im2col_cuda.cuh"
|
18 |
+
|
19 |
+
#include <ATen/ATen.h>
|
20 |
+
#include <ATen/cuda/CUDAContext.h>
|
21 |
+
#include <cuda.h>
|
22 |
+
#include <cuda_runtime.h>
|
23 |
+
|
24 |
+
|
25 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
26 |
+
const at::Tensor &value,
|
27 |
+
const at::Tensor &spatial_shapes,
|
28 |
+
const at::Tensor &level_start_index,
|
29 |
+
const at::Tensor &sampling_loc,
|
30 |
+
const at::Tensor &attn_weight,
|
31 |
+
const int im2col_step)
|
32 |
+
{
|
33 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
34 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
35 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
36 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
37 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
38 |
+
|
39 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
40 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
41 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
42 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
43 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
44 |
+
|
45 |
+
const int batch = value.size(0);
|
46 |
+
const int spatial_size = value.size(1);
|
47 |
+
const int num_heads = value.size(2);
|
48 |
+
const int channels = value.size(3);
|
49 |
+
|
50 |
+
const int num_levels = spatial_shapes.size(0);
|
51 |
+
|
52 |
+
const int num_query = sampling_loc.size(1);
|
53 |
+
const int num_point = sampling_loc.size(4);
|
54 |
+
|
55 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
56 |
+
|
57 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
58 |
+
|
59 |
+
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
60 |
+
|
61 |
+
const int batch_n = im2col_step_;
|
62 |
+
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
63 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
64 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
65 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
66 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
67 |
+
{
|
68 |
+
auto columns = output_n.select(0, n);
|
69 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
70 |
+
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
71 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
72 |
+
spatial_shapes.data<int64_t>(),
|
73 |
+
level_start_index.data<int64_t>(),
|
74 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
75 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
76 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
77 |
+
columns.data<scalar_t>());
|
78 |
+
|
79 |
+
}));
|
80 |
+
}
|
81 |
+
|
82 |
+
output = output.view({batch, num_query, num_heads*channels});
|
83 |
+
|
84 |
+
return output;
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
89 |
+
const at::Tensor &value,
|
90 |
+
const at::Tensor &spatial_shapes,
|
91 |
+
const at::Tensor &level_start_index,
|
92 |
+
const at::Tensor &sampling_loc,
|
93 |
+
const at::Tensor &attn_weight,
|
94 |
+
const at::Tensor &grad_output,
|
95 |
+
const int im2col_step)
|
96 |
+
{
|
97 |
+
|
98 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
99 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
100 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
101 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
102 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
103 |
+
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
104 |
+
|
105 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
106 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
107 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
108 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
109 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
110 |
+
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
111 |
+
|
112 |
+
const int batch = value.size(0);
|
113 |
+
const int spatial_size = value.size(1);
|
114 |
+
const int num_heads = value.size(2);
|
115 |
+
const int channels = value.size(3);
|
116 |
+
|
117 |
+
const int num_levels = spatial_shapes.size(0);
|
118 |
+
|
119 |
+
const int num_query = sampling_loc.size(1);
|
120 |
+
const int num_point = sampling_loc.size(4);
|
121 |
+
|
122 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
123 |
+
|
124 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
125 |
+
|
126 |
+
auto grad_value = at::zeros_like(value);
|
127 |
+
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
128 |
+
auto grad_attn_weight = at::zeros_like(attn_weight);
|
129 |
+
|
130 |
+
const int batch_n = im2col_step_;
|
131 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
132 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
133 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
134 |
+
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
135 |
+
|
136 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
137 |
+
{
|
138 |
+
auto grad_output_g = grad_output_n.select(0, n);
|
139 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
140 |
+
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
141 |
+
grad_output_g.data<scalar_t>(),
|
142 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
143 |
+
spatial_shapes.data<int64_t>(),
|
144 |
+
level_start_index.data<int64_t>(),
|
145 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
146 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
147 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
148 |
+
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
149 |
+
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
150 |
+
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
151 |
+
|
152 |
+
}));
|
153 |
+
}
|
154 |
+
|
155 |
+
return {
|
156 |
+
grad_value, grad_sampling_loc, grad_attn_weight
|
157 |
+
};
|
158 |
+
}
|
mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#pragma once
|
17 |
+
#include <torch/extension.h>
|
18 |
+
|
19 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
20 |
+
const at::Tensor &value,
|
21 |
+
const at::Tensor &spatial_shapes,
|
22 |
+
const at::Tensor &level_start_index,
|
23 |
+
const at::Tensor &sampling_loc,
|
24 |
+
const at::Tensor &attn_weight,
|
25 |
+
const int im2col_step);
|
26 |
+
|
27 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
28 |
+
const at::Tensor &value,
|
29 |
+
const at::Tensor &spatial_shapes,
|
30 |
+
const at::Tensor &level_start_index,
|
31 |
+
const at::Tensor &sampling_loc,
|
32 |
+
const at::Tensor &attn_weight,
|
33 |
+
const at::Tensor &grad_output,
|
34 |
+
const int im2col_step);
|
35 |
+
|
mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_im2col_cuda.cuh
ADDED
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************
|
7 |
+
* Modified from DCN (https://github.com/msracver/Deformable-ConvNets)
|
8 |
+
* Copyright (c) 2018 Microsoft
|
9 |
+
**************************************************************************
|
10 |
+
*/
|
11 |
+
|
12 |
+
/*!
|
13 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
14 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <cstdio>
|
18 |
+
#include <algorithm>
|
19 |
+
#include <cstring>
|
20 |
+
|
21 |
+
#include <ATen/ATen.h>
|
22 |
+
#include <ATen/cuda/CUDAContext.h>
|
23 |
+
|
24 |
+
#include <THC/THCAtomics.cuh>
|
25 |
+
|
26 |
+
#define CUDA_KERNEL_LOOP(i, n) \
|
27 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
|
28 |
+
i < (n); \
|
29 |
+
i += blockDim.x * gridDim.x)
|
30 |
+
|
31 |
+
const int CUDA_NUM_THREADS = 1024;
|
32 |
+
inline int GET_BLOCKS(const int N, const int num_threads)
|
33 |
+
{
|
34 |
+
return (N + num_threads - 1) / num_threads;
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
template <typename scalar_t>
|
39 |
+
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
|
40 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
41 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c)
|
42 |
+
{
|
43 |
+
const int h_low = floor(h);
|
44 |
+
const int w_low = floor(w);
|
45 |
+
const int h_high = h_low + 1;
|
46 |
+
const int w_high = w_low + 1;
|
47 |
+
|
48 |
+
const scalar_t lh = h - h_low;
|
49 |
+
const scalar_t lw = w - w_low;
|
50 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
51 |
+
|
52 |
+
const int w_stride = nheads * channels;
|
53 |
+
const int h_stride = width * w_stride;
|
54 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
55 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
56 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
57 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
58 |
+
const int base_ptr = m * channels + c;
|
59 |
+
|
60 |
+
scalar_t v1 = 0;
|
61 |
+
if (h_low >= 0 && w_low >= 0)
|
62 |
+
{
|
63 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
64 |
+
v1 = bottom_data[ptr1];
|
65 |
+
}
|
66 |
+
scalar_t v2 = 0;
|
67 |
+
if (h_low >= 0 && w_high <= width - 1)
|
68 |
+
{
|
69 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
70 |
+
v2 = bottom_data[ptr2];
|
71 |
+
}
|
72 |
+
scalar_t v3 = 0;
|
73 |
+
if (h_high <= height - 1 && w_low >= 0)
|
74 |
+
{
|
75 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
76 |
+
v3 = bottom_data[ptr3];
|
77 |
+
}
|
78 |
+
scalar_t v4 = 0;
|
79 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
80 |
+
{
|
81 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
82 |
+
v4 = bottom_data[ptr4];
|
83 |
+
}
|
84 |
+
|
85 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
86 |
+
|
87 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
88 |
+
return val;
|
89 |
+
}
|
90 |
+
|
91 |
+
|
92 |
+
template <typename scalar_t>
|
93 |
+
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
|
94 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
95 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
96 |
+
const scalar_t &top_grad,
|
97 |
+
const scalar_t &attn_weight,
|
98 |
+
scalar_t* &grad_value,
|
99 |
+
scalar_t* grad_sampling_loc,
|
100 |
+
scalar_t* grad_attn_weight)
|
101 |
+
{
|
102 |
+
const int h_low = floor(h);
|
103 |
+
const int w_low = floor(w);
|
104 |
+
const int h_high = h_low + 1;
|
105 |
+
const int w_high = w_low + 1;
|
106 |
+
|
107 |
+
const scalar_t lh = h - h_low;
|
108 |
+
const scalar_t lw = w - w_low;
|
109 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
110 |
+
|
111 |
+
const int w_stride = nheads * channels;
|
112 |
+
const int h_stride = width * w_stride;
|
113 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
114 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
115 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
116 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
117 |
+
const int base_ptr = m * channels + c;
|
118 |
+
|
119 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
120 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
121 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
122 |
+
|
123 |
+
scalar_t v1 = 0;
|
124 |
+
if (h_low >= 0 && w_low >= 0)
|
125 |
+
{
|
126 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
127 |
+
v1 = bottom_data[ptr1];
|
128 |
+
grad_h_weight -= hw * v1;
|
129 |
+
grad_w_weight -= hh * v1;
|
130 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
131 |
+
}
|
132 |
+
scalar_t v2 = 0;
|
133 |
+
if (h_low >= 0 && w_high <= width - 1)
|
134 |
+
{
|
135 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
136 |
+
v2 = bottom_data[ptr2];
|
137 |
+
grad_h_weight -= lw * v2;
|
138 |
+
grad_w_weight += hh * v2;
|
139 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
140 |
+
}
|
141 |
+
scalar_t v3 = 0;
|
142 |
+
if (h_high <= height - 1 && w_low >= 0)
|
143 |
+
{
|
144 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
145 |
+
v3 = bottom_data[ptr3];
|
146 |
+
grad_h_weight += hw * v3;
|
147 |
+
grad_w_weight -= lh * v3;
|
148 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
149 |
+
}
|
150 |
+
scalar_t v4 = 0;
|
151 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
152 |
+
{
|
153 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
154 |
+
v4 = bottom_data[ptr4];
|
155 |
+
grad_h_weight += lw * v4;
|
156 |
+
grad_w_weight += lh * v4;
|
157 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
158 |
+
}
|
159 |
+
|
160 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
161 |
+
*grad_attn_weight = top_grad * val;
|
162 |
+
*grad_sampling_loc = width * grad_w_weight * top_grad_value;
|
163 |
+
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
template <typename scalar_t>
|
168 |
+
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
|
169 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
170 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
171 |
+
const scalar_t &top_grad,
|
172 |
+
const scalar_t &attn_weight,
|
173 |
+
scalar_t* &grad_value,
|
174 |
+
scalar_t* grad_sampling_loc,
|
175 |
+
scalar_t* grad_attn_weight)
|
176 |
+
{
|
177 |
+
const int h_low = floor(h);
|
178 |
+
const int w_low = floor(w);
|
179 |
+
const int h_high = h_low + 1;
|
180 |
+
const int w_high = w_low + 1;
|
181 |
+
|
182 |
+
const scalar_t lh = h - h_low;
|
183 |
+
const scalar_t lw = w - w_low;
|
184 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
185 |
+
|
186 |
+
const int w_stride = nheads * channels;
|
187 |
+
const int h_stride = width * w_stride;
|
188 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
189 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
190 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
191 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
192 |
+
const int base_ptr = m * channels + c;
|
193 |
+
|
194 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
195 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
196 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
197 |
+
|
198 |
+
scalar_t v1 = 0;
|
199 |
+
if (h_low >= 0 && w_low >= 0)
|
200 |
+
{
|
201 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
202 |
+
v1 = bottom_data[ptr1];
|
203 |
+
grad_h_weight -= hw * v1;
|
204 |
+
grad_w_weight -= hh * v1;
|
205 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
206 |
+
}
|
207 |
+
scalar_t v2 = 0;
|
208 |
+
if (h_low >= 0 && w_high <= width - 1)
|
209 |
+
{
|
210 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
211 |
+
v2 = bottom_data[ptr2];
|
212 |
+
grad_h_weight -= lw * v2;
|
213 |
+
grad_w_weight += hh * v2;
|
214 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
215 |
+
}
|
216 |
+
scalar_t v3 = 0;
|
217 |
+
if (h_high <= height - 1 && w_low >= 0)
|
218 |
+
{
|
219 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
220 |
+
v3 = bottom_data[ptr3];
|
221 |
+
grad_h_weight += hw * v3;
|
222 |
+
grad_w_weight -= lh * v3;
|
223 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
224 |
+
}
|
225 |
+
scalar_t v4 = 0;
|
226 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
227 |
+
{
|
228 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
229 |
+
v4 = bottom_data[ptr4];
|
230 |
+
grad_h_weight += lw * v4;
|
231 |
+
grad_w_weight += lh * v4;
|
232 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
233 |
+
}
|
234 |
+
|
235 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
236 |
+
atomicAdd(grad_attn_weight, top_grad * val);
|
237 |
+
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
|
238 |
+
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
|
239 |
+
}
|
240 |
+
|
241 |
+
|
242 |
+
template <typename scalar_t>
|
243 |
+
__global__ void ms_deformable_im2col_gpu_kernel(const int n,
|
244 |
+
const scalar_t *data_value,
|
245 |
+
const int64_t *data_spatial_shapes,
|
246 |
+
const int64_t *data_level_start_index,
|
247 |
+
const scalar_t *data_sampling_loc,
|
248 |
+
const scalar_t *data_attn_weight,
|
249 |
+
const int batch_size,
|
250 |
+
const int spatial_size,
|
251 |
+
const int num_heads,
|
252 |
+
const int channels,
|
253 |
+
const int num_levels,
|
254 |
+
const int num_query,
|
255 |
+
const int num_point,
|
256 |
+
scalar_t *data_col)
|
257 |
+
{
|
258 |
+
CUDA_KERNEL_LOOP(index, n)
|
259 |
+
{
|
260 |
+
int _temp = index;
|
261 |
+
const int c_col = _temp % channels;
|
262 |
+
_temp /= channels;
|
263 |
+
const int sampling_index = _temp;
|
264 |
+
const int m_col = _temp % num_heads;
|
265 |
+
_temp /= num_heads;
|
266 |
+
const int q_col = _temp % num_query;
|
267 |
+
_temp /= num_query;
|
268 |
+
const int b_col = _temp;
|
269 |
+
|
270 |
+
scalar_t *data_col_ptr = data_col + index;
|
271 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
272 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
273 |
+
const int qid_stride = num_heads * channels;
|
274 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
275 |
+
scalar_t col = 0;
|
276 |
+
|
277 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
278 |
+
{
|
279 |
+
const int level_start_id = data_level_start_index[l_col];
|
280 |
+
const int spatial_h_ptr = l_col << 1;
|
281 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
282 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
283 |
+
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
|
284 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
285 |
+
{
|
286 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
287 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
288 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
289 |
+
|
290 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
291 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
292 |
+
|
293 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
294 |
+
{
|
295 |
+
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
|
296 |
+
}
|
297 |
+
|
298 |
+
data_weight_ptr += 1;
|
299 |
+
data_loc_w_ptr += 2;
|
300 |
+
}
|
301 |
+
}
|
302 |
+
*data_col_ptr = col;
|
303 |
+
}
|
304 |
+
}
|
305 |
+
|
306 |
+
template <typename scalar_t, unsigned int blockSize>
|
307 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
|
308 |
+
const scalar_t *grad_col,
|
309 |
+
const scalar_t *data_value,
|
310 |
+
const int64_t *data_spatial_shapes,
|
311 |
+
const int64_t *data_level_start_index,
|
312 |
+
const scalar_t *data_sampling_loc,
|
313 |
+
const scalar_t *data_attn_weight,
|
314 |
+
const int batch_size,
|
315 |
+
const int spatial_size,
|
316 |
+
const int num_heads,
|
317 |
+
const int channels,
|
318 |
+
const int num_levels,
|
319 |
+
const int num_query,
|
320 |
+
const int num_point,
|
321 |
+
scalar_t *grad_value,
|
322 |
+
scalar_t *grad_sampling_loc,
|
323 |
+
scalar_t *grad_attn_weight)
|
324 |
+
{
|
325 |
+
CUDA_KERNEL_LOOP(index, n)
|
326 |
+
{
|
327 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
328 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
329 |
+
unsigned int tid = threadIdx.x;
|
330 |
+
int _temp = index;
|
331 |
+
const int c_col = _temp % channels;
|
332 |
+
_temp /= channels;
|
333 |
+
const int sampling_index = _temp;
|
334 |
+
const int m_col = _temp % num_heads;
|
335 |
+
_temp /= num_heads;
|
336 |
+
const int q_col = _temp % num_query;
|
337 |
+
_temp /= num_query;
|
338 |
+
const int b_col = _temp;
|
339 |
+
|
340 |
+
const scalar_t top_grad = grad_col[index];
|
341 |
+
|
342 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
343 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
344 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
345 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
346 |
+
grad_attn_weight += grad_sampling_ptr;
|
347 |
+
const int grad_weight_stride = 1;
|
348 |
+
const int grad_loc_stride = 2;
|
349 |
+
const int qid_stride = num_heads * channels;
|
350 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
351 |
+
|
352 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
353 |
+
{
|
354 |
+
const int level_start_id = data_level_start_index[l_col];
|
355 |
+
const int spatial_h_ptr = l_col << 1;
|
356 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
357 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
358 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
359 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
360 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
361 |
+
|
362 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
363 |
+
{
|
364 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
365 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
366 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
367 |
+
|
368 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
369 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
370 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
371 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
372 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
373 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
374 |
+
{
|
375 |
+
ms_deform_attn_col2im_bilinear(
|
376 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
377 |
+
top_grad, weight, grad_value_ptr,
|
378 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
379 |
+
}
|
380 |
+
|
381 |
+
__syncthreads();
|
382 |
+
if (tid == 0)
|
383 |
+
{
|
384 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
385 |
+
int sid=2;
|
386 |
+
for (unsigned int tid = 1; tid < blockSize; ++tid)
|
387 |
+
{
|
388 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
389 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
390 |
+
_grad_a += cache_grad_attn_weight[tid];
|
391 |
+
sid += 2;
|
392 |
+
}
|
393 |
+
|
394 |
+
|
395 |
+
*grad_sampling_loc = _grad_w;
|
396 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
397 |
+
*grad_attn_weight = _grad_a;
|
398 |
+
}
|
399 |
+
__syncthreads();
|
400 |
+
|
401 |
+
data_weight_ptr += 1;
|
402 |
+
data_loc_w_ptr += 2;
|
403 |
+
grad_attn_weight += grad_weight_stride;
|
404 |
+
grad_sampling_loc += grad_loc_stride;
|
405 |
+
}
|
406 |
+
}
|
407 |
+
}
|
408 |
+
}
|
409 |
+
|
410 |
+
|
411 |
+
template <typename scalar_t, unsigned int blockSize>
|
412 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
|
413 |
+
const scalar_t *grad_col,
|
414 |
+
const scalar_t *data_value,
|
415 |
+
const int64_t *data_spatial_shapes,
|
416 |
+
const int64_t *data_level_start_index,
|
417 |
+
const scalar_t *data_sampling_loc,
|
418 |
+
const scalar_t *data_attn_weight,
|
419 |
+
const int batch_size,
|
420 |
+
const int spatial_size,
|
421 |
+
const int num_heads,
|
422 |
+
const int channels,
|
423 |
+
const int num_levels,
|
424 |
+
const int num_query,
|
425 |
+
const int num_point,
|
426 |
+
scalar_t *grad_value,
|
427 |
+
scalar_t *grad_sampling_loc,
|
428 |
+
scalar_t *grad_attn_weight)
|
429 |
+
{
|
430 |
+
CUDA_KERNEL_LOOP(index, n)
|
431 |
+
{
|
432 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
433 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
434 |
+
unsigned int tid = threadIdx.x;
|
435 |
+
int _temp = index;
|
436 |
+
const int c_col = _temp % channels;
|
437 |
+
_temp /= channels;
|
438 |
+
const int sampling_index = _temp;
|
439 |
+
const int m_col = _temp % num_heads;
|
440 |
+
_temp /= num_heads;
|
441 |
+
const int q_col = _temp % num_query;
|
442 |
+
_temp /= num_query;
|
443 |
+
const int b_col = _temp;
|
444 |
+
|
445 |
+
const scalar_t top_grad = grad_col[index];
|
446 |
+
|
447 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
448 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
449 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
450 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
451 |
+
grad_attn_weight += grad_sampling_ptr;
|
452 |
+
const int grad_weight_stride = 1;
|
453 |
+
const int grad_loc_stride = 2;
|
454 |
+
const int qid_stride = num_heads * channels;
|
455 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
456 |
+
|
457 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
458 |
+
{
|
459 |
+
const int level_start_id = data_level_start_index[l_col];
|
460 |
+
const int spatial_h_ptr = l_col << 1;
|
461 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
462 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
463 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
464 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
465 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
466 |
+
|
467 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
468 |
+
{
|
469 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
470 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
471 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
472 |
+
|
473 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
474 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
475 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
476 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
477 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
478 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
479 |
+
{
|
480 |
+
ms_deform_attn_col2im_bilinear(
|
481 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
482 |
+
top_grad, weight, grad_value_ptr,
|
483 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
484 |
+
}
|
485 |
+
|
486 |
+
__syncthreads();
|
487 |
+
|
488 |
+
for (unsigned int s=blockSize/2; s>0; s>>=1)
|
489 |
+
{
|
490 |
+
if (tid < s) {
|
491 |
+
const unsigned int xid1 = tid << 1;
|
492 |
+
const unsigned int xid2 = (tid + s) << 1;
|
493 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
494 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
495 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
496 |
+
}
|
497 |
+
__syncthreads();
|
498 |
+
}
|
499 |
+
|
500 |
+
if (tid == 0)
|
501 |
+
{
|
502 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
503 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
504 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
505 |
+
}
|
506 |
+
__syncthreads();
|
507 |
+
|
508 |
+
data_weight_ptr += 1;
|
509 |
+
data_loc_w_ptr += 2;
|
510 |
+
grad_attn_weight += grad_weight_stride;
|
511 |
+
grad_sampling_loc += grad_loc_stride;
|
512 |
+
}
|
513 |
+
}
|
514 |
+
}
|
515 |
+
}
|
516 |
+
|
517 |
+
|
518 |
+
template <typename scalar_t>
|
519 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
|
520 |
+
const scalar_t *grad_col,
|
521 |
+
const scalar_t *data_value,
|
522 |
+
const int64_t *data_spatial_shapes,
|
523 |
+
const int64_t *data_level_start_index,
|
524 |
+
const scalar_t *data_sampling_loc,
|
525 |
+
const scalar_t *data_attn_weight,
|
526 |
+
const int batch_size,
|
527 |
+
const int spatial_size,
|
528 |
+
const int num_heads,
|
529 |
+
const int channels,
|
530 |
+
const int num_levels,
|
531 |
+
const int num_query,
|
532 |
+
const int num_point,
|
533 |
+
scalar_t *grad_value,
|
534 |
+
scalar_t *grad_sampling_loc,
|
535 |
+
scalar_t *grad_attn_weight)
|
536 |
+
{
|
537 |
+
CUDA_KERNEL_LOOP(index, n)
|
538 |
+
{
|
539 |
+
extern __shared__ int _s[];
|
540 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
541 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
542 |
+
unsigned int tid = threadIdx.x;
|
543 |
+
int _temp = index;
|
544 |
+
const int c_col = _temp % channels;
|
545 |
+
_temp /= channels;
|
546 |
+
const int sampling_index = _temp;
|
547 |
+
const int m_col = _temp % num_heads;
|
548 |
+
_temp /= num_heads;
|
549 |
+
const int q_col = _temp % num_query;
|
550 |
+
_temp /= num_query;
|
551 |
+
const int b_col = _temp;
|
552 |
+
|
553 |
+
const scalar_t top_grad = grad_col[index];
|
554 |
+
|
555 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
556 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
557 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
558 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
559 |
+
grad_attn_weight += grad_sampling_ptr;
|
560 |
+
const int grad_weight_stride = 1;
|
561 |
+
const int grad_loc_stride = 2;
|
562 |
+
const int qid_stride = num_heads * channels;
|
563 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
564 |
+
|
565 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
566 |
+
{
|
567 |
+
const int level_start_id = data_level_start_index[l_col];
|
568 |
+
const int spatial_h_ptr = l_col << 1;
|
569 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
570 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
571 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
572 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
573 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
574 |
+
|
575 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
576 |
+
{
|
577 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
578 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
579 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
580 |
+
|
581 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
582 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
583 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
584 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
585 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
586 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
587 |
+
{
|
588 |
+
ms_deform_attn_col2im_bilinear(
|
589 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
590 |
+
top_grad, weight, grad_value_ptr,
|
591 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
592 |
+
}
|
593 |
+
|
594 |
+
__syncthreads();
|
595 |
+
if (tid == 0)
|
596 |
+
{
|
597 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
598 |
+
int sid=2;
|
599 |
+
for (unsigned int tid = 1; tid < blockDim.x; ++tid)
|
600 |
+
{
|
601 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
602 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
603 |
+
_grad_a += cache_grad_attn_weight[tid];
|
604 |
+
sid += 2;
|
605 |
+
}
|
606 |
+
|
607 |
+
|
608 |
+
*grad_sampling_loc = _grad_w;
|
609 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
610 |
+
*grad_attn_weight = _grad_a;
|
611 |
+
}
|
612 |
+
__syncthreads();
|
613 |
+
|
614 |
+
data_weight_ptr += 1;
|
615 |
+
data_loc_w_ptr += 2;
|
616 |
+
grad_attn_weight += grad_weight_stride;
|
617 |
+
grad_sampling_loc += grad_loc_stride;
|
618 |
+
}
|
619 |
+
}
|
620 |
+
}
|
621 |
+
}
|
622 |
+
|
623 |
+
template <typename scalar_t>
|
624 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
|
625 |
+
const scalar_t *grad_col,
|
626 |
+
const scalar_t *data_value,
|
627 |
+
const int64_t *data_spatial_shapes,
|
628 |
+
const int64_t *data_level_start_index,
|
629 |
+
const scalar_t *data_sampling_loc,
|
630 |
+
const scalar_t *data_attn_weight,
|
631 |
+
const int batch_size,
|
632 |
+
const int spatial_size,
|
633 |
+
const int num_heads,
|
634 |
+
const int channels,
|
635 |
+
const int num_levels,
|
636 |
+
const int num_query,
|
637 |
+
const int num_point,
|
638 |
+
scalar_t *grad_value,
|
639 |
+
scalar_t *grad_sampling_loc,
|
640 |
+
scalar_t *grad_attn_weight)
|
641 |
+
{
|
642 |
+
CUDA_KERNEL_LOOP(index, n)
|
643 |
+
{
|
644 |
+
extern __shared__ int _s[];
|
645 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
646 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
647 |
+
unsigned int tid = threadIdx.x;
|
648 |
+
int _temp = index;
|
649 |
+
const int c_col = _temp % channels;
|
650 |
+
_temp /= channels;
|
651 |
+
const int sampling_index = _temp;
|
652 |
+
const int m_col = _temp % num_heads;
|
653 |
+
_temp /= num_heads;
|
654 |
+
const int q_col = _temp % num_query;
|
655 |
+
_temp /= num_query;
|
656 |
+
const int b_col = _temp;
|
657 |
+
|
658 |
+
const scalar_t top_grad = grad_col[index];
|
659 |
+
|
660 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
661 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
662 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
663 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
664 |
+
grad_attn_weight += grad_sampling_ptr;
|
665 |
+
const int grad_weight_stride = 1;
|
666 |
+
const int grad_loc_stride = 2;
|
667 |
+
const int qid_stride = num_heads * channels;
|
668 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
669 |
+
|
670 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
671 |
+
{
|
672 |
+
const int level_start_id = data_level_start_index[l_col];
|
673 |
+
const int spatial_h_ptr = l_col << 1;
|
674 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
675 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
676 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
677 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
678 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
679 |
+
|
680 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
681 |
+
{
|
682 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
683 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
684 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
685 |
+
|
686 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
687 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
688 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
689 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
690 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
691 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
692 |
+
{
|
693 |
+
ms_deform_attn_col2im_bilinear(
|
694 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
695 |
+
top_grad, weight, grad_value_ptr,
|
696 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
697 |
+
}
|
698 |
+
|
699 |
+
__syncthreads();
|
700 |
+
|
701 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
702 |
+
{
|
703 |
+
if (tid < s) {
|
704 |
+
const unsigned int xid1 = tid << 1;
|
705 |
+
const unsigned int xid2 = (tid + s) << 1;
|
706 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
707 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
708 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
709 |
+
if (tid + (s << 1) < spre)
|
710 |
+
{
|
711 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
712 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
713 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
714 |
+
}
|
715 |
+
}
|
716 |
+
__syncthreads();
|
717 |
+
}
|
718 |
+
|
719 |
+
if (tid == 0)
|
720 |
+
{
|
721 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
722 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
723 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
724 |
+
}
|
725 |
+
__syncthreads();
|
726 |
+
|
727 |
+
data_weight_ptr += 1;
|
728 |
+
data_loc_w_ptr += 2;
|
729 |
+
grad_attn_weight += grad_weight_stride;
|
730 |
+
grad_sampling_loc += grad_loc_stride;
|
731 |
+
}
|
732 |
+
}
|
733 |
+
}
|
734 |
+
}
|
735 |
+
|
736 |
+
template <typename scalar_t>
|
737 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
|
738 |
+
const scalar_t *grad_col,
|
739 |
+
const scalar_t *data_value,
|
740 |
+
const int64_t *data_spatial_shapes,
|
741 |
+
const int64_t *data_level_start_index,
|
742 |
+
const scalar_t *data_sampling_loc,
|
743 |
+
const scalar_t *data_attn_weight,
|
744 |
+
const int batch_size,
|
745 |
+
const int spatial_size,
|
746 |
+
const int num_heads,
|
747 |
+
const int channels,
|
748 |
+
const int num_levels,
|
749 |
+
const int num_query,
|
750 |
+
const int num_point,
|
751 |
+
scalar_t *grad_value,
|
752 |
+
scalar_t *grad_sampling_loc,
|
753 |
+
scalar_t *grad_attn_weight)
|
754 |
+
{
|
755 |
+
CUDA_KERNEL_LOOP(index, n)
|
756 |
+
{
|
757 |
+
extern __shared__ int _s[];
|
758 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
759 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
760 |
+
unsigned int tid = threadIdx.x;
|
761 |
+
int _temp = index;
|
762 |
+
const int c_col = _temp % channels;
|
763 |
+
_temp /= channels;
|
764 |
+
const int sampling_index = _temp;
|
765 |
+
const int m_col = _temp % num_heads;
|
766 |
+
_temp /= num_heads;
|
767 |
+
const int q_col = _temp % num_query;
|
768 |
+
_temp /= num_query;
|
769 |
+
const int b_col = _temp;
|
770 |
+
|
771 |
+
const scalar_t top_grad = grad_col[index];
|
772 |
+
|
773 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
774 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
775 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
776 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
777 |
+
grad_attn_weight += grad_sampling_ptr;
|
778 |
+
const int grad_weight_stride = 1;
|
779 |
+
const int grad_loc_stride = 2;
|
780 |
+
const int qid_stride = num_heads * channels;
|
781 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
782 |
+
|
783 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
784 |
+
{
|
785 |
+
const int level_start_id = data_level_start_index[l_col];
|
786 |
+
const int spatial_h_ptr = l_col << 1;
|
787 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
788 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
789 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
790 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
791 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
792 |
+
|
793 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
794 |
+
{
|
795 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
796 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
797 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
798 |
+
|
799 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
800 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
801 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
802 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
803 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
804 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
805 |
+
{
|
806 |
+
ms_deform_attn_col2im_bilinear(
|
807 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
808 |
+
top_grad, weight, grad_value_ptr,
|
809 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
810 |
+
}
|
811 |
+
|
812 |
+
__syncthreads();
|
813 |
+
|
814 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
815 |
+
{
|
816 |
+
if (tid < s) {
|
817 |
+
const unsigned int xid1 = tid << 1;
|
818 |
+
const unsigned int xid2 = (tid + s) << 1;
|
819 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
820 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
821 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
822 |
+
if (tid + (s << 1) < spre)
|
823 |
+
{
|
824 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
825 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
826 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
827 |
+
}
|
828 |
+
}
|
829 |
+
__syncthreads();
|
830 |
+
}
|
831 |
+
|
832 |
+
if (tid == 0)
|
833 |
+
{
|
834 |
+
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
|
835 |
+
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
|
836 |
+
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
|
837 |
+
}
|
838 |
+
__syncthreads();
|
839 |
+
|
840 |
+
data_weight_ptr += 1;
|
841 |
+
data_loc_w_ptr += 2;
|
842 |
+
grad_attn_weight += grad_weight_stride;
|
843 |
+
grad_sampling_loc += grad_loc_stride;
|
844 |
+
}
|
845 |
+
}
|
846 |
+
}
|
847 |
+
}
|
848 |
+
|
849 |
+
|
850 |
+
template <typename scalar_t>
|
851 |
+
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
|
852 |
+
const scalar_t *grad_col,
|
853 |
+
const scalar_t *data_value,
|
854 |
+
const int64_t *data_spatial_shapes,
|
855 |
+
const int64_t *data_level_start_index,
|
856 |
+
const scalar_t *data_sampling_loc,
|
857 |
+
const scalar_t *data_attn_weight,
|
858 |
+
const int batch_size,
|
859 |
+
const int spatial_size,
|
860 |
+
const int num_heads,
|
861 |
+
const int channels,
|
862 |
+
const int num_levels,
|
863 |
+
const int num_query,
|
864 |
+
const int num_point,
|
865 |
+
scalar_t *grad_value,
|
866 |
+
scalar_t *grad_sampling_loc,
|
867 |
+
scalar_t *grad_attn_weight)
|
868 |
+
{
|
869 |
+
CUDA_KERNEL_LOOP(index, n)
|
870 |
+
{
|
871 |
+
int _temp = index;
|
872 |
+
const int c_col = _temp % channels;
|
873 |
+
_temp /= channels;
|
874 |
+
const int sampling_index = _temp;
|
875 |
+
const int m_col = _temp % num_heads;
|
876 |
+
_temp /= num_heads;
|
877 |
+
const int q_col = _temp % num_query;
|
878 |
+
_temp /= num_query;
|
879 |
+
const int b_col = _temp;
|
880 |
+
|
881 |
+
const scalar_t top_grad = grad_col[index];
|
882 |
+
|
883 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
884 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
885 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
886 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
887 |
+
grad_attn_weight += grad_sampling_ptr;
|
888 |
+
const int grad_weight_stride = 1;
|
889 |
+
const int grad_loc_stride = 2;
|
890 |
+
const int qid_stride = num_heads * channels;
|
891 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
892 |
+
|
893 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
894 |
+
{
|
895 |
+
const int level_start_id = data_level_start_index[l_col];
|
896 |
+
const int spatial_h_ptr = l_col << 1;
|
897 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
898 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
899 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
900 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
901 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
902 |
+
|
903 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
904 |
+
{
|
905 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
906 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
907 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
908 |
+
|
909 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
910 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
911 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
912 |
+
{
|
913 |
+
ms_deform_attn_col2im_bilinear_gm(
|
914 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
915 |
+
top_grad, weight, grad_value_ptr,
|
916 |
+
grad_sampling_loc, grad_attn_weight);
|
917 |
+
}
|
918 |
+
data_weight_ptr += 1;
|
919 |
+
data_loc_w_ptr += 2;
|
920 |
+
grad_attn_weight += grad_weight_stride;
|
921 |
+
grad_sampling_loc += grad_loc_stride;
|
922 |
+
}
|
923 |
+
}
|
924 |
+
}
|
925 |
+
}
|
926 |
+
|
927 |
+
|
928 |
+
template <typename scalar_t>
|
929 |
+
void ms_deformable_im2col_cuda(cudaStream_t stream,
|
930 |
+
const scalar_t* data_value,
|
931 |
+
const int64_t* data_spatial_shapes,
|
932 |
+
const int64_t* data_level_start_index,
|
933 |
+
const scalar_t* data_sampling_loc,
|
934 |
+
const scalar_t* data_attn_weight,
|
935 |
+
const int batch_size,
|
936 |
+
const int spatial_size,
|
937 |
+
const int num_heads,
|
938 |
+
const int channels,
|
939 |
+
const int num_levels,
|
940 |
+
const int num_query,
|
941 |
+
const int num_point,
|
942 |
+
scalar_t* data_col)
|
943 |
+
{
|
944 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
945 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
946 |
+
const int num_threads = CUDA_NUM_THREADS;
|
947 |
+
ms_deformable_im2col_gpu_kernel<scalar_t>
|
948 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
949 |
+
0, stream>>>(
|
950 |
+
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
|
951 |
+
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
|
952 |
+
|
953 |
+
cudaError_t err = cudaGetLastError();
|
954 |
+
if (err != cudaSuccess)
|
955 |
+
{
|
956 |
+
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
957 |
+
}
|
958 |
+
|
959 |
+
}
|
960 |
+
|
961 |
+
template <typename scalar_t>
|
962 |
+
void ms_deformable_col2im_cuda(cudaStream_t stream,
|
963 |
+
const scalar_t* grad_col,
|
964 |
+
const scalar_t* data_value,
|
965 |
+
const int64_t * data_spatial_shapes,
|
966 |
+
const int64_t * data_level_start_index,
|
967 |
+
const scalar_t * data_sampling_loc,
|
968 |
+
const scalar_t * data_attn_weight,
|
969 |
+
const int batch_size,
|
970 |
+
const int spatial_size,
|
971 |
+
const int num_heads,
|
972 |
+
const int channels,
|
973 |
+
const int num_levels,
|
974 |
+
const int num_query,
|
975 |
+
const int num_point,
|
976 |
+
scalar_t* grad_value,
|
977 |
+
scalar_t* grad_sampling_loc,
|
978 |
+
scalar_t* grad_attn_weight)
|
979 |
+
{
|
980 |
+
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
|
981 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
982 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
983 |
+
if (channels > 1024)
|
984 |
+
{
|
985 |
+
if ((channels & 1023) == 0)
|
986 |
+
{
|
987 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
|
988 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
989 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
990 |
+
num_kernels,
|
991 |
+
grad_col,
|
992 |
+
data_value,
|
993 |
+
data_spatial_shapes,
|
994 |
+
data_level_start_index,
|
995 |
+
data_sampling_loc,
|
996 |
+
data_attn_weight,
|
997 |
+
batch_size,
|
998 |
+
spatial_size,
|
999 |
+
num_heads,
|
1000 |
+
channels,
|
1001 |
+
num_levels,
|
1002 |
+
num_query,
|
1003 |
+
num_point,
|
1004 |
+
grad_value,
|
1005 |
+
grad_sampling_loc,
|
1006 |
+
grad_attn_weight);
|
1007 |
+
}
|
1008 |
+
else
|
1009 |
+
{
|
1010 |
+
ms_deformable_col2im_gpu_kernel_gm<scalar_t>
|
1011 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1012 |
+
0, stream>>>(
|
1013 |
+
num_kernels,
|
1014 |
+
grad_col,
|
1015 |
+
data_value,
|
1016 |
+
data_spatial_shapes,
|
1017 |
+
data_level_start_index,
|
1018 |
+
data_sampling_loc,
|
1019 |
+
data_attn_weight,
|
1020 |
+
batch_size,
|
1021 |
+
spatial_size,
|
1022 |
+
num_heads,
|
1023 |
+
channels,
|
1024 |
+
num_levels,
|
1025 |
+
num_query,
|
1026 |
+
num_point,
|
1027 |
+
grad_value,
|
1028 |
+
grad_sampling_loc,
|
1029 |
+
grad_attn_weight);
|
1030 |
+
}
|
1031 |
+
}
|
1032 |
+
else{
|
1033 |
+
switch(channels)
|
1034 |
+
{
|
1035 |
+
case 1:
|
1036 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
|
1037 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1038 |
+
0, stream>>>(
|
1039 |
+
num_kernels,
|
1040 |
+
grad_col,
|
1041 |
+
data_value,
|
1042 |
+
data_spatial_shapes,
|
1043 |
+
data_level_start_index,
|
1044 |
+
data_sampling_loc,
|
1045 |
+
data_attn_weight,
|
1046 |
+
batch_size,
|
1047 |
+
spatial_size,
|
1048 |
+
num_heads,
|
1049 |
+
channels,
|
1050 |
+
num_levels,
|
1051 |
+
num_query,
|
1052 |
+
num_point,
|
1053 |
+
grad_value,
|
1054 |
+
grad_sampling_loc,
|
1055 |
+
grad_attn_weight);
|
1056 |
+
break;
|
1057 |
+
case 2:
|
1058 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
|
1059 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1060 |
+
0, stream>>>(
|
1061 |
+
num_kernels,
|
1062 |
+
grad_col,
|
1063 |
+
data_value,
|
1064 |
+
data_spatial_shapes,
|
1065 |
+
data_level_start_index,
|
1066 |
+
data_sampling_loc,
|
1067 |
+
data_attn_weight,
|
1068 |
+
batch_size,
|
1069 |
+
spatial_size,
|
1070 |
+
num_heads,
|
1071 |
+
channels,
|
1072 |
+
num_levels,
|
1073 |
+
num_query,
|
1074 |
+
num_point,
|
1075 |
+
grad_value,
|
1076 |
+
grad_sampling_loc,
|
1077 |
+
grad_attn_weight);
|
1078 |
+
break;
|
1079 |
+
case 4:
|
1080 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
|
1081 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1082 |
+
0, stream>>>(
|
1083 |
+
num_kernels,
|
1084 |
+
grad_col,
|
1085 |
+
data_value,
|
1086 |
+
data_spatial_shapes,
|
1087 |
+
data_level_start_index,
|
1088 |
+
data_sampling_loc,
|
1089 |
+
data_attn_weight,
|
1090 |
+
batch_size,
|
1091 |
+
spatial_size,
|
1092 |
+
num_heads,
|
1093 |
+
channels,
|
1094 |
+
num_levels,
|
1095 |
+
num_query,
|
1096 |
+
num_point,
|
1097 |
+
grad_value,
|
1098 |
+
grad_sampling_loc,
|
1099 |
+
grad_attn_weight);
|
1100 |
+
break;
|
1101 |
+
case 8:
|
1102 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
|
1103 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1104 |
+
0, stream>>>(
|
1105 |
+
num_kernels,
|
1106 |
+
grad_col,
|
1107 |
+
data_value,
|
1108 |
+
data_spatial_shapes,
|
1109 |
+
data_level_start_index,
|
1110 |
+
data_sampling_loc,
|
1111 |
+
data_attn_weight,
|
1112 |
+
batch_size,
|
1113 |
+
spatial_size,
|
1114 |
+
num_heads,
|
1115 |
+
channels,
|
1116 |
+
num_levels,
|
1117 |
+
num_query,
|
1118 |
+
num_point,
|
1119 |
+
grad_value,
|
1120 |
+
grad_sampling_loc,
|
1121 |
+
grad_attn_weight);
|
1122 |
+
break;
|
1123 |
+
case 16:
|
1124 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
|
1125 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1126 |
+
0, stream>>>(
|
1127 |
+
num_kernels,
|
1128 |
+
grad_col,
|
1129 |
+
data_value,
|
1130 |
+
data_spatial_shapes,
|
1131 |
+
data_level_start_index,
|
1132 |
+
data_sampling_loc,
|
1133 |
+
data_attn_weight,
|
1134 |
+
batch_size,
|
1135 |
+
spatial_size,
|
1136 |
+
num_heads,
|
1137 |
+
channels,
|
1138 |
+
num_levels,
|
1139 |
+
num_query,
|
1140 |
+
num_point,
|
1141 |
+
grad_value,
|
1142 |
+
grad_sampling_loc,
|
1143 |
+
grad_attn_weight);
|
1144 |
+
break;
|
1145 |
+
case 32:
|
1146 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
|
1147 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1148 |
+
0, stream>>>(
|
1149 |
+
num_kernels,
|
1150 |
+
grad_col,
|
1151 |
+
data_value,
|
1152 |
+
data_spatial_shapes,
|
1153 |
+
data_level_start_index,
|
1154 |
+
data_sampling_loc,
|
1155 |
+
data_attn_weight,
|
1156 |
+
batch_size,
|
1157 |
+
spatial_size,
|
1158 |
+
num_heads,
|
1159 |
+
channels,
|
1160 |
+
num_levels,
|
1161 |
+
num_query,
|
1162 |
+
num_point,
|
1163 |
+
grad_value,
|
1164 |
+
grad_sampling_loc,
|
1165 |
+
grad_attn_weight);
|
1166 |
+
break;
|
1167 |
+
case 64:
|
1168 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
|
1169 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1170 |
+
0, stream>>>(
|
1171 |
+
num_kernels,
|
1172 |
+
grad_col,
|
1173 |
+
data_value,
|
1174 |
+
data_spatial_shapes,
|
1175 |
+
data_level_start_index,
|
1176 |
+
data_sampling_loc,
|
1177 |
+
data_attn_weight,
|
1178 |
+
batch_size,
|
1179 |
+
spatial_size,
|
1180 |
+
num_heads,
|
1181 |
+
channels,
|
1182 |
+
num_levels,
|
1183 |
+
num_query,
|
1184 |
+
num_point,
|
1185 |
+
grad_value,
|
1186 |
+
grad_sampling_loc,
|
1187 |
+
grad_attn_weight);
|
1188 |
+
break;
|
1189 |
+
case 128:
|
1190 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
|
1191 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1192 |
+
0, stream>>>(
|
1193 |
+
num_kernels,
|
1194 |
+
grad_col,
|
1195 |
+
data_value,
|
1196 |
+
data_spatial_shapes,
|
1197 |
+
data_level_start_index,
|
1198 |
+
data_sampling_loc,
|
1199 |
+
data_attn_weight,
|
1200 |
+
batch_size,
|
1201 |
+
spatial_size,
|
1202 |
+
num_heads,
|
1203 |
+
channels,
|
1204 |
+
num_levels,
|
1205 |
+
num_query,
|
1206 |
+
num_point,
|
1207 |
+
grad_value,
|
1208 |
+
grad_sampling_loc,
|
1209 |
+
grad_attn_weight);
|
1210 |
+
break;
|
1211 |
+
case 256:
|
1212 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
|
1213 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1214 |
+
0, stream>>>(
|
1215 |
+
num_kernels,
|
1216 |
+
grad_col,
|
1217 |
+
data_value,
|
1218 |
+
data_spatial_shapes,
|
1219 |
+
data_level_start_index,
|
1220 |
+
data_sampling_loc,
|
1221 |
+
data_attn_weight,
|
1222 |
+
batch_size,
|
1223 |
+
spatial_size,
|
1224 |
+
num_heads,
|
1225 |
+
channels,
|
1226 |
+
num_levels,
|
1227 |
+
num_query,
|
1228 |
+
num_point,
|
1229 |
+
grad_value,
|
1230 |
+
grad_sampling_loc,
|
1231 |
+
grad_attn_weight);
|
1232 |
+
break;
|
1233 |
+
case 512:
|
1234 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
|
1235 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1236 |
+
0, stream>>>(
|
1237 |
+
num_kernels,
|
1238 |
+
grad_col,
|
1239 |
+
data_value,
|
1240 |
+
data_spatial_shapes,
|
1241 |
+
data_level_start_index,
|
1242 |
+
data_sampling_loc,
|
1243 |
+
data_attn_weight,
|
1244 |
+
batch_size,
|
1245 |
+
spatial_size,
|
1246 |
+
num_heads,
|
1247 |
+
channels,
|
1248 |
+
num_levels,
|
1249 |
+
num_query,
|
1250 |
+
num_point,
|
1251 |
+
grad_value,
|
1252 |
+
grad_sampling_loc,
|
1253 |
+
grad_attn_weight);
|
1254 |
+
break;
|
1255 |
+
case 1024:
|
1256 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
|
1257 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1258 |
+
0, stream>>>(
|
1259 |
+
num_kernels,
|
1260 |
+
grad_col,
|
1261 |
+
data_value,
|
1262 |
+
data_spatial_shapes,
|
1263 |
+
data_level_start_index,
|
1264 |
+
data_sampling_loc,
|
1265 |
+
data_attn_weight,
|
1266 |
+
batch_size,
|
1267 |
+
spatial_size,
|
1268 |
+
num_heads,
|
1269 |
+
channels,
|
1270 |
+
num_levels,
|
1271 |
+
num_query,
|
1272 |
+
num_point,
|
1273 |
+
grad_value,
|
1274 |
+
grad_sampling_loc,
|
1275 |
+
grad_attn_weight);
|
1276 |
+
break;
|
1277 |
+
default:
|
1278 |
+
if (channels < 64)
|
1279 |
+
{
|
1280 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
|
1281 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1282 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1283 |
+
num_kernels,
|
1284 |
+
grad_col,
|
1285 |
+
data_value,
|
1286 |
+
data_spatial_shapes,
|
1287 |
+
data_level_start_index,
|
1288 |
+
data_sampling_loc,
|
1289 |
+
data_attn_weight,
|
1290 |
+
batch_size,
|
1291 |
+
spatial_size,
|
1292 |
+
num_heads,
|
1293 |
+
channels,
|
1294 |
+
num_levels,
|
1295 |
+
num_query,
|
1296 |
+
num_point,
|
1297 |
+
grad_value,
|
1298 |
+
grad_sampling_loc,
|
1299 |
+
grad_attn_weight);
|
1300 |
+
}
|
1301 |
+
else
|
1302 |
+
{
|
1303 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
|
1304 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1305 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1306 |
+
num_kernels,
|
1307 |
+
grad_col,
|
1308 |
+
data_value,
|
1309 |
+
data_spatial_shapes,
|
1310 |
+
data_level_start_index,
|
1311 |
+
data_sampling_loc,
|
1312 |
+
data_attn_weight,
|
1313 |
+
batch_size,
|
1314 |
+
spatial_size,
|
1315 |
+
num_heads,
|
1316 |
+
channels,
|
1317 |
+
num_levels,
|
1318 |
+
num_query,
|
1319 |
+
num_point,
|
1320 |
+
grad_value,
|
1321 |
+
grad_sampling_loc,
|
1322 |
+
grad_attn_weight);
|
1323 |
+
}
|
1324 |
+
}
|
1325 |
+
}
|
1326 |
+
cudaError_t err = cudaGetLastError();
|
1327 |
+
if (err != cudaSuccess)
|
1328 |
+
{
|
1329 |
+
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
1330 |
+
}
|
1331 |
+
|
1332 |
+
}
|
mask2former/modeling/pixel_decoder/ops/src/ms_deform_attn.h
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#pragma once
|
17 |
+
|
18 |
+
#include "cpu/ms_deform_attn_cpu.h"
|
19 |
+
|
20 |
+
#ifdef WITH_CUDA
|
21 |
+
#include "cuda/ms_deform_attn_cuda.h"
|
22 |
+
#endif
|
23 |
+
|
24 |
+
|
25 |
+
at::Tensor
|
26 |
+
ms_deform_attn_forward(
|
27 |
+
const at::Tensor &value,
|
28 |
+
const at::Tensor &spatial_shapes,
|
29 |
+
const at::Tensor &level_start_index,
|
30 |
+
const at::Tensor &sampling_loc,
|
31 |
+
const at::Tensor &attn_weight,
|
32 |
+
const int im2col_step)
|
33 |
+
{
|
34 |
+
if (value.type().is_cuda())
|
35 |
+
{
|
36 |
+
#ifdef WITH_CUDA
|
37 |
+
return ms_deform_attn_cuda_forward(
|
38 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
39 |
+
#else
|
40 |
+
AT_ERROR("Not compiled with GPU support");
|
41 |
+
#endif
|
42 |
+
}
|
43 |
+
AT_ERROR("Not implemented on the CPU");
|
44 |
+
}
|
45 |
+
|
46 |
+
std::vector<at::Tensor>
|
47 |
+
ms_deform_attn_backward(
|
48 |
+
const at::Tensor &value,
|
49 |
+
const at::Tensor &spatial_shapes,
|
50 |
+
const at::Tensor &level_start_index,
|
51 |
+
const at::Tensor &sampling_loc,
|
52 |
+
const at::Tensor &attn_weight,
|
53 |
+
const at::Tensor &grad_output,
|
54 |
+
const int im2col_step)
|
55 |
+
{
|
56 |
+
if (value.type().is_cuda())
|
57 |
+
{
|
58 |
+
#ifdef WITH_CUDA
|
59 |
+
return ms_deform_attn_cuda_backward(
|
60 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
61 |
+
#else
|
62 |
+
AT_ERROR("Not compiled with GPU support");
|
63 |
+
#endif
|
64 |
+
}
|
65 |
+
AT_ERROR("Not implemented on the CPU");
|
66 |
+
}
|
67 |
+
|
mask2former/modeling/pixel_decoder/ops/src/vision.cpp
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include "ms_deform_attn.h"
|
17 |
+
|
18 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
19 |
+
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
|
20 |
+
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
|
21 |
+
}
|
mask2former/modeling/pixel_decoder/ops/test.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import print_function
|
14 |
+
from __future__ import division
|
15 |
+
|
16 |
+
import time
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.autograd import gradcheck
|
20 |
+
|
21 |
+
from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch
|
22 |
+
|
23 |
+
|
24 |
+
N, M, D = 1, 2, 2
|
25 |
+
Lq, L, P = 2, 2, 2
|
26 |
+
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
|
27 |
+
level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1]))
|
28 |
+
S = sum([(H*W).item() for H, W in shapes])
|
29 |
+
|
30 |
+
|
31 |
+
torch.manual_seed(3)
|
32 |
+
|
33 |
+
|
34 |
+
@torch.no_grad()
|
35 |
+
def check_forward_equal_with_pytorch_double():
|
36 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
37 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
38 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
39 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
40 |
+
im2col_step = 2
|
41 |
+
output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu()
|
42 |
+
output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu()
|
43 |
+
fwdok = torch.allclose(output_cuda, output_pytorch)
|
44 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
45 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
46 |
+
|
47 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
48 |
+
|
49 |
+
|
50 |
+
@torch.no_grad()
|
51 |
+
def check_forward_equal_with_pytorch_float():
|
52 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
53 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
54 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
55 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
56 |
+
im2col_step = 2
|
57 |
+
output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu()
|
58 |
+
output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu()
|
59 |
+
fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
|
60 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
61 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
62 |
+
|
63 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
64 |
+
|
65 |
+
|
66 |
+
def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True):
|
67 |
+
|
68 |
+
value = torch.rand(N, S, M, channels).cuda() * 0.01
|
69 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
70 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
71 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
72 |
+
im2col_step = 2
|
73 |
+
func = MSDeformAttnFunction.apply
|
74 |
+
|
75 |
+
value.requires_grad = grad_value
|
76 |
+
sampling_locations.requires_grad = grad_sampling_loc
|
77 |
+
attention_weights.requires_grad = grad_attn_weight
|
78 |
+
|
79 |
+
gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step))
|
80 |
+
|
81 |
+
print(f'* {gradok} check_gradient_numerical(D={channels})')
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
check_forward_equal_with_pytorch_double()
|
86 |
+
check_forward_equal_with_pytorch_float()
|
87 |
+
|
88 |
+
for channels in [30, 32, 64, 71, 1025, 2048, 3096]:
|
89 |
+
check_gradient_numerical(channels, True, True, True)
|
90 |
+
|
91 |
+
|
92 |
+
|
mask2former/modeling/transformer_decoder/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .maskformer_transformer_decoder import StandardTransformerDecoder
|
3 |
+
from .mask2former_transformer_decoder import MultiScaleMaskedTransformerDecoder
|
4 |
+
from .opd_transformer_decoder import OPDMultiScaleMaskedTransformerDecoder
|
mask2former/modeling/transformer_decoder/mask2former_transformer_decoder.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import logging
|
4 |
+
import fvcore.nn.weight_init as weight_init
|
5 |
+
from typing import Optional
|
6 |
+
import torch
|
7 |
+
from torch import nn, Tensor
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d
|
12 |
+
|
13 |
+
from .position_encoding import PositionEmbeddingSine
|
14 |
+
from .maskformer_transformer_decoder import TRANSFORMER_DECODER_REGISTRY
|
15 |
+
|
16 |
+
|
17 |
+
class SelfAttentionLayer(nn.Module):
|
18 |
+
|
19 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
20 |
+
activation="relu", normalize_before=False):
|
21 |
+
super().__init__()
|
22 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
23 |
+
|
24 |
+
self.norm = nn.LayerNorm(d_model)
|
25 |
+
self.dropout = nn.Dropout(dropout)
|
26 |
+
|
27 |
+
self.activation = _get_activation_fn(activation)
|
28 |
+
self.normalize_before = normalize_before
|
29 |
+
|
30 |
+
self._reset_parameters()
|
31 |
+
|
32 |
+
def _reset_parameters(self):
|
33 |
+
for p in self.parameters():
|
34 |
+
if p.dim() > 1:
|
35 |
+
nn.init.xavier_uniform_(p)
|
36 |
+
|
37 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
38 |
+
return tensor if pos is None else tensor + pos
|
39 |
+
|
40 |
+
def forward_post(self, tgt,
|
41 |
+
tgt_mask: Optional[Tensor] = None,
|
42 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
43 |
+
query_pos: Optional[Tensor] = None):
|
44 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
45 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
46 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
47 |
+
tgt = tgt + self.dropout(tgt2)
|
48 |
+
tgt = self.norm(tgt)
|
49 |
+
|
50 |
+
return tgt
|
51 |
+
|
52 |
+
def forward_pre(self, tgt,
|
53 |
+
tgt_mask: Optional[Tensor] = None,
|
54 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
55 |
+
query_pos: Optional[Tensor] = None):
|
56 |
+
tgt2 = self.norm(tgt)
|
57 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
58 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
59 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
60 |
+
tgt = tgt + self.dropout(tgt2)
|
61 |
+
|
62 |
+
return tgt
|
63 |
+
|
64 |
+
def forward(self, tgt,
|
65 |
+
tgt_mask: Optional[Tensor] = None,
|
66 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
67 |
+
query_pos: Optional[Tensor] = None):
|
68 |
+
if self.normalize_before:
|
69 |
+
return self.forward_pre(tgt, tgt_mask,
|
70 |
+
tgt_key_padding_mask, query_pos)
|
71 |
+
return self.forward_post(tgt, tgt_mask,
|
72 |
+
tgt_key_padding_mask, query_pos)
|
73 |
+
|
74 |
+
|
75 |
+
class CrossAttentionLayer(nn.Module):
|
76 |
+
|
77 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
78 |
+
activation="relu", normalize_before=False):
|
79 |
+
super().__init__()
|
80 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
81 |
+
|
82 |
+
self.norm = nn.LayerNorm(d_model)
|
83 |
+
self.dropout = nn.Dropout(dropout)
|
84 |
+
|
85 |
+
self.activation = _get_activation_fn(activation)
|
86 |
+
self.normalize_before = normalize_before
|
87 |
+
|
88 |
+
self._reset_parameters()
|
89 |
+
|
90 |
+
def _reset_parameters(self):
|
91 |
+
for p in self.parameters():
|
92 |
+
if p.dim() > 1:
|
93 |
+
nn.init.xavier_uniform_(p)
|
94 |
+
|
95 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
96 |
+
return tensor if pos is None else tensor + pos
|
97 |
+
|
98 |
+
def forward_post(self, tgt, memory,
|
99 |
+
memory_mask: Optional[Tensor] = None,
|
100 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
101 |
+
pos: Optional[Tensor] = None,
|
102 |
+
query_pos: Optional[Tensor] = None):
|
103 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
104 |
+
key=self.with_pos_embed(memory, pos),
|
105 |
+
value=memory, attn_mask=memory_mask,
|
106 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
107 |
+
tgt = tgt + self.dropout(tgt2)
|
108 |
+
tgt = self.norm(tgt)
|
109 |
+
|
110 |
+
return tgt
|
111 |
+
|
112 |
+
def forward_pre(self, tgt, memory,
|
113 |
+
memory_mask: Optional[Tensor] = None,
|
114 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
115 |
+
pos: Optional[Tensor] = None,
|
116 |
+
query_pos: Optional[Tensor] = None):
|
117 |
+
tgt2 = self.norm(tgt)
|
118 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
119 |
+
key=self.with_pos_embed(memory, pos),
|
120 |
+
value=memory, attn_mask=memory_mask,
|
121 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
122 |
+
tgt = tgt + self.dropout(tgt2)
|
123 |
+
|
124 |
+
return tgt
|
125 |
+
|
126 |
+
def forward(self, tgt, memory,
|
127 |
+
memory_mask: Optional[Tensor] = None,
|
128 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
129 |
+
pos: Optional[Tensor] = None,
|
130 |
+
query_pos: Optional[Tensor] = None):
|
131 |
+
if self.normalize_before:
|
132 |
+
return self.forward_pre(tgt, memory, memory_mask,
|
133 |
+
memory_key_padding_mask, pos, query_pos)
|
134 |
+
return self.forward_post(tgt, memory, memory_mask,
|
135 |
+
memory_key_padding_mask, pos, query_pos)
|
136 |
+
|
137 |
+
|
138 |
+
class FFNLayer(nn.Module):
|
139 |
+
|
140 |
+
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
141 |
+
activation="relu", normalize_before=False):
|
142 |
+
super().__init__()
|
143 |
+
# Implementation of Feedforward model
|
144 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
145 |
+
self.dropout = nn.Dropout(dropout)
|
146 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
147 |
+
|
148 |
+
self.norm = nn.LayerNorm(d_model)
|
149 |
+
|
150 |
+
self.activation = _get_activation_fn(activation)
|
151 |
+
self.normalize_before = normalize_before
|
152 |
+
|
153 |
+
self._reset_parameters()
|
154 |
+
|
155 |
+
def _reset_parameters(self):
|
156 |
+
for p in self.parameters():
|
157 |
+
if p.dim() > 1:
|
158 |
+
nn.init.xavier_uniform_(p)
|
159 |
+
|
160 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
161 |
+
return tensor if pos is None else tensor + pos
|
162 |
+
|
163 |
+
def forward_post(self, tgt):
|
164 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
165 |
+
tgt = tgt + self.dropout(tgt2)
|
166 |
+
tgt = self.norm(tgt)
|
167 |
+
return tgt
|
168 |
+
|
169 |
+
def forward_pre(self, tgt):
|
170 |
+
tgt2 = self.norm(tgt)
|
171 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
172 |
+
tgt = tgt + self.dropout(tgt2)
|
173 |
+
return tgt
|
174 |
+
|
175 |
+
def forward(self, tgt):
|
176 |
+
if self.normalize_before:
|
177 |
+
return self.forward_pre(tgt)
|
178 |
+
return self.forward_post(tgt)
|
179 |
+
|
180 |
+
|
181 |
+
def _get_activation_fn(activation):
|
182 |
+
"""Return an activation function given a string"""
|
183 |
+
if activation == "relu":
|
184 |
+
return F.relu
|
185 |
+
if activation == "gelu":
|
186 |
+
return F.gelu
|
187 |
+
if activation == "glu":
|
188 |
+
return F.glu
|
189 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
190 |
+
|
191 |
+
|
192 |
+
class MLP(nn.Module):
|
193 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
194 |
+
|
195 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
196 |
+
super().__init__()
|
197 |
+
self.num_layers = num_layers
|
198 |
+
h = [hidden_dim] * (num_layers - 1)
|
199 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
for i, layer in enumerate(self.layers):
|
203 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
204 |
+
return x
|
205 |
+
|
206 |
+
|
207 |
+
@TRANSFORMER_DECODER_REGISTRY.register()
|
208 |
+
class MultiScaleMaskedTransformerDecoder(nn.Module):
|
209 |
+
|
210 |
+
_version = 2
|
211 |
+
|
212 |
+
def _load_from_state_dict(
|
213 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
214 |
+
):
|
215 |
+
version = local_metadata.get("version", None)
|
216 |
+
if version is None or version < 2:
|
217 |
+
# Do not warn if train from scratch
|
218 |
+
scratch = True
|
219 |
+
logger = logging.getLogger(__name__)
|
220 |
+
for k in list(state_dict.keys()):
|
221 |
+
newk = k
|
222 |
+
if "static_query" in k:
|
223 |
+
newk = k.replace("static_query", "query_feat")
|
224 |
+
if newk != k:
|
225 |
+
state_dict[newk] = state_dict[k]
|
226 |
+
del state_dict[k]
|
227 |
+
scratch = False
|
228 |
+
|
229 |
+
if not scratch:
|
230 |
+
logger.warning(
|
231 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
232 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
233 |
+
)
|
234 |
+
|
235 |
+
@configurable
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
in_channels,
|
239 |
+
mask_classification=True,
|
240 |
+
*,
|
241 |
+
num_classes: int,
|
242 |
+
hidden_dim: int,
|
243 |
+
num_queries: int,
|
244 |
+
nheads: int,
|
245 |
+
dim_feedforward: int,
|
246 |
+
dec_layers: int,
|
247 |
+
pre_norm: bool,
|
248 |
+
mask_dim: int,
|
249 |
+
enforce_input_project: bool,
|
250 |
+
):
|
251 |
+
"""
|
252 |
+
NOTE: this interface is experimental.
|
253 |
+
Args:
|
254 |
+
in_channels: channels of the input features
|
255 |
+
mask_classification: whether to add mask classifier or not
|
256 |
+
num_classes: number of classes
|
257 |
+
hidden_dim: Transformer feature dimension
|
258 |
+
num_queries: number of queries
|
259 |
+
nheads: number of heads
|
260 |
+
dim_feedforward: feature dimension in feedforward network
|
261 |
+
enc_layers: number of Transformer encoder layers
|
262 |
+
dec_layers: number of Transformer decoder layers
|
263 |
+
pre_norm: whether to use pre-LayerNorm or not
|
264 |
+
mask_dim: mask feature dimension
|
265 |
+
enforce_input_project: add input project 1x1 conv even if input
|
266 |
+
channels and hidden dim is identical
|
267 |
+
"""
|
268 |
+
super().__init__()
|
269 |
+
|
270 |
+
assert mask_classification, "Only support mask classification model"
|
271 |
+
self.mask_classification = mask_classification
|
272 |
+
|
273 |
+
# positional encoding
|
274 |
+
N_steps = hidden_dim // 2
|
275 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
276 |
+
|
277 |
+
# define Transformer decoder here
|
278 |
+
self.num_heads = nheads
|
279 |
+
self.num_layers = dec_layers
|
280 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
281 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
282 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
283 |
+
|
284 |
+
for _ in range(self.num_layers):
|
285 |
+
self.transformer_self_attention_layers.append(
|
286 |
+
SelfAttentionLayer(
|
287 |
+
d_model=hidden_dim,
|
288 |
+
nhead=nheads,
|
289 |
+
dropout=0.0,
|
290 |
+
normalize_before=pre_norm,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
|
294 |
+
self.transformer_cross_attention_layers.append(
|
295 |
+
CrossAttentionLayer(
|
296 |
+
d_model=hidden_dim,
|
297 |
+
nhead=nheads,
|
298 |
+
dropout=0.0,
|
299 |
+
normalize_before=pre_norm,
|
300 |
+
)
|
301 |
+
)
|
302 |
+
|
303 |
+
self.transformer_ffn_layers.append(
|
304 |
+
FFNLayer(
|
305 |
+
d_model=hidden_dim,
|
306 |
+
dim_feedforward=dim_feedforward,
|
307 |
+
dropout=0.0,
|
308 |
+
normalize_before=pre_norm,
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
313 |
+
|
314 |
+
self.num_queries = num_queries
|
315 |
+
# learnable query features
|
316 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
317 |
+
# learnable query p.e.
|
318 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
319 |
+
|
320 |
+
# level embedding (we always use 3 scales)
|
321 |
+
self.num_feature_levels = 3
|
322 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
323 |
+
self.input_proj = nn.ModuleList()
|
324 |
+
for _ in range(self.num_feature_levels):
|
325 |
+
if in_channels != hidden_dim or enforce_input_project:
|
326 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
327 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
328 |
+
else:
|
329 |
+
self.input_proj.append(nn.Sequential())
|
330 |
+
|
331 |
+
# output FFNs
|
332 |
+
if self.mask_classification:
|
333 |
+
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
|
334 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
335 |
+
|
336 |
+
@classmethod
|
337 |
+
def from_config(cls, cfg, in_channels, mask_classification):
|
338 |
+
ret = {}
|
339 |
+
ret["in_channels"] = in_channels
|
340 |
+
ret["mask_classification"] = mask_classification
|
341 |
+
|
342 |
+
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
|
343 |
+
ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
|
344 |
+
ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
|
345 |
+
# Transformer parameters:
|
346 |
+
ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
347 |
+
ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
348 |
+
|
349 |
+
# NOTE: because we add learnable query features which requires supervision,
|
350 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
351 |
+
# implementation: that is, number of auxiliary losses is always
|
352 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
353 |
+
# auxiliary losses equals number of decoders plus 1.
|
354 |
+
assert cfg.MODEL.MASK_FORMER.DEC_LAYERS >= 1
|
355 |
+
ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS - 1
|
356 |
+
ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
357 |
+
ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ
|
358 |
+
|
359 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
360 |
+
|
361 |
+
return ret
|
362 |
+
|
363 |
+
def forward(self, x, mask_features, mask = None):
|
364 |
+
# x is a list of multi-scale feature
|
365 |
+
assert len(x) == self.num_feature_levels
|
366 |
+
src = []
|
367 |
+
pos = []
|
368 |
+
size_list = []
|
369 |
+
|
370 |
+
# disable mask, it does not affect performance
|
371 |
+
del mask
|
372 |
+
|
373 |
+
for i in range(self.num_feature_levels):
|
374 |
+
size_list.append(x[i].shape[-2:])
|
375 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
376 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
377 |
+
|
378 |
+
# flatten NxCxHxW to HWxNxC
|
379 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
380 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
381 |
+
|
382 |
+
_, bs, _ = src[0].shape
|
383 |
+
|
384 |
+
# QxNxC
|
385 |
+
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
386 |
+
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
387 |
+
|
388 |
+
predictions_class = []
|
389 |
+
predictions_mask = []
|
390 |
+
|
391 |
+
# prediction heads on learnable query features
|
392 |
+
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0])
|
393 |
+
predictions_class.append(outputs_class)
|
394 |
+
predictions_mask.append(outputs_mask)
|
395 |
+
|
396 |
+
for i in range(self.num_layers):
|
397 |
+
level_index = i % self.num_feature_levels
|
398 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
399 |
+
# attention: cross-attention first
|
400 |
+
output = self.transformer_cross_attention_layers[i](
|
401 |
+
output, src[level_index],
|
402 |
+
memory_mask=attn_mask,
|
403 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
404 |
+
pos=pos[level_index], query_pos=query_embed
|
405 |
+
)
|
406 |
+
|
407 |
+
output = self.transformer_self_attention_layers[i](
|
408 |
+
output, tgt_mask=None,
|
409 |
+
tgt_key_padding_mask=None,
|
410 |
+
query_pos=query_embed
|
411 |
+
)
|
412 |
+
|
413 |
+
# FFN
|
414 |
+
output = self.transformer_ffn_layers[i](
|
415 |
+
output
|
416 |
+
)
|
417 |
+
|
418 |
+
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
|
419 |
+
predictions_class.append(outputs_class)
|
420 |
+
predictions_mask.append(outputs_mask)
|
421 |
+
|
422 |
+
assert len(predictions_class) == self.num_layers + 1
|
423 |
+
|
424 |
+
out = {
|
425 |
+
'pred_logits': predictions_class[-1],
|
426 |
+
'pred_masks': predictions_mask[-1],
|
427 |
+
'aux_outputs': self._set_aux_loss(
|
428 |
+
predictions_class if self.mask_classification else None, predictions_mask
|
429 |
+
)
|
430 |
+
}
|
431 |
+
return out
|
432 |
+
|
433 |
+
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size):
|
434 |
+
decoder_output = self.decoder_norm(output)
|
435 |
+
decoder_output = decoder_output.transpose(0, 1)
|
436 |
+
outputs_class = self.class_embed(decoder_output)
|
437 |
+
mask_embed = self.mask_embed(decoder_output)
|
438 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
439 |
+
|
440 |
+
# NOTE: prediction is of higher-resolution
|
441 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
442 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
443 |
+
# must use bool type
|
444 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
445 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
446 |
+
attn_mask = attn_mask.detach()
|
447 |
+
|
448 |
+
return outputs_class, outputs_mask, attn_mask
|
449 |
+
|
450 |
+
@torch.jit.unused
|
451 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks):
|
452 |
+
# this is a workaround to make torchscript happy, as torchscript
|
453 |
+
# doesn't support dictionary with non-homogeneous values, such
|
454 |
+
# as a dict having both a Tensor and a list.
|
455 |
+
if self.mask_classification:
|
456 |
+
return [
|
457 |
+
{"pred_logits": a, "pred_masks": b}
|
458 |
+
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
|
459 |
+
]
|
460 |
+
else:
|
461 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
mask2former/modeling/transformer_decoder/maskformer_transformer_decoder.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import fvcore.nn.weight_init as weight_init
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from detectron2.config import configurable
|
9 |
+
from detectron2.layers import Conv2d
|
10 |
+
from detectron2.utils.registry import Registry
|
11 |
+
|
12 |
+
from .position_encoding import PositionEmbeddingSine
|
13 |
+
from .transformer import Transformer
|
14 |
+
|
15 |
+
|
16 |
+
TRANSFORMER_DECODER_REGISTRY = Registry("TRANSFORMER_MODULE")
|
17 |
+
TRANSFORMER_DECODER_REGISTRY.__doc__ = """
|
18 |
+
Registry for transformer module in MaskFormer.
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
def build_transformer_decoder(cfg, in_channels, mask_classification=True):
|
23 |
+
"""
|
24 |
+
Build a instance embedding branch from `cfg.MODEL.INS_EMBED_HEAD.NAME`.
|
25 |
+
"""
|
26 |
+
name = cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME
|
27 |
+
return TRANSFORMER_DECODER_REGISTRY.get(name)(cfg, in_channels, mask_classification)
|
28 |
+
|
29 |
+
|
30 |
+
@TRANSFORMER_DECODER_REGISTRY.register()
|
31 |
+
class StandardTransformerDecoder(nn.Module):
|
32 |
+
@configurable
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels,
|
36 |
+
mask_classification=True,
|
37 |
+
*,
|
38 |
+
num_classes: int,
|
39 |
+
hidden_dim: int,
|
40 |
+
num_queries: int,
|
41 |
+
nheads: int,
|
42 |
+
dropout: float,
|
43 |
+
dim_feedforward: int,
|
44 |
+
enc_layers: int,
|
45 |
+
dec_layers: int,
|
46 |
+
pre_norm: bool,
|
47 |
+
deep_supervision: bool,
|
48 |
+
mask_dim: int,
|
49 |
+
enforce_input_project: bool,
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
NOTE: this interface is experimental.
|
53 |
+
Args:
|
54 |
+
in_channels: channels of the input features
|
55 |
+
mask_classification: whether to add mask classifier or not
|
56 |
+
num_classes: number of classes
|
57 |
+
hidden_dim: Transformer feature dimension
|
58 |
+
num_queries: number of queries
|
59 |
+
nheads: number of heads
|
60 |
+
dropout: dropout in Transformer
|
61 |
+
dim_feedforward: feature dimension in feedforward network
|
62 |
+
enc_layers: number of Transformer encoder layers
|
63 |
+
dec_layers: number of Transformer decoder layers
|
64 |
+
pre_norm: whether to use pre-LayerNorm or not
|
65 |
+
deep_supervision: whether to add supervision to every decoder layers
|
66 |
+
mask_dim: mask feature dimension
|
67 |
+
enforce_input_project: add input project 1x1 conv even if input
|
68 |
+
channels and hidden dim is identical
|
69 |
+
"""
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.mask_classification = mask_classification
|
73 |
+
|
74 |
+
# positional encoding
|
75 |
+
N_steps = hidden_dim // 2
|
76 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
77 |
+
|
78 |
+
transformer = Transformer(
|
79 |
+
d_model=hidden_dim,
|
80 |
+
dropout=dropout,
|
81 |
+
nhead=nheads,
|
82 |
+
dim_feedforward=dim_feedforward,
|
83 |
+
num_encoder_layers=enc_layers,
|
84 |
+
num_decoder_layers=dec_layers,
|
85 |
+
normalize_before=pre_norm,
|
86 |
+
return_intermediate_dec=deep_supervision,
|
87 |
+
)
|
88 |
+
|
89 |
+
self.num_queries = num_queries
|
90 |
+
self.transformer = transformer
|
91 |
+
hidden_dim = transformer.d_model
|
92 |
+
|
93 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
94 |
+
|
95 |
+
if in_channels != hidden_dim or enforce_input_project:
|
96 |
+
self.input_proj = Conv2d(in_channels, hidden_dim, kernel_size=1)
|
97 |
+
weight_init.c2_xavier_fill(self.input_proj)
|
98 |
+
else:
|
99 |
+
self.input_proj = nn.Sequential()
|
100 |
+
self.aux_loss = deep_supervision
|
101 |
+
|
102 |
+
# output FFNs
|
103 |
+
if self.mask_classification:
|
104 |
+
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
|
105 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_config(cls, cfg, in_channels, mask_classification):
|
109 |
+
ret = {}
|
110 |
+
ret["in_channels"] = in_channels
|
111 |
+
ret["mask_classification"] = mask_classification
|
112 |
+
|
113 |
+
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
|
114 |
+
ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
|
115 |
+
ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
|
116 |
+
# Transformer parameters:
|
117 |
+
ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
118 |
+
ret["dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
119 |
+
ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
120 |
+
ret["enc_layers"] = cfg.MODEL.MASK_FORMER.ENC_LAYERS
|
121 |
+
ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
122 |
+
ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
123 |
+
ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
124 |
+
ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ
|
125 |
+
|
126 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
127 |
+
|
128 |
+
return ret
|
129 |
+
|
130 |
+
def forward(self, x, mask_features, mask=None):
|
131 |
+
if mask is not None:
|
132 |
+
mask = F.interpolate(mask[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
133 |
+
pos = self.pe_layer(x, mask)
|
134 |
+
|
135 |
+
src = x
|
136 |
+
hs, memory = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos)
|
137 |
+
|
138 |
+
if self.mask_classification:
|
139 |
+
outputs_class = self.class_embed(hs)
|
140 |
+
out = {"pred_logits": outputs_class[-1]}
|
141 |
+
else:
|
142 |
+
out = {}
|
143 |
+
|
144 |
+
if self.aux_loss:
|
145 |
+
# [l, bs, queries, embed]
|
146 |
+
mask_embed = self.mask_embed(hs)
|
147 |
+
outputs_seg_masks = torch.einsum("lbqc,bchw->lbqhw", mask_embed, mask_features)
|
148 |
+
out["pred_masks"] = outputs_seg_masks[-1]
|
149 |
+
out["aux_outputs"] = self._set_aux_loss(
|
150 |
+
outputs_class if self.mask_classification else None, outputs_seg_masks
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
# FIXME h_boxes takes the last one computed, keep this in mind
|
154 |
+
# [bs, queries, embed]
|
155 |
+
mask_embed = self.mask_embed(hs[-1])
|
156 |
+
outputs_seg_masks = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
157 |
+
out["pred_masks"] = outputs_seg_masks
|
158 |
+
return out
|
159 |
+
|
160 |
+
@torch.jit.unused
|
161 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks):
|
162 |
+
# this is a workaround to make torchscript happy, as torchscript
|
163 |
+
# doesn't support dictionary with non-homogeneous values, such
|
164 |
+
# as a dict having both a Tensor and a list.
|
165 |
+
if self.mask_classification:
|
166 |
+
return [
|
167 |
+
{"pred_logits": a, "pred_masks": b}
|
168 |
+
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
|
169 |
+
]
|
170 |
+
else:
|
171 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
172 |
+
|
173 |
+
|
174 |
+
class MLP(nn.Module):
|
175 |
+
"""Very simple multi-layer perceptron (also called FFN)"""
|
176 |
+
|
177 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
178 |
+
super().__init__()
|
179 |
+
self.num_layers = num_layers
|
180 |
+
h = [hidden_dim] * (num_layers - 1)
|
181 |
+
self.layers = nn.ModuleList(
|
182 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
183 |
+
)
|
184 |
+
|
185 |
+
def forward(self, x):
|
186 |
+
for i, layer in enumerate(self.layers):
|
187 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
188 |
+
return x
|
mask2former/modeling/transformer_decoder/opd_transformer_decoder.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import logging
|
4 |
+
import fvcore.nn.weight_init as weight_init
|
5 |
+
from typing import Optional
|
6 |
+
import torch
|
7 |
+
from torch import nn, Tensor
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d
|
12 |
+
|
13 |
+
from .position_encoding import PositionEmbeddingSine
|
14 |
+
from .maskformer_transformer_decoder import TRANSFORMER_DECODER_REGISTRY
|
15 |
+
from .mask2former_transformer_decoder import (
|
16 |
+
SelfAttentionLayer,
|
17 |
+
CrossAttentionLayer,
|
18 |
+
FFNLayer,
|
19 |
+
MLP,
|
20 |
+
)
|
21 |
+
from ..criterion import convert_to_filled_tensor
|
22 |
+
|
23 |
+
|
24 |
+
@TRANSFORMER_DECODER_REGISTRY.register()
|
25 |
+
class OPDMultiScaleMaskedTransformerDecoder(nn.Module):
|
26 |
+
|
27 |
+
_version = 2
|
28 |
+
|
29 |
+
def _load_from_state_dict(
|
30 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
31 |
+
):
|
32 |
+
version = local_metadata.get("version", None)
|
33 |
+
if version is None or version < 2:
|
34 |
+
# Do not warn if train from scratch
|
35 |
+
scratch = True
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
for k in list(state_dict.keys()):
|
38 |
+
newk = k
|
39 |
+
if "static_query" in k:
|
40 |
+
newk = k.replace("static_query", "query_feat")
|
41 |
+
if newk != k:
|
42 |
+
state_dict[newk] = state_dict[k]
|
43 |
+
del state_dict[k]
|
44 |
+
scratch = False
|
45 |
+
|
46 |
+
if not scratch:
|
47 |
+
logger.warning(
|
48 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
49 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
50 |
+
)
|
51 |
+
|
52 |
+
@configurable
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
in_channels,
|
56 |
+
mask_classification=True,
|
57 |
+
*,
|
58 |
+
num_classes: int,
|
59 |
+
hidden_dim: int,
|
60 |
+
num_queries: int,
|
61 |
+
nheads: int,
|
62 |
+
dim_feedforward: int,
|
63 |
+
dec_layers: int,
|
64 |
+
pre_norm: bool,
|
65 |
+
mask_dim: int,
|
66 |
+
enforce_input_project: bool,
|
67 |
+
# OPD
|
68 |
+
motionnet_type,
|
69 |
+
obj_method
|
70 |
+
):
|
71 |
+
"""
|
72 |
+
NOTE: this interface is experimental.
|
73 |
+
Args:
|
74 |
+
in_channels: channels of the input features
|
75 |
+
mask_classification: whether to add mask classifier or not
|
76 |
+
num_classes: number of classes
|
77 |
+
hidden_dim: Transformer feature dimension
|
78 |
+
num_queries: number of queries
|
79 |
+
nheads: number of heads
|
80 |
+
dim_feedforward: feature dimension in feedforward network
|
81 |
+
enc_layers: number of Transformer encoder layers
|
82 |
+
dec_layers: number of Transformer decoder layers
|
83 |
+
pre_norm: whether to use pre-LayerNorm or not
|
84 |
+
mask_dim: mask feature dimension
|
85 |
+
enforce_input_project: add input project 1x1 conv even if input
|
86 |
+
channels and hidden dim is identical
|
87 |
+
"""
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
# OPD
|
91 |
+
self.motionnet_type = motionnet_type
|
92 |
+
self.num_classes = num_classes
|
93 |
+
self.obj_method = obj_method
|
94 |
+
|
95 |
+
assert mask_classification, "Only support mask classification model"
|
96 |
+
self.mask_classification = mask_classification
|
97 |
+
|
98 |
+
# positional encoding
|
99 |
+
N_steps = hidden_dim // 2
|
100 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
101 |
+
|
102 |
+
# define Transformer decoder here
|
103 |
+
self.num_heads = nheads
|
104 |
+
self.num_layers = dec_layers
|
105 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
106 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
107 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
108 |
+
|
109 |
+
for _ in range(self.num_layers):
|
110 |
+
self.transformer_self_attention_layers.append(
|
111 |
+
SelfAttentionLayer(
|
112 |
+
d_model=hidden_dim,
|
113 |
+
nhead=nheads,
|
114 |
+
dropout=0.0,
|
115 |
+
normalize_before=pre_norm,
|
116 |
+
)
|
117 |
+
)
|
118 |
+
|
119 |
+
self.transformer_cross_attention_layers.append(
|
120 |
+
CrossAttentionLayer(
|
121 |
+
d_model=hidden_dim,
|
122 |
+
nhead=nheads,
|
123 |
+
dropout=0.0,
|
124 |
+
normalize_before=pre_norm,
|
125 |
+
)
|
126 |
+
)
|
127 |
+
|
128 |
+
self.transformer_ffn_layers.append(
|
129 |
+
FFNLayer(
|
130 |
+
d_model=hidden_dim,
|
131 |
+
dim_feedforward=dim_feedforward,
|
132 |
+
dropout=0.0,
|
133 |
+
normalize_before=pre_norm,
|
134 |
+
)
|
135 |
+
)
|
136 |
+
|
137 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
138 |
+
|
139 |
+
self.num_queries = num_queries
|
140 |
+
# learnable query features
|
141 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
142 |
+
# learnable query p.e.
|
143 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
144 |
+
|
145 |
+
# level embedding (we always use 3 scales)
|
146 |
+
self.num_feature_levels = 3
|
147 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
148 |
+
self.input_proj = nn.ModuleList()
|
149 |
+
for _ in range(self.num_feature_levels):
|
150 |
+
if in_channels != hidden_dim or enforce_input_project:
|
151 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
152 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
153 |
+
else:
|
154 |
+
self.input_proj.append(nn.Sequential())
|
155 |
+
|
156 |
+
# output FFNs
|
157 |
+
if self.mask_classification:
|
158 |
+
self.class_embed = nn.Sequential(
|
159 |
+
nn.Linear(hidden_dim, 32),
|
160 |
+
nn.ReLU(inplace=True),
|
161 |
+
nn.Linear(32, num_classes + 1),
|
162 |
+
)
|
163 |
+
# OPD Changes
|
164 |
+
self.mtype_embed = nn.Sequential(
|
165 |
+
nn.Linear(hidden_dim, 32),
|
166 |
+
nn.ReLU(inplace=True),
|
167 |
+
nn.Linear(32, 2),
|
168 |
+
)
|
169 |
+
self.morigin_embed = nn.Sequential(
|
170 |
+
nn.Linear(hidden_dim, 32),
|
171 |
+
nn.ReLU(inplace=True),
|
172 |
+
nn.Linear(32, 3),
|
173 |
+
)
|
174 |
+
self.maxis_embed = nn.Sequential(
|
175 |
+
nn.Linear(hidden_dim, 32),
|
176 |
+
nn.ReLU(inplace=True),
|
177 |
+
nn.Linear(32, 3),
|
178 |
+
)
|
179 |
+
self.mstate_embed = nn.Sequential(
|
180 |
+
nn.Linear(hidden_dim, 32),
|
181 |
+
nn.ReLU(inplace=True),
|
182 |
+
nn.Linear(32, 1),
|
183 |
+
)
|
184 |
+
self.mstatemax_embed = nn.Sequential(
|
185 |
+
nn.Linear(hidden_dim, 32),
|
186 |
+
nn.ReLU(inplace=True),
|
187 |
+
nn.Linear(32, 1),
|
188 |
+
)
|
189 |
+
if self.motionnet_type == "BMOC_V0":
|
190 |
+
# Define the layers for the extrinsic prediction
|
191 |
+
self.extrinsic_feature_layer = nn.Sequential(
|
192 |
+
# 16 * 256 * 64 * 64
|
193 |
+
nn.Conv2d(256, 256, 3, 2, 1), # 16 * 256 * 32 * 32
|
194 |
+
nn.BatchNorm2d(256),
|
195 |
+
nn.ReLU(inplace=True),
|
196 |
+
nn.MaxPool2d(2, 2), # 16 * 256 * 16 * 16
|
197 |
+
nn.Conv2d(256, 256, 3, 2, 1), # 16 * 256 * 8 * 8
|
198 |
+
nn.BatchNorm2d(256),
|
199 |
+
nn.ReLU(inplace=True),
|
200 |
+
nn.MaxPool2d(2, 2), # 16 * 256 * 4 * 4
|
201 |
+
nn.Conv2d(256, 64, 1), # 16 * 64 * 4 * 4
|
202 |
+
nn.BatchNorm2d(64),
|
203 |
+
nn.ReLU(inplace=True),
|
204 |
+
nn.Flatten() # 16 * 1024
|
205 |
+
)
|
206 |
+
for layer in self.extrinsic_feature_layer:
|
207 |
+
if isinstance(layer, nn.Conv2d):
|
208 |
+
nn.init.kaiming_normal_(
|
209 |
+
layer.weight, mode="fan_out", nonlinearity="relu"
|
210 |
+
)
|
211 |
+
self.extrinsic_pred_layer = nn.Sequential(
|
212 |
+
nn.Linear(768, 512),
|
213 |
+
# nn.Linear(768, 512),
|
214 |
+
nn.ReLU(inplace=True),
|
215 |
+
nn.Linear(512, 128),
|
216 |
+
nn.ReLU(inplace=True),
|
217 |
+
nn.Linear(128, 32),
|
218 |
+
nn.ReLU(inplace=True),
|
219 |
+
nn.Linear(32, 12), # 16 * 12
|
220 |
+
)
|
221 |
+
elif self.motionnet_type == "BMOC_V1":
|
222 |
+
self.extrinsic_embed = nn.Sequential(
|
223 |
+
nn.Linear(hidden_dim, 32),
|
224 |
+
nn.ReLU(inplace=True),
|
225 |
+
nn.Linear(32, 12),
|
226 |
+
)
|
227 |
+
elif self.motionnet_type == "BMOC_V2":
|
228 |
+
self.extrinsic_embed = nn.Sequential(
|
229 |
+
nn.Linear(hidden_dim, 32),
|
230 |
+
nn.ReLU(inplace=True),
|
231 |
+
nn.Linear(32, 7),
|
232 |
+
)
|
233 |
+
elif self.motionnet_type == "BMOC_V3":
|
234 |
+
self.extrinsic_embed = nn.Sequential(
|
235 |
+
nn.Linear(hidden_dim, 32),
|
236 |
+
nn.ReLU(inplace=True),
|
237 |
+
nn.Linear(32, 9),
|
238 |
+
)
|
239 |
+
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
240 |
+
if self.motionnet_type == "BMOC_V5":
|
241 |
+
self.mask_weight_layer = SelfAttentionLayer(
|
242 |
+
d_model=hidden_dim,
|
243 |
+
nhead=nheads,
|
244 |
+
dropout=0.0,
|
245 |
+
normalize_before=pre_norm,
|
246 |
+
)
|
247 |
+
# Define the layers for the extrinsic prediction
|
248 |
+
self.extrinsic_feature_layer = nn.Sequential(
|
249 |
+
nn.BatchNorm2d(256),
|
250 |
+
# 16 * 256 * 64 * 64
|
251 |
+
nn.Conv2d(256, 256, 3, 2, 1), # 16 * 256 * 32 * 32
|
252 |
+
nn.BatchNorm2d(256),
|
253 |
+
nn.ReLU(inplace=True),
|
254 |
+
nn.MaxPool2d(2, 2), # 16 * 256 * 16 * 16
|
255 |
+
nn.Conv2d(256, 256, 3, 2, 1), # 16 * 256 * 8 * 8
|
256 |
+
nn.BatchNorm2d(256),
|
257 |
+
nn.ReLU(inplace=True),
|
258 |
+
nn.MaxPool2d(2, 2), # 16 * 256 * 4 * 4
|
259 |
+
nn.Conv2d(256, 64, 1), # 16 * 64 * 4 * 4
|
260 |
+
nn.BatchNorm2d(64),
|
261 |
+
nn.ReLU(inplace=True),
|
262 |
+
nn.Flatten() # 16 * 1024
|
263 |
+
)
|
264 |
+
for layer in self.extrinsic_feature_layer:
|
265 |
+
if isinstance(layer, nn.Conv2d):
|
266 |
+
nn.init.kaiming_normal_(
|
267 |
+
layer.weight, mode="fan_out", nonlinearity="relu"
|
268 |
+
)
|
269 |
+
if self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5":
|
270 |
+
self.extrinsic_pred_layer = nn.Sequential(
|
271 |
+
nn.Linear(1024, 512),
|
272 |
+
nn.ReLU(inplace=True),
|
273 |
+
nn.Linear(512, 128),
|
274 |
+
nn.ReLU(inplace=True),
|
275 |
+
nn.Linear(128, 32),
|
276 |
+
nn.ReLU(inplace=True),
|
277 |
+
nn.Linear(32, 7), # 16 * 7
|
278 |
+
)
|
279 |
+
elif self.motionnet_type == "BMOC_V6":
|
280 |
+
self.extrinsic_pred_layer = nn.Sequential(
|
281 |
+
# nn.Linear(1024, 512),
|
282 |
+
nn.Linear(768, 512),
|
283 |
+
nn.ReLU(inplace=True),
|
284 |
+
nn.Linear(512, 128),
|
285 |
+
nn.ReLU(inplace=True),
|
286 |
+
nn.Linear(128, 32),
|
287 |
+
nn.ReLU(inplace=True),
|
288 |
+
nn.Linear(32, 12), # 16 * 12
|
289 |
+
)
|
290 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
291 |
+
|
292 |
+
@classmethod
|
293 |
+
def from_config(cls, cfg, in_channels, mask_classification):
|
294 |
+
ret = {}
|
295 |
+
ret["in_channels"] = in_channels
|
296 |
+
ret["mask_classification"] = mask_classification
|
297 |
+
|
298 |
+
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
|
299 |
+
ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
|
300 |
+
ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
|
301 |
+
# Transformer parameters:
|
302 |
+
ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
303 |
+
ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
304 |
+
|
305 |
+
# NOTE: because we add learnable query features which requires supervision,
|
306 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
307 |
+
# implementation: that is, number of auxiliary losses is always
|
308 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
309 |
+
# auxiliary losses equals number of decoders plus 1.
|
310 |
+
assert cfg.MODEL.MASK_FORMER.DEC_LAYERS >= 1
|
311 |
+
ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS - 1
|
312 |
+
ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
313 |
+
ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ
|
314 |
+
|
315 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
316 |
+
|
317 |
+
# OPD
|
318 |
+
ret["motionnet_type"] = cfg.MODEL.MOTIONNET.TYPE
|
319 |
+
|
320 |
+
ret['obj_method'] = cfg.OBJ_DETECT
|
321 |
+
|
322 |
+
return ret
|
323 |
+
|
324 |
+
def forward(self, x, mask_features, mask = None):
|
325 |
+
# x is a list of multi-scale feature
|
326 |
+
assert len(x) == self.num_feature_levels
|
327 |
+
src = []
|
328 |
+
pos = []
|
329 |
+
size_list = []
|
330 |
+
|
331 |
+
# disable mask, it does not affect performance
|
332 |
+
# if not self.obj_method:
|
333 |
+
# del mask
|
334 |
+
# import pdb
|
335 |
+
# pdb.set_trace()
|
336 |
+
|
337 |
+
for i in range(self.num_feature_levels):
|
338 |
+
size_list.append(x[i].shape[-2:])
|
339 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
340 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
341 |
+
|
342 |
+
# flatten NxCxHxW to HWxNxC
|
343 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
344 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
345 |
+
|
346 |
+
_, bs, _ = src[0].shape
|
347 |
+
|
348 |
+
# QxNxC
|
349 |
+
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
350 |
+
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
351 |
+
|
352 |
+
predictions_class = []
|
353 |
+
predictions_mask = []
|
354 |
+
# OPD
|
355 |
+
predictions_mtype = []
|
356 |
+
predictions_morigin = []
|
357 |
+
predictions_maxis = []
|
358 |
+
predictions_mstate = []
|
359 |
+
predictions_mstatemax = []
|
360 |
+
|
361 |
+
if self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
362 |
+
predictions_extrinsic = []
|
363 |
+
|
364 |
+
|
365 |
+
# prediction heads on learnable query features
|
366 |
+
outputs_class, outputs_mask, attn_mask, outputs_mtype, outputs_morigin, outputs_maxis, outputs_extrinsic, outputs_mstate, outputs_mstatemax = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], query_embed=query_embed, mask=mask)
|
367 |
+
predictions_class.append(outputs_class)
|
368 |
+
predictions_mask.append(outputs_mask)
|
369 |
+
# OPD
|
370 |
+
predictions_mtype.append(outputs_mtype)
|
371 |
+
predictions_morigin.append(outputs_morigin)
|
372 |
+
predictions_maxis.append(outputs_maxis)
|
373 |
+
predictions_mstate.append(outputs_mstate)
|
374 |
+
predictions_mstatemax.append(outputs_mstatemax)
|
375 |
+
|
376 |
+
if self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
377 |
+
predictions_extrinsic.append(outputs_extrinsic)
|
378 |
+
|
379 |
+
for i in range(self.num_layers):
|
380 |
+
level_index = i % self.num_feature_levels
|
381 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
382 |
+
# attention: cross-attention first
|
383 |
+
output = self.transformer_cross_attention_layers[i](
|
384 |
+
output, src[level_index],
|
385 |
+
memory_mask=attn_mask,
|
386 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
387 |
+
pos=pos[level_index], query_pos=query_embed
|
388 |
+
)
|
389 |
+
|
390 |
+
output = self.transformer_self_attention_layers[i](
|
391 |
+
output, tgt_mask=None,
|
392 |
+
tgt_key_padding_mask=None,
|
393 |
+
query_pos=query_embed
|
394 |
+
)
|
395 |
+
|
396 |
+
# FFN
|
397 |
+
output = self.transformer_ffn_layers[i](
|
398 |
+
output
|
399 |
+
)
|
400 |
+
|
401 |
+
outputs_class, outputs_mask, attn_mask, outputs_mtype, outputs_morigin, outputs_maxis, outputs_extrinsic, outputs_mstate, outputs_mstatemax = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], query_embed=query_embed)
|
402 |
+
predictions_class.append(outputs_class)
|
403 |
+
predictions_mask.append(outputs_mask)
|
404 |
+
# OPD
|
405 |
+
predictions_mtype.append(outputs_mtype)
|
406 |
+
predictions_morigin.append(outputs_morigin)
|
407 |
+
predictions_maxis.append(outputs_maxis)
|
408 |
+
predictions_mstate.append(outputs_mstate)
|
409 |
+
predictions_mstatemax.append(outputs_mstatemax)
|
410 |
+
|
411 |
+
if self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
412 |
+
predictions_extrinsic.append(outputs_extrinsic)
|
413 |
+
|
414 |
+
assert len(predictions_class) == self.num_layers + 1
|
415 |
+
if self.mask_classification:
|
416 |
+
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC":
|
417 |
+
aux_outputs = self._set_aux_loss(
|
418 |
+
predictions_class, predictions_mask, predictions_mtype, predictions_morigin, predictions_maxis, None, predictions_mstate, predictions_mstatemax
|
419 |
+
)
|
420 |
+
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
421 |
+
aux_outputs = self._set_aux_loss(
|
422 |
+
predictions_class, predictions_mask, predictions_mtype, predictions_morigin, predictions_maxis, predictions_extrinsic, predictions_mstate, predictions_mstatemax
|
423 |
+
)
|
424 |
+
|
425 |
+
else:
|
426 |
+
aux_outputs = self._set_aux_loss(
|
427 |
+
None, predictions_mask, None, None, None, None, None
|
428 |
+
)
|
429 |
+
# OPD
|
430 |
+
if self.motionnet_type == "BMOC_V0":
|
431 |
+
extrinsic_feature = self.extrinsic_feature_layer(mask_features)
|
432 |
+
predictions_extrinsic = self.extrinsic_pred_layer(extrinsic_feature)
|
433 |
+
|
434 |
+
out = {
|
435 |
+
'pred_logits': predictions_class[-1],
|
436 |
+
'pred_masks': predictions_mask[-1],
|
437 |
+
# OPD
|
438 |
+
'pred_mtypes': predictions_mtype[-1],
|
439 |
+
'pred_morigins': predictions_morigin[-1],
|
440 |
+
'pred_maxises': predictions_maxis[-1],
|
441 |
+
'aux_outputs': aux_outputs,
|
442 |
+
'pred_mstates': predictions_mstate[-1],
|
443 |
+
'pred_mstatemaxs': predictions_mstatemax[-1],
|
444 |
+
}
|
445 |
+
if self.motionnet_type == "BMOC_V0":
|
446 |
+
out['pred_extrinsics'] = predictions_extrinsic
|
447 |
+
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
448 |
+
out['pred_extrinsics'] = predictions_extrinsic[-1]
|
449 |
+
|
450 |
+
return out
|
451 |
+
|
452 |
+
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, query_embed, mask = None):
|
453 |
+
decoder_output = self.decoder_norm(output)
|
454 |
+
decoder_output = decoder_output.transpose(0, 1)
|
455 |
+
outputs_class = self.class_embed(decoder_output)
|
456 |
+
# OPD Changes
|
457 |
+
outputs_mtype = self.mtype_embed(decoder_output)
|
458 |
+
outputs_morigin = self.morigin_embed(decoder_output)
|
459 |
+
outputs_maxis = self.maxis_embed(decoder_output)
|
460 |
+
outputs_mstate = self.mstate_embed(decoder_output)
|
461 |
+
outputs_mstatemax = self.mstatemax_embed(decoder_output)
|
462 |
+
|
463 |
+
if self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3":
|
464 |
+
outputs_extrinsic = self.extrinsic_embed(decoder_output)
|
465 |
+
elif self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC":
|
466 |
+
outputs_extrinsic = None
|
467 |
+
|
468 |
+
mask_embed = self.mask_embed(decoder_output)
|
469 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
470 |
+
|
471 |
+
# import pdb
|
472 |
+
# pdb.set_trace()
|
473 |
+
# TODO: Add different variants of using object mask to get the extrinsic
|
474 |
+
|
475 |
+
if self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V6":
|
476 |
+
binary_mask = (outputs_mask > 0).float()
|
477 |
+
weighted_masked_feature = mask_features + torch.einsum("bqhw,bchw->bchw", binary_mask, mask_features)
|
478 |
+
extrinsic_feature = self.extrinsic_feature_layer(weighted_masked_feature)
|
479 |
+
outputs_extrinsic = self.extrinsic_pred_layer(extrinsic_feature)
|
480 |
+
elif self.motionnet_type == "BMOC_V5":
|
481 |
+
# Get one weight for each query
|
482 |
+
mask_weights = torch.transpose(self.mask_weight_layer(
|
483 |
+
torch.transpose(mask_embed, 0, 1), tgt_mask=None,
|
484 |
+
tgt_key_padding_mask=None,
|
485 |
+
query_pos=query_embed
|
486 |
+
), 0, 1).mean(2)
|
487 |
+
binary_mask = (outputs_mask > 0).float()
|
488 |
+
weighted_mask = torch.einsum("bq,bqhw->bqhw", mask_weights, binary_mask)
|
489 |
+
weighted_masked_feature = mask_features + torch.einsum("bqhw,bchw->bchw", weighted_mask, mask_features)
|
490 |
+
extrinsic_feature = self.extrinsic_feature_layer(weighted_masked_feature)
|
491 |
+
outputs_extrinsic = self.extrinsic_pred_layer(extrinsic_feature)
|
492 |
+
|
493 |
+
# NOTE: prediction is of higher-resolution
|
494 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
495 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
496 |
+
# must use bool type
|
497 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
498 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
499 |
+
attn_mask = attn_mask.detach()
|
500 |
+
|
501 |
+
return outputs_class, outputs_mask, attn_mask, outputs_mtype, outputs_morigin, outputs_maxis, outputs_extrinsic, outputs_mstate, outputs_mstatemax
|
502 |
+
|
503 |
+
@torch.jit.unused
|
504 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks, predictions_mtype, predictions_morigin, predictions_maxis, predictions_extrinsic, predictions_mstate, predictions_mstatemax):
|
505 |
+
# this is a workaround to make torchscript happy, as torchscript
|
506 |
+
# doesn't support dictionary with non-homogeneous values, such
|
507 |
+
# as a dict having both a Tensor and a list.
|
508 |
+
if self.mask_classification:
|
509 |
+
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC":
|
510 |
+
return [
|
511 |
+
{"pred_logits": a, "pred_masks": b, "pred_mtypes": c, "pred_morigins": d, "pred_maxises": e, "pred_mstates": f, "pred_mstatemaxs": g}
|
512 |
+
for a, b, c, d, e, f, g in zip(outputs_class[:-1], outputs_seg_masks[:-1], predictions_mtype[:-1], predictions_morigin[:-1], predictions_maxis[:-1], predictions_mstate[:-1], predictions_mstatemax[:-1])
|
513 |
+
]
|
514 |
+
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6":
|
515 |
+
return [
|
516 |
+
{"pred_logits": a, "pred_masks": b, "pred_mtypes": c, "pred_morigins": d, "pred_maxises": e, "pred_extrinsics": f, "pred_mstates": g, "pred_mstatemaxs": h}
|
517 |
+
for a, b, c, d, e, f, g, h in zip(outputs_class[:-1], outputs_seg_masks[:-1], predictions_mtype[:-1], predictions_morigin[:-1], predictions_maxis[:-1], predictions_extrinsic[:-1], predictions_mstate[:-1], predictions_mstatemax[:-1])
|
518 |
+
]
|
519 |
+
else:
|
520 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
mask2former/modeling/transformer_decoder/position_encoding.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py
|
3 |
+
"""
|
4 |
+
Various positional encodings for the transformer.
|
5 |
+
"""
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
class PositionEmbeddingSine(nn.Module):
|
13 |
+
"""
|
14 |
+
This is a more standard version of the position embedding, very similar to the one
|
15 |
+
used by the Attention is all you need paper, generalized to work on images.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
19 |
+
super().__init__()
|
20 |
+
self.num_pos_feats = num_pos_feats
|
21 |
+
self.temperature = temperature
|
22 |
+
self.normalize = normalize
|
23 |
+
if scale is not None and normalize is False:
|
24 |
+
raise ValueError("normalize should be True if scale is passed")
|
25 |
+
if scale is None:
|
26 |
+
scale = 2 * math.pi
|
27 |
+
self.scale = scale
|
28 |
+
|
29 |
+
def forward(self, x, mask=None):
|
30 |
+
if mask is None:
|
31 |
+
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
|
32 |
+
not_mask = ~mask
|
33 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
34 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
35 |
+
if self.normalize:
|
36 |
+
eps = 1e-6
|
37 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
38 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
39 |
+
|
40 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
41 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
42 |
+
|
43 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
44 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
45 |
+
pos_x = torch.stack(
|
46 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
47 |
+
).flatten(3)
|
48 |
+
pos_y = torch.stack(
|
49 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
50 |
+
).flatten(3)
|
51 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
52 |
+
return pos
|
53 |
+
|
54 |
+
def __repr__(self, _repr_indent=4):
|
55 |
+
head = "Positional encoding " + self.__class__.__name__
|
56 |
+
body = [
|
57 |
+
"num_pos_feats: {}".format(self.num_pos_feats),
|
58 |
+
"temperature: {}".format(self.temperature),
|
59 |
+
"normalize: {}".format(self.normalize),
|
60 |
+
"scale: {}".format(self.scale),
|
61 |
+
]
|
62 |
+
# _repr_indent = 4
|
63 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
64 |
+
return "\n".join(lines)
|
mask2former/modeling/transformer_decoder/transformer.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/transformer.py
|
3 |
+
"""
|
4 |
+
Transformer class.
|
5 |
+
|
6 |
+
Copy-paste from torch.nn.Transformer with modifications:
|
7 |
+
* positional encodings are passed in MHattention
|
8 |
+
* extra LN at the end of encoder is removed
|
9 |
+
* decoder returns a stack of activations from all decoding layers
|
10 |
+
"""
|
11 |
+
import copy
|
12 |
+
from typing import List, Optional
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch import Tensor, nn
|
17 |
+
|
18 |
+
|
19 |
+
class Transformer(nn.Module):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
d_model=512,
|
23 |
+
nhead=8,
|
24 |
+
num_encoder_layers=6,
|
25 |
+
num_decoder_layers=6,
|
26 |
+
dim_feedforward=2048,
|
27 |
+
dropout=0.1,
|
28 |
+
activation="relu",
|
29 |
+
normalize_before=False,
|
30 |
+
return_intermediate_dec=False,
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
encoder_layer = TransformerEncoderLayer(
|
35 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
36 |
+
)
|
37 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
38 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
39 |
+
|
40 |
+
decoder_layer = TransformerDecoderLayer(
|
41 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
42 |
+
)
|
43 |
+
decoder_norm = nn.LayerNorm(d_model)
|
44 |
+
self.decoder = TransformerDecoder(
|
45 |
+
decoder_layer,
|
46 |
+
num_decoder_layers,
|
47 |
+
decoder_norm,
|
48 |
+
return_intermediate=return_intermediate_dec,
|
49 |
+
)
|
50 |
+
|
51 |
+
self._reset_parameters()
|
52 |
+
|
53 |
+
self.d_model = d_model
|
54 |
+
self.nhead = nhead
|
55 |
+
|
56 |
+
def _reset_parameters(self):
|
57 |
+
for p in self.parameters():
|
58 |
+
if p.dim() > 1:
|
59 |
+
nn.init.xavier_uniform_(p)
|
60 |
+
|
61 |
+
def forward(self, src, mask, query_embed, pos_embed):
|
62 |
+
# flatten NxCxHxW to HWxNxC
|
63 |
+
bs, c, h, w = src.shape
|
64 |
+
src = src.flatten(2).permute(2, 0, 1)
|
65 |
+
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
|
66 |
+
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
67 |
+
if mask is not None:
|
68 |
+
mask = mask.flatten(1)
|
69 |
+
|
70 |
+
tgt = torch.zeros_like(query_embed)
|
71 |
+
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
72 |
+
hs = self.decoder(
|
73 |
+
tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed
|
74 |
+
)
|
75 |
+
return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
|
76 |
+
|
77 |
+
|
78 |
+
class TransformerEncoder(nn.Module):
|
79 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
80 |
+
super().__init__()
|
81 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
82 |
+
self.num_layers = num_layers
|
83 |
+
self.norm = norm
|
84 |
+
|
85 |
+
def forward(
|
86 |
+
self,
|
87 |
+
src,
|
88 |
+
mask: Optional[Tensor] = None,
|
89 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
90 |
+
pos: Optional[Tensor] = None,
|
91 |
+
):
|
92 |
+
output = src
|
93 |
+
|
94 |
+
for layer in self.layers:
|
95 |
+
output = layer(
|
96 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos
|
97 |
+
)
|
98 |
+
|
99 |
+
if self.norm is not None:
|
100 |
+
output = self.norm(output)
|
101 |
+
|
102 |
+
return output
|
103 |
+
|
104 |
+
|
105 |
+
class TransformerDecoder(nn.Module):
|
106 |
+
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
107 |
+
super().__init__()
|
108 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
109 |
+
self.num_layers = num_layers
|
110 |
+
self.norm = norm
|
111 |
+
self.return_intermediate = return_intermediate
|
112 |
+
|
113 |
+
def forward(
|
114 |
+
self,
|
115 |
+
tgt,
|
116 |
+
memory,
|
117 |
+
tgt_mask: Optional[Tensor] = None,
|
118 |
+
memory_mask: Optional[Tensor] = None,
|
119 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
120 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
121 |
+
pos: Optional[Tensor] = None,
|
122 |
+
query_pos: Optional[Tensor] = None,
|
123 |
+
):
|
124 |
+
output = tgt
|
125 |
+
|
126 |
+
intermediate = []
|
127 |
+
|
128 |
+
for layer in self.layers:
|
129 |
+
output = layer(
|
130 |
+
output,
|
131 |
+
memory,
|
132 |
+
tgt_mask=tgt_mask,
|
133 |
+
memory_mask=memory_mask,
|
134 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
135 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
136 |
+
pos=pos,
|
137 |
+
query_pos=query_pos,
|
138 |
+
)
|
139 |
+
if self.return_intermediate:
|
140 |
+
intermediate.append(self.norm(output))
|
141 |
+
|
142 |
+
if self.norm is not None:
|
143 |
+
output = self.norm(output)
|
144 |
+
if self.return_intermediate:
|
145 |
+
intermediate.pop()
|
146 |
+
intermediate.append(output)
|
147 |
+
|
148 |
+
if self.return_intermediate:
|
149 |
+
return torch.stack(intermediate)
|
150 |
+
|
151 |
+
return output.unsqueeze(0)
|
152 |
+
|
153 |
+
|
154 |
+
class TransformerEncoderLayer(nn.Module):
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
d_model,
|
158 |
+
nhead,
|
159 |
+
dim_feedforward=2048,
|
160 |
+
dropout=0.1,
|
161 |
+
activation="relu",
|
162 |
+
normalize_before=False,
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
166 |
+
# Implementation of Feedforward model
|
167 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
168 |
+
self.dropout = nn.Dropout(dropout)
|
169 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
170 |
+
|
171 |
+
self.norm1 = nn.LayerNorm(d_model)
|
172 |
+
self.norm2 = nn.LayerNorm(d_model)
|
173 |
+
self.dropout1 = nn.Dropout(dropout)
|
174 |
+
self.dropout2 = nn.Dropout(dropout)
|
175 |
+
|
176 |
+
self.activation = _get_activation_fn(activation)
|
177 |
+
self.normalize_before = normalize_before
|
178 |
+
|
179 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
180 |
+
return tensor if pos is None else tensor + pos
|
181 |
+
|
182 |
+
def forward_post(
|
183 |
+
self,
|
184 |
+
src,
|
185 |
+
src_mask: Optional[Tensor] = None,
|
186 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
187 |
+
pos: Optional[Tensor] = None,
|
188 |
+
):
|
189 |
+
q = k = self.with_pos_embed(src, pos)
|
190 |
+
src2 = self.self_attn(
|
191 |
+
q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
192 |
+
)[0]
|
193 |
+
src = src + self.dropout1(src2)
|
194 |
+
src = self.norm1(src)
|
195 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
196 |
+
src = src + self.dropout2(src2)
|
197 |
+
src = self.norm2(src)
|
198 |
+
return src
|
199 |
+
|
200 |
+
def forward_pre(
|
201 |
+
self,
|
202 |
+
src,
|
203 |
+
src_mask: Optional[Tensor] = None,
|
204 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
205 |
+
pos: Optional[Tensor] = None,
|
206 |
+
):
|
207 |
+
src2 = self.norm1(src)
|
208 |
+
q = k = self.with_pos_embed(src2, pos)
|
209 |
+
src2 = self.self_attn(
|
210 |
+
q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
211 |
+
)[0]
|
212 |
+
src = src + self.dropout1(src2)
|
213 |
+
src2 = self.norm2(src)
|
214 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
215 |
+
src = src + self.dropout2(src2)
|
216 |
+
return src
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
src,
|
221 |
+
src_mask: Optional[Tensor] = None,
|
222 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
223 |
+
pos: Optional[Tensor] = None,
|
224 |
+
):
|
225 |
+
if self.normalize_before:
|
226 |
+
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
227 |
+
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
228 |
+
|
229 |
+
|
230 |
+
class TransformerDecoderLayer(nn.Module):
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
d_model,
|
234 |
+
nhead,
|
235 |
+
dim_feedforward=2048,
|
236 |
+
dropout=0.1,
|
237 |
+
activation="relu",
|
238 |
+
normalize_before=False,
|
239 |
+
):
|
240 |
+
super().__init__()
|
241 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
242 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
243 |
+
# Implementation of Feedforward model
|
244 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
245 |
+
self.dropout = nn.Dropout(dropout)
|
246 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
247 |
+
|
248 |
+
self.norm1 = nn.LayerNorm(d_model)
|
249 |
+
self.norm2 = nn.LayerNorm(d_model)
|
250 |
+
self.norm3 = nn.LayerNorm(d_model)
|
251 |
+
self.dropout1 = nn.Dropout(dropout)
|
252 |
+
self.dropout2 = nn.Dropout(dropout)
|
253 |
+
self.dropout3 = nn.Dropout(dropout)
|
254 |
+
|
255 |
+
self.activation = _get_activation_fn(activation)
|
256 |
+
self.normalize_before = normalize_before
|
257 |
+
|
258 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
259 |
+
return tensor if pos is None else tensor + pos
|
260 |
+
|
261 |
+
def forward_post(
|
262 |
+
self,
|
263 |
+
tgt,
|
264 |
+
memory,
|
265 |
+
tgt_mask: Optional[Tensor] = None,
|
266 |
+
memory_mask: Optional[Tensor] = None,
|
267 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
268 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
269 |
+
pos: Optional[Tensor] = None,
|
270 |
+
query_pos: Optional[Tensor] = None,
|
271 |
+
):
|
272 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
273 |
+
tgt2 = self.self_attn(
|
274 |
+
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
275 |
+
)[0]
|
276 |
+
tgt = tgt + self.dropout1(tgt2)
|
277 |
+
tgt = self.norm1(tgt)
|
278 |
+
tgt2 = self.multihead_attn(
|
279 |
+
query=self.with_pos_embed(tgt, query_pos),
|
280 |
+
key=self.with_pos_embed(memory, pos),
|
281 |
+
value=memory,
|
282 |
+
attn_mask=memory_mask,
|
283 |
+
key_padding_mask=memory_key_padding_mask,
|
284 |
+
)[0]
|
285 |
+
tgt = tgt + self.dropout2(tgt2)
|
286 |
+
tgt = self.norm2(tgt)
|
287 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
288 |
+
tgt = tgt + self.dropout3(tgt2)
|
289 |
+
tgt = self.norm3(tgt)
|
290 |
+
return tgt
|
291 |
+
|
292 |
+
def forward_pre(
|
293 |
+
self,
|
294 |
+
tgt,
|
295 |
+
memory,
|
296 |
+
tgt_mask: Optional[Tensor] = None,
|
297 |
+
memory_mask: Optional[Tensor] = None,
|
298 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
299 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
300 |
+
pos: Optional[Tensor] = None,
|
301 |
+
query_pos: Optional[Tensor] = None,
|
302 |
+
):
|
303 |
+
tgt2 = self.norm1(tgt)
|
304 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
305 |
+
tgt2 = self.self_attn(
|
306 |
+
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
307 |
+
)[0]
|
308 |
+
tgt = tgt + self.dropout1(tgt2)
|
309 |
+
tgt2 = self.norm2(tgt)
|
310 |
+
tgt2 = self.multihead_attn(
|
311 |
+
query=self.with_pos_embed(tgt2, query_pos),
|
312 |
+
key=self.with_pos_embed(memory, pos),
|
313 |
+
value=memory,
|
314 |
+
attn_mask=memory_mask,
|
315 |
+
key_padding_mask=memory_key_padding_mask,
|
316 |
+
)[0]
|
317 |
+
tgt = tgt + self.dropout2(tgt2)
|
318 |
+
tgt2 = self.norm3(tgt)
|
319 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
320 |
+
tgt = tgt + self.dropout3(tgt2)
|
321 |
+
return tgt
|
322 |
+
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
tgt,
|
326 |
+
memory,
|
327 |
+
tgt_mask: Optional[Tensor] = None,
|
328 |
+
memory_mask: Optional[Tensor] = None,
|
329 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
330 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
331 |
+
pos: Optional[Tensor] = None,
|
332 |
+
query_pos: Optional[Tensor] = None,
|
333 |
+
):
|
334 |
+
if self.normalize_before:
|
335 |
+
return self.forward_pre(
|
336 |
+
tgt,
|
337 |
+
memory,
|
338 |
+
tgt_mask,
|
339 |
+
memory_mask,
|
340 |
+
tgt_key_padding_mask,
|
341 |
+
memory_key_padding_mask,
|
342 |
+
pos,
|
343 |
+
query_pos,
|
344 |
+
)
|
345 |
+
return self.forward_post(
|
346 |
+
tgt,
|
347 |
+
memory,
|
348 |
+
tgt_mask,
|
349 |
+
memory_mask,
|
350 |
+
tgt_key_padding_mask,
|
351 |
+
memory_key_padding_mask,
|
352 |
+
pos,
|
353 |
+
query_pos,
|
354 |
+
)
|
355 |
+
|
356 |
+
|
357 |
+
def _get_clones(module, N):
|
358 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
359 |
+
|
360 |
+
|
361 |
+
def _get_activation_fn(activation):
|
362 |
+
"""Return an activation function given a string"""
|
363 |
+
if activation == "relu":
|
364 |
+
return F.relu
|
365 |
+
if activation == "gelu":
|
366 |
+
return F.gelu
|
367 |
+
if activation == "glu":
|
368 |
+
return F.glu
|
369 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
mask2former/utils/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .motion_visualizer import MotionVisualizer
|
mask2former/utils/misc.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py
|
3 |
+
"""
|
4 |
+
Misc functions, including distributed helpers.
|
5 |
+
|
6 |
+
Mostly copy-paste from torchvision references.
|
7 |
+
"""
|
8 |
+
from typing import List, Optional
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
import torchvision
|
13 |
+
from torch import Tensor
|
14 |
+
|
15 |
+
|
16 |
+
def _max_by_axis(the_list):
|
17 |
+
# type: (List[List[int]]) -> List[int]
|
18 |
+
maxes = the_list[0]
|
19 |
+
for sublist in the_list[1:]:
|
20 |
+
for index, item in enumerate(sublist):
|
21 |
+
maxes[index] = max(maxes[index], item)
|
22 |
+
return maxes
|
23 |
+
|
24 |
+
|
25 |
+
class NestedTensor(object):
|
26 |
+
def __init__(self, tensors, mask: Optional[Tensor]):
|
27 |
+
self.tensors = tensors
|
28 |
+
self.mask = mask
|
29 |
+
|
30 |
+
def to(self, device):
|
31 |
+
# type: (Device) -> NestedTensor # noqa
|
32 |
+
cast_tensor = self.tensors.to(device)
|
33 |
+
mask = self.mask
|
34 |
+
if mask is not None:
|
35 |
+
assert mask is not None
|
36 |
+
cast_mask = mask.to(device)
|
37 |
+
else:
|
38 |
+
cast_mask = None
|
39 |
+
return NestedTensor(cast_tensor, cast_mask)
|
40 |
+
|
41 |
+
def decompose(self):
|
42 |
+
return self.tensors, self.mask
|
43 |
+
|
44 |
+
def __repr__(self):
|
45 |
+
return str(self.tensors)
|
46 |
+
|
47 |
+
|
48 |
+
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
49 |
+
# TODO make this more general
|
50 |
+
if tensor_list[0].ndim == 3:
|
51 |
+
if torchvision._is_tracing():
|
52 |
+
# nested_tensor_from_tensor_list() does not export well to ONNX
|
53 |
+
# call _onnx_nested_tensor_from_tensor_list() instead
|
54 |
+
return _onnx_nested_tensor_from_tensor_list(tensor_list)
|
55 |
+
|
56 |
+
# TODO make it support different-sized images
|
57 |
+
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
58 |
+
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
59 |
+
batch_shape = [len(tensor_list)] + max_size
|
60 |
+
b, c, h, w = batch_shape
|
61 |
+
dtype = tensor_list[0].dtype
|
62 |
+
device = tensor_list[0].device
|
63 |
+
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
64 |
+
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
65 |
+
for img, pad_img, m in zip(tensor_list, tensor, mask):
|
66 |
+
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
67 |
+
m[: img.shape[1], : img.shape[2]] = False
|
68 |
+
else:
|
69 |
+
raise ValueError("not supported")
|
70 |
+
return NestedTensor(tensor, mask)
|
71 |
+
|
72 |
+
|
73 |
+
# _onnx_nested_tensor_from_tensor_list() is an implementation of
|
74 |
+
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
|
75 |
+
@torch.jit.unused
|
76 |
+
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
|
77 |
+
max_size = []
|
78 |
+
for i in range(tensor_list[0].dim()):
|
79 |
+
max_size_i = torch.max(
|
80 |
+
torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
|
81 |
+
).to(torch.int64)
|
82 |
+
max_size.append(max_size_i)
|
83 |
+
max_size = tuple(max_size)
|
84 |
+
|
85 |
+
# work around for
|
86 |
+
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
87 |
+
# m[: img.shape[1], :img.shape[2]] = False
|
88 |
+
# which is not yet supported in onnx
|
89 |
+
padded_imgs = []
|
90 |
+
padded_masks = []
|
91 |
+
for img in tensor_list:
|
92 |
+
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
|
93 |
+
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
|
94 |
+
padded_imgs.append(padded_img)
|
95 |
+
|
96 |
+
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
|
97 |
+
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
|
98 |
+
padded_masks.append(padded_mask.to(torch.bool))
|
99 |
+
|
100 |
+
tensor = torch.stack(padded_imgs)
|
101 |
+
mask = torch.stack(padded_masks)
|
102 |
+
|
103 |
+
return NestedTensor(tensor, mask=mask)
|
104 |
+
|
105 |
+
|
106 |
+
def is_dist_avail_and_initialized():
|
107 |
+
if not dist.is_available():
|
108 |
+
return False
|
109 |
+
if not dist.is_initialized():
|
110 |
+
return False
|
111 |
+
return True
|
mask2former/utils/motion_visualizer.py
ADDED
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fvcore.common.file_io import PathManager
|
2 |
+
from detectron2.utils.visualizer import (
|
3 |
+
Visualizer,
|
4 |
+
ColorMode,
|
5 |
+
_create_text_labels,
|
6 |
+
GenericMask,
|
7 |
+
)
|
8 |
+
from detectron2.structures import (
|
9 |
+
BitMasks,
|
10 |
+
Boxes,
|
11 |
+
BoxMode,
|
12 |
+
Keypoints,
|
13 |
+
PolygonMasks,
|
14 |
+
RotatedBoxes,
|
15 |
+
)
|
16 |
+
from detectron2.utils.colormap import random_color
|
17 |
+
|
18 |
+
from PIL import Image
|
19 |
+
import numpy as np
|
20 |
+
from numpy.linalg import norm
|
21 |
+
import math
|
22 |
+
|
23 |
+
MOTION_TYPE = {0: "rotation", 1: "translation"}
|
24 |
+
_COLORS_CAT = {
|
25 |
+
0: np.array([166, 206, 227]) / 255,
|
26 |
+
1: np.array([31, 120, 180]) / 255,
|
27 |
+
2: np.array([202, 178, 214]) / 255,
|
28 |
+
3: np.array([106, 61, 154]) / 255,
|
29 |
+
4: np.array([178, 223, 138]) / 255,
|
30 |
+
5: np.array([51, 160, 44]) / 255,
|
31 |
+
}
|
32 |
+
_COLORS_LEVEL = {
|
33 |
+
0: np.array([0, 255, 0]) / 255,
|
34 |
+
1: np.array([255, 128, 0]) / 255,
|
35 |
+
2: np.array([255, 0, 0]) / 255,
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def getFocalLength(FOV, height, width=None):
|
40 |
+
# FOV is in radius, should be vertical angle
|
41 |
+
if width == None:
|
42 |
+
f = height / (2 * math.tan(FOV / 2))
|
43 |
+
return f
|
44 |
+
else:
|
45 |
+
fx = height / (2 * math.tan(FOV / 2))
|
46 |
+
fy = fx / height * width
|
47 |
+
return (fx, fy)
|
48 |
+
|
49 |
+
|
50 |
+
def camera_to_image(point, is_real=False, intrinsic_matrix=None):
|
51 |
+
point_camera = np.array(point)
|
52 |
+
# Calculate the camera intrinsic parameters (they are fixed in this project)
|
53 |
+
if not is_real:
|
54 |
+
# Below is for the MoionNet synthetic dataset intrinsic
|
55 |
+
FOV = 50
|
56 |
+
img_width = img_height = 256
|
57 |
+
fx, fy = getFocalLength(FOV / 180 * math.pi, img_height, img_width)
|
58 |
+
cy = img_height / 2
|
59 |
+
cx = img_width / 2
|
60 |
+
x = point_camera[0] * fx / (-point_camera[2]) + cx
|
61 |
+
y = -(point_camera[1] * fy / (-point_camera[2])) + cy
|
62 |
+
else:
|
63 |
+
# Below is the for MotionREAL dataset
|
64 |
+
point_2d = np.dot(intrinsic_matrix, point_camera[:3])
|
65 |
+
x = point_2d[0] / point_2d[2]
|
66 |
+
y = point_2d[1] / point_2d[2]
|
67 |
+
|
68 |
+
return (x, y)
|
69 |
+
|
70 |
+
|
71 |
+
def rotation_from_vectors(source, dest):
|
72 |
+
a, b = (source / np.linalg.norm(source)).reshape(3), (
|
73 |
+
dest / np.linalg.norm(dest)
|
74 |
+
).reshape(3)
|
75 |
+
v = np.cross(a, b)
|
76 |
+
c = np.dot(a, b)
|
77 |
+
s = np.linalg.norm(v)
|
78 |
+
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
|
79 |
+
rmat = np.eye(3) + kmat + np.matmul(kmat, kmat) * ((1 - c) / (s ** 2))
|
80 |
+
return rmat
|
81 |
+
|
82 |
+
|
83 |
+
def rotatePoint(x, y, angle, scale):
|
84 |
+
rad = np.pi * angle / 180
|
85 |
+
x2 = np.cos(rad) * x - np.sin(rad) * y
|
86 |
+
y2 = np.sin(rad) * x + np.cos(rad) * y
|
87 |
+
return [x2 * scale, y2 * scale]
|
88 |
+
|
89 |
+
|
90 |
+
def circlePoints(axis, radius=0.5, num=50):
|
91 |
+
angles = np.linspace(0, 2 * np.pi, num, endpoint=False)
|
92 |
+
x_vec = np.cos(angles) * radius
|
93 |
+
y_vec = np.sin(angles) * radius
|
94 |
+
z_vec = np.zeros_like(x_vec) + 0.5
|
95 |
+
points = np.stack((x_vec, y_vec, z_vec), axis=0)
|
96 |
+
rot = rotation_from_vectors(np.array([0, 0, 1]), np.asarray(axis))
|
97 |
+
points = np.matmul(rot, points)
|
98 |
+
return points
|
99 |
+
|
100 |
+
|
101 |
+
def get_iou(bb1, bb2):
|
102 |
+
x_left = max(bb1[0], bb2[0])
|
103 |
+
y_top = max(bb1[1], bb2[1])
|
104 |
+
x_right = min(bb1[0] + bb1[2], bb2[0] + bb2[2])
|
105 |
+
y_bottom = min(bb1[1] + bb1[3], bb2[1] + bb2[3])
|
106 |
+
|
107 |
+
if x_right < x_left or y_bottom < y_top:
|
108 |
+
return 0.0
|
109 |
+
|
110 |
+
area = (x_right - x_left) * (y_bottom - y_top)
|
111 |
+
|
112 |
+
bb1_area = bb1[2] * bb1[3]
|
113 |
+
bb2_area = bb2[2] * bb2[3]
|
114 |
+
iou = area / float(bb1_area + bb2_area - area)
|
115 |
+
return iou
|
116 |
+
|
117 |
+
|
118 |
+
class MotionVisualizer(Visualizer):
|
119 |
+
def draw_gt_instance(self, anno, part_id_json, is_real=False, intrinsic_matrix=None, line_length=1):
|
120 |
+
# All annotations have been in the camera coordinate
|
121 |
+
masks = [anno["segmentation"]]
|
122 |
+
boxes = [BoxMode.convert(anno["bbox"], anno["bbox_mode"], BoxMode.XYXY_ABS)]
|
123 |
+
labels = [anno["category_id"]]
|
124 |
+
colors = None
|
125 |
+
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
|
126 |
+
"thing_colors"
|
127 |
+
):
|
128 |
+
colors = [
|
129 |
+
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
|
130 |
+
for c in labels
|
131 |
+
]
|
132 |
+
|
133 |
+
origins = [anno["motion"]["current_origin"]]
|
134 |
+
# Calculate the 2d origin (Only consider draw only one origin)
|
135 |
+
origins_4d = [origin[:] + [1] for origin in origins]
|
136 |
+
origin_2d = [camera_to_image(origin, is_real, intrinsic_matrix) for origin in origins_4d]
|
137 |
+
|
138 |
+
axises = [anno["motion"]["current_axis"]]
|
139 |
+
new_point = list(np.array(origins[0]) + line_length * np.array(axises[0]))
|
140 |
+
new_point = new_point[:] + [1]
|
141 |
+
new_point = camera_to_image(new_point, is_real, intrinsic_matrix)
|
142 |
+
|
143 |
+
arrow_p0 = rotatePoint(
|
144 |
+
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], 30, 0.1
|
145 |
+
)
|
146 |
+
arrow_p1 = rotatePoint(
|
147 |
+
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], -30, 0.1
|
148 |
+
)
|
149 |
+
circle_p = circlePoints(axises[0], 0.1, 50)
|
150 |
+
circle_p = line_length * circle_p + np.repeat(
|
151 |
+
np.asarray(origins[0])[:, np.newaxis], 50, axis=1
|
152 |
+
)
|
153 |
+
circle_p = circle_p.transpose()
|
154 |
+
circle_p_2d = np.asarray([camera_to_image(p, is_real, intrinsic_matrix) for p in circle_p])
|
155 |
+
|
156 |
+
self.draw_line(
|
157 |
+
[origin_2d[0][0], new_point[0]],
|
158 |
+
[origin_2d[0][1], new_point[1]],
|
159 |
+
color=_COLORS_LEVEL[0],
|
160 |
+
linewidth=2,
|
161 |
+
)
|
162 |
+
self.draw_line(
|
163 |
+
[new_point[0] - arrow_p0[0], new_point[0]],
|
164 |
+
[new_point[1] - arrow_p0[1], new_point[1]],
|
165 |
+
color=_COLORS_LEVEL[0],
|
166 |
+
linewidth=2,
|
167 |
+
)
|
168 |
+
self.draw_line(
|
169 |
+
[new_point[0] - arrow_p1[0], new_point[0]],
|
170 |
+
[new_point[1] - arrow_p1[1], new_point[1]],
|
171 |
+
color=_COLORS_LEVEL[0],
|
172 |
+
linewidth=2,
|
173 |
+
)
|
174 |
+
self.draw_polygon(
|
175 |
+
circle_p_2d, color=_COLORS_LEVEL[0], edge_color=_COLORS_LEVEL[0], alpha=0.0
|
176 |
+
)
|
177 |
+
|
178 |
+
mtype = 0 if anno["motion"]["type"] == "rotation" else 1
|
179 |
+
|
180 |
+
if not mtype:
|
181 |
+
self.draw_circle(origin_2d[0], color=_COLORS_LEVEL[0], radius=5)
|
182 |
+
|
183 |
+
names = self.metadata.get("thing_classes", None)
|
184 |
+
if names:
|
185 |
+
labels = [names[i] + "_" + anno["motion"]["type"] for i in labels]
|
186 |
+
labels = [
|
187 |
+
"{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else "")
|
188 |
+
for i, a in zip(labels, [anno])
|
189 |
+
]
|
190 |
+
|
191 |
+
cat_id = anno["category_id"]
|
192 |
+
self.overlay_instances(
|
193 |
+
labels=labels,
|
194 |
+
boxes=boxes,
|
195 |
+
masks=masks,
|
196 |
+
assigned_colors=[_COLORS_CAT[cat_id * 2 + mtype]],
|
197 |
+
)
|
198 |
+
|
199 |
+
part_id_json["partId"] = anno["motion"]["partId"]
|
200 |
+
part_id_json["type"] = anno["motion"]["type"]
|
201 |
+
part_id_json["category_id"] = anno["category_id"]
|
202 |
+
|
203 |
+
return self.output
|
204 |
+
|
205 |
+
def draw_prior(self, anno):
|
206 |
+
# All annotations have been in the camera coordinate
|
207 |
+
labels = [0]
|
208 |
+
|
209 |
+
origin = anno["start"]
|
210 |
+
origin_2d = anno["start_2d"]
|
211 |
+
new_point = anno["end_2d"]
|
212 |
+
|
213 |
+
axises = [anno["axises"]]
|
214 |
+
print(axises)
|
215 |
+
|
216 |
+
projection = anno["projMat"]
|
217 |
+
|
218 |
+
arrow_p0 = rotatePoint(
|
219 |
+
new_point[0] - origin_2d[0], new_point[1] - origin_2d[1], 30, 0.1
|
220 |
+
)
|
221 |
+
arrow_p1 = rotatePoint(
|
222 |
+
new_point[0] - origin_2d[0], new_point[1] - origin_2d[1], -30, 0.1
|
223 |
+
)
|
224 |
+
|
225 |
+
circle_p = circlePoints(axises[0], 0.1, 50)
|
226 |
+
circle_p = circle_p + np.repeat(np.asarray(origin)[:, np.newaxis], 50, axis=1)
|
227 |
+
# circle_p = circle_p.transpose()
|
228 |
+
circle_p = np.vstack((circle_p, np.ones(circle_p.shape[1])))
|
229 |
+
circle_p_2d = np.dot(projection, circle_p)
|
230 |
+
circle_p_2d = circle_p_2d / circle_p_2d[3, :]
|
231 |
+
circle_p_2d = circle_p_2d[:2, :]
|
232 |
+
circle_p_2d[0, :] = (circle_p_2d[0, :] + 1) / 2 * anno["img_size"]
|
233 |
+
circle_p_2d[1, :] = (-circle_p_2d[1, :] + 1) / 2 * anno["img_size"]
|
234 |
+
circle_p_2d = circle_p_2d.transpose()
|
235 |
+
|
236 |
+
axis_diff = anno["error"]
|
237 |
+
if axis_diff <= 2:
|
238 |
+
axis_color = _COLORS_LEVEL[0]
|
239 |
+
elif axis_diff > 2 and axis_diff <= 10:
|
240 |
+
axis_color = _COLORS_LEVEL[1]
|
241 |
+
elif axis_diff > 10:
|
242 |
+
axis_color = _COLORS_LEVEL[2]
|
243 |
+
|
244 |
+
print(axis_diff)
|
245 |
+
|
246 |
+
self.draw_line(
|
247 |
+
[origin_2d[0], new_point[0]],
|
248 |
+
[origin_2d[1], new_point[1]],
|
249 |
+
color=axis_color,
|
250 |
+
linewidth=2,
|
251 |
+
)
|
252 |
+
self.draw_line(
|
253 |
+
[new_point[0] - arrow_p0[0], new_point[0]],
|
254 |
+
[new_point[1] - arrow_p0[1], new_point[1]],
|
255 |
+
color=axis_color,
|
256 |
+
linewidth=2,
|
257 |
+
)
|
258 |
+
self.draw_line(
|
259 |
+
[new_point[0] - arrow_p1[0], new_point[0]],
|
260 |
+
[new_point[1] - arrow_p1[1], new_point[1]],
|
261 |
+
color=axis_color,
|
262 |
+
linewidth=2,
|
263 |
+
)
|
264 |
+
self.draw_polygon(
|
265 |
+
circle_p_2d, color=axis_color, edge_color=axis_color, alpha=0.0
|
266 |
+
)
|
267 |
+
|
268 |
+
mtype = 1
|
269 |
+
|
270 |
+
if not mtype:
|
271 |
+
self.draw_circle(origin_2d, color=_COLORS_LEVEL[0], radius=5)
|
272 |
+
|
273 |
+
cat_id = 0
|
274 |
+
labels = [
|
275 |
+
"{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else "")
|
276 |
+
for i, a in zip(labels, [anno])
|
277 |
+
]
|
278 |
+
# self.overlay_instances(
|
279 |
+
# labels=labels, boxes=None, masks=None, assigned_colors=[_COLORS_CAT[cat_id*2+mtype]]
|
280 |
+
# )
|
281 |
+
|
282 |
+
return self.output
|
283 |
+
|
284 |
+
def draw_pred_instance(self, prediction, d, match, is_real=False, intrinsic_matrix=None, line_length=1, no_mask=False, diagonal_length=-1):
|
285 |
+
if "annotations" in d:
|
286 |
+
boxes = prediction.get("bbox", None)
|
287 |
+
|
288 |
+
anno = None
|
289 |
+
annos = d["annotations"]
|
290 |
+
max_iou = -1
|
291 |
+
if not len(annos):
|
292 |
+
return None
|
293 |
+
|
294 |
+
for gt_anno in annos:
|
295 |
+
iou = get_iou(gt_anno["bbox"], boxes)
|
296 |
+
if np.isnan(iou):
|
297 |
+
return False
|
298 |
+
if iou > max_iou:
|
299 |
+
max_iou = iou
|
300 |
+
anno = gt_anno
|
301 |
+
else:
|
302 |
+
max_iou = -1
|
303 |
+
boxes = prediction.get("bbox", None)
|
304 |
+
anno = d
|
305 |
+
boxes = prediction.get("bbox", None)
|
306 |
+
iou = get_iou(anno["bbox"], boxes)
|
307 |
+
if iou > max_iou:
|
308 |
+
max_iou = iou
|
309 |
+
|
310 |
+
boxes = [BoxMode.convert(boxes, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)]
|
311 |
+
|
312 |
+
# Based on the motion type, determine to visualize the predicted motion origin or gt motion origin
|
313 |
+
# For translation joint, the motion origin is meaningless
|
314 |
+
pred_type = prediction["mtype"]
|
315 |
+
if pred_type == 1:
|
316 |
+
pred_origin = anno["motion"]["current_origin"]
|
317 |
+
else:
|
318 |
+
pred_origin = prediction["morigin"]
|
319 |
+
|
320 |
+
# Prepare the predicted origin and predicted axis
|
321 |
+
pred_origin_4d = pred_origin + [1]
|
322 |
+
pred_origin_2d = camera_to_image(pred_origin_4d, is_real, intrinsic_matrix)
|
323 |
+
pred_axis = np.array(prediction["maxis"])
|
324 |
+
pred_axis = list(pred_axis / norm(pred_axis))
|
325 |
+
pred_new_point = list(np.array(pred_origin) + line_length * np.array(pred_axis))
|
326 |
+
pred_new_point = pred_new_point + [1]
|
327 |
+
pred_new_point = camera_to_image(pred_new_point, is_real, intrinsic_matrix)
|
328 |
+
|
329 |
+
# Prepare the gt origin and gt axis
|
330 |
+
gt_origin = anno["motion"]["current_origin"]
|
331 |
+
gt_origin_4d = gt_origin + [1]
|
332 |
+
gt_origin_2d = camera_to_image(gt_origin_4d, is_real, intrinsic_matrix)
|
333 |
+
gt_axis = anno["motion"][
|
334 |
+
"current_axis"
|
335 |
+
] # gt_axis has been normalized in the annotation
|
336 |
+
gt_new_point = list(np.array(gt_origin) + line_length * np.array(gt_axis))
|
337 |
+
gt_new_point = gt_new_point + [1]
|
338 |
+
gt_new_point = camera_to_image(gt_new_point, is_real, intrinsic_matrix)
|
339 |
+
|
340 |
+
# Caluculate the axis and origin error to determine the color for the visualization of axis and origin
|
341 |
+
axis_diff = (
|
342 |
+
np.arccos(
|
343 |
+
np.abs(
|
344 |
+
np.dot(np.array(gt_axis), np.array(pred_axis))
|
345 |
+
/ (norm(pred_axis) * norm(gt_axis))
|
346 |
+
)
|
347 |
+
)
|
348 |
+
/ np.pi
|
349 |
+
* 180.0
|
350 |
+
)
|
351 |
+
if axis_diff <= 5:
|
352 |
+
axis_color = _COLORS_LEVEL[0]
|
353 |
+
elif axis_diff > 5 and axis_diff <= 10:
|
354 |
+
axis_color = _COLORS_LEVEL[1]
|
355 |
+
elif axis_diff > 10:
|
356 |
+
axis_color = _COLORS_LEVEL[2]
|
357 |
+
|
358 |
+
if diagonal_length == -1:
|
359 |
+
raise ValueError("diagonal length error")
|
360 |
+
|
361 |
+
origin_diff = np.linalg.norm(
|
362 |
+
np.cross(np.array(pred_origin) - np.array(gt_origin), np.array(gt_axis))
|
363 |
+
) / np.linalg.norm(gt_axis) / diagonal_length
|
364 |
+
if origin_diff <= 0.1:
|
365 |
+
origin_color = _COLORS_LEVEL[0]
|
366 |
+
elif origin_diff > 0.1 and origin_diff <= 0.25:
|
367 |
+
origin_color = _COLORS_LEVEL[1]
|
368 |
+
elif origin_diff > 0.25:
|
369 |
+
origin_color = _COLORS_LEVEL[2]
|
370 |
+
|
371 |
+
# Visualize gt
|
372 |
+
gt_color = np.array([0, 0, 255]) / 255
|
373 |
+
gt_arrow_p0 = rotatePoint(
|
374 |
+
gt_new_point[0] - gt_origin_2d[0],
|
375 |
+
gt_new_point[1] - gt_origin_2d[1],
|
376 |
+
30,
|
377 |
+
0.1,
|
378 |
+
)
|
379 |
+
gt_arrow_p1 = rotatePoint(
|
380 |
+
gt_new_point[0] - gt_origin_2d[0],
|
381 |
+
gt_new_point[1] - gt_origin_2d[1],
|
382 |
+
-30,
|
383 |
+
0.1,
|
384 |
+
)
|
385 |
+
gt_circle_p = circlePoints(gt_axis, 0.1, 50)
|
386 |
+
gt_circle_p = line_length * gt_circle_p + np.repeat(
|
387 |
+
np.asarray(gt_origin)[:, np.newaxis], 50, axis=1
|
388 |
+
)
|
389 |
+
gt_circle_p = gt_circle_p.transpose()
|
390 |
+
gt_circle_p_2d = np.asarray([camera_to_image(p, is_real, intrinsic_matrix) for p in gt_circle_p])
|
391 |
+
self.draw_line(
|
392 |
+
[gt_origin_2d[0], gt_new_point[0]],
|
393 |
+
[gt_origin_2d[1], gt_new_point[1]],
|
394 |
+
color=gt_color,
|
395 |
+
linewidth=2,
|
396 |
+
)
|
397 |
+
self.draw_line(
|
398 |
+
[gt_new_point[0] - gt_arrow_p0[0], gt_new_point[0]],
|
399 |
+
[gt_new_point[1] - gt_arrow_p0[1], gt_new_point[1]],
|
400 |
+
color=gt_color,
|
401 |
+
linewidth=2,
|
402 |
+
)
|
403 |
+
self.draw_line(
|
404 |
+
[gt_new_point[0] - gt_arrow_p1[0], gt_new_point[0]],
|
405 |
+
[gt_new_point[1] - gt_arrow_p1[1], gt_new_point[1]],
|
406 |
+
color=gt_color,
|
407 |
+
linewidth=2,
|
408 |
+
)
|
409 |
+
self.draw_polygon(
|
410 |
+
gt_circle_p_2d, color=gt_color, edge_color=gt_color, alpha=0.0
|
411 |
+
)
|
412 |
+
if pred_type == 0:
|
413 |
+
# self.draw_text("origin_error: {:.3f}".format(origin_diff), (origin_2d[0][0], origin_2d[0][1]-10*text_y_offset), color="c")
|
414 |
+
self.draw_circle(gt_origin_2d, color=gt_color, radius=5)
|
415 |
+
|
416 |
+
# Visualize the predicted axis
|
417 |
+
pred_arrow_p0 = rotatePoint(
|
418 |
+
pred_new_point[0] - pred_origin_2d[0],
|
419 |
+
pred_new_point[1] - pred_origin_2d[1],
|
420 |
+
30,
|
421 |
+
0.1,
|
422 |
+
)
|
423 |
+
pred_arrow_p1 = rotatePoint(
|
424 |
+
pred_new_point[0] - pred_origin_2d[0],
|
425 |
+
pred_new_point[1] - pred_origin_2d[1],
|
426 |
+
-30,
|
427 |
+
0.1,
|
428 |
+
)
|
429 |
+
pred_circle_p = circlePoints(pred_axis, 0.1, 50)
|
430 |
+
pred_circle_p = line_length * pred_circle_p + np.repeat(
|
431 |
+
np.asarray(pred_origin)[:, np.newaxis], 50, axis=1
|
432 |
+
)
|
433 |
+
pred_circle_p = pred_circle_p.transpose()
|
434 |
+
pred_circle_p_2d = np.asarray([camera_to_image(p, is_real, intrinsic_matrix) for p in pred_circle_p])
|
435 |
+
# text_y_offset = 1 if (new_point[1]-origin_2d[0][1]) > 0 else -1
|
436 |
+
# self.draw_text("axis_error: {:.3f}".format(axis_diff), (origin_2d[0][0], origin_2d[0][1]-20*text_y_offset), color="tan")
|
437 |
+
self.draw_line(
|
438 |
+
[pred_origin_2d[0], pred_new_point[0]],
|
439 |
+
[pred_origin_2d[1], pred_new_point[1]],
|
440 |
+
color=axis_color,
|
441 |
+
linewidth=2,
|
442 |
+
)
|
443 |
+
self.draw_line(
|
444 |
+
[pred_new_point[0] - pred_arrow_p0[0], pred_new_point[0]],
|
445 |
+
[pred_new_point[1] - pred_arrow_p0[1], pred_new_point[1]],
|
446 |
+
color=axis_color,
|
447 |
+
linewidth=2,
|
448 |
+
)
|
449 |
+
self.draw_line(
|
450 |
+
[pred_new_point[0] - pred_arrow_p1[0], pred_new_point[0]],
|
451 |
+
[pred_new_point[1] - pred_arrow_p1[1], pred_new_point[1]],
|
452 |
+
color=axis_color,
|
453 |
+
linewidth=2,
|
454 |
+
)
|
455 |
+
self.draw_polygon(
|
456 |
+
pred_circle_p_2d, color=axis_color, edge_color=axis_color, alpha=0.0
|
457 |
+
)
|
458 |
+
if pred_type == 0:
|
459 |
+
# self.draw_text("origin_error: {:.3f}".format(origin_diff), (origin_2d[0][0], origin_2d[0][1]-10*text_y_offset), color="c")
|
460 |
+
self.draw_circle(pred_origin_2d, color=origin_color, radius=5)
|
461 |
+
|
462 |
+
# Assign color to the segmentation
|
463 |
+
cat_id = prediction.get("category_id", None)
|
464 |
+
color_cat = _COLORS_CAT[cat_id * 2 + pred_type]
|
465 |
+
|
466 |
+
scores = [prediction.get("score", None)]
|
467 |
+
classes = [prediction.get("category_id", None)]
|
468 |
+
labels = _create_text_labels_motion(
|
469 |
+
classes,
|
470 |
+
scores,
|
471 |
+
self.metadata.get("thing_classes", None),
|
472 |
+
MOTION_TYPE[pred_type],
|
473 |
+
)
|
474 |
+
keypoints = prediction.get("keypoints", None)
|
475 |
+
if prediction.get("segmentation"):
|
476 |
+
import pycocotools.mask as mask_util
|
477 |
+
|
478 |
+
masks = [prediction.get("segmentation")]
|
479 |
+
else:
|
480 |
+
masks = None
|
481 |
+
|
482 |
+
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
|
483 |
+
"thing_colors"
|
484 |
+
):
|
485 |
+
colors = [
|
486 |
+
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
|
487 |
+
for c in classes
|
488 |
+
]
|
489 |
+
alpha = 0.8
|
490 |
+
else:
|
491 |
+
colors = [color_cat]
|
492 |
+
alpha = 0.5
|
493 |
+
|
494 |
+
if self._instance_mode == ColorMode.IMAGE_BW:
|
495 |
+
self.output.img = self._create_grayscale_image(
|
496 |
+
(mask_util.decode(prediction.get("segmentation")).any() > 0).numpy()
|
497 |
+
)
|
498 |
+
alpha = 0.3
|
499 |
+
# import pdb
|
500 |
+
# pdb.set_trace()
|
501 |
+
match["iou"] = max_iou
|
502 |
+
# Add the gt information
|
503 |
+
match["gt"] = {}
|
504 |
+
match["gt"]["partId"] = anno["motion"]["partId"]
|
505 |
+
match["gt"]["label"] = anno["motion"]["part_label"]
|
506 |
+
match["gt"]["type"] = anno["motion"]["type"]
|
507 |
+
match["gt"]["category_id"] = anno["category_id"]
|
508 |
+
match["gt"]["origin"] = gt_origin
|
509 |
+
match["gt"]["axis"] = gt_axis
|
510 |
+
# add the prediction information
|
511 |
+
match["pred"] = {}
|
512 |
+
match["pred"]["score"] = scores[0]
|
513 |
+
match["pred"]["type"] = pred_type
|
514 |
+
match["pred"]["category_id"] = cat_id
|
515 |
+
match["pred"]["origin"] = pred_origin
|
516 |
+
match["pred"]["axis"] = pred_axis
|
517 |
+
# add additional information
|
518 |
+
match["axis_error"] = axis_diff
|
519 |
+
match["origin_error"] = origin_diff
|
520 |
+
match["match"] = (
|
521 |
+
int(pred_type)
|
522 |
+
== int(
|
523 |
+
list(MOTION_TYPE.keys())[
|
524 |
+
list(MOTION_TYPE.values()).index(anno["motion"]["type"])
|
525 |
+
]
|
526 |
+
)
|
527 |
+
) and (cat_id == anno["category_id"])
|
528 |
+
|
529 |
+
if no_mask:
|
530 |
+
masks = None
|
531 |
+
|
532 |
+
self.overlay_instances(
|
533 |
+
masks=masks,
|
534 |
+
boxes=boxes,
|
535 |
+
labels=labels,
|
536 |
+
keypoints=keypoints,
|
537 |
+
assigned_colors=colors,
|
538 |
+
alpha=alpha,
|
539 |
+
)
|
540 |
+
return self.output
|
541 |
+
|
542 |
+
def draw_pred_only(self, prediction, prob):
|
543 |
+
scores = prediction.scores if prediction.has("scores") else None
|
544 |
+
if scores.numpy()[0] < prob:
|
545 |
+
return None
|
546 |
+
|
547 |
+
origins = list(prediction.morigin.numpy())
|
548 |
+
origins = [list(origin) for origin in origins]
|
549 |
+
|
550 |
+
axises = list(prediction.maxis.numpy())
|
551 |
+
axises = [list(axis) for axis in axises]
|
552 |
+
|
553 |
+
types = list(prediction.mtype.numpy())
|
554 |
+
classes = prediction.pred_classes if prediction.has("pred_classes") else None
|
555 |
+
|
556 |
+
color_cat = _COLORS_CAT[classes.numpy()[0] * 2 + types[0]]
|
557 |
+
|
558 |
+
origins_4d = [origin[:] + [1] for origin in origins]
|
559 |
+
origin_2d = [camera_to_image(origin) for origin in origins_4d]
|
560 |
+
|
561 |
+
new_point = list(np.array(origins[0]) + np.array(axises[0]))
|
562 |
+
new_point = new_point[:] + [1]
|
563 |
+
new_point = camera_to_image(new_point)
|
564 |
+
|
565 |
+
axis_color = _COLORS_LEVEL[0]
|
566 |
+
origin_color = _COLORS_LEVEL[0]
|
567 |
+
|
568 |
+
arrow_p0 = rotatePoint(
|
569 |
+
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], 30, 0.1
|
570 |
+
)
|
571 |
+
arrow_p1 = rotatePoint(
|
572 |
+
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], -30, 0.1
|
573 |
+
)
|
574 |
+
circle_p = circlePoints(axises[0], 0.1, 50)
|
575 |
+
circle_p = circle_p + np.repeat(
|
576 |
+
np.asarray(origins[0])[:, np.newaxis], 50, axis=1
|
577 |
+
)
|
578 |
+
circle_p = circle_p.transpose()
|
579 |
+
circle_p_2d = np.asarray([camera_to_image(p) for p in circle_p])
|
580 |
+
|
581 |
+
# text_y_offset = 1 if (new_point[1]-origin_2d[0][1]) > 0 else -1
|
582 |
+
# self.draw_text("axis_error: {:.3f}".format(axis_diff), (origin_2d[0][0], origin_2d[0][1]-20*text_y_offset), color="tan")
|
583 |
+
self.draw_line(
|
584 |
+
[origin_2d[0][0], new_point[0]],
|
585 |
+
[origin_2d[0][1], new_point[1]],
|
586 |
+
color=axis_color,
|
587 |
+
linewidth=2,
|
588 |
+
)
|
589 |
+
self.draw_line(
|
590 |
+
[new_point[0] - arrow_p0[0], new_point[0]],
|
591 |
+
[new_point[1] - arrow_p0[1], new_point[1]],
|
592 |
+
color=axis_color,
|
593 |
+
linewidth=2,
|
594 |
+
)
|
595 |
+
self.draw_line(
|
596 |
+
[new_point[0] - arrow_p1[0], new_point[0]],
|
597 |
+
[new_point[1] - arrow_p1[1], new_point[1]],
|
598 |
+
color=axis_color,
|
599 |
+
linewidth=2,
|
600 |
+
)
|
601 |
+
self.draw_polygon(
|
602 |
+
circle_p_2d, color=axis_color, edge_color=axis_color, alpha=0.0
|
603 |
+
)
|
604 |
+
|
605 |
+
if types[0] == 0:
|
606 |
+
# self.draw_text("origin_error: {:.3f}".format(origin_diff), (origin_2d[0][0], origin_2d[0][1]-10*text_y_offset), color="c")
|
607 |
+
self.draw_circle(origin_2d[0], color=origin_color, radius=5)
|
608 |
+
|
609 |
+
boxes = prediction.pred_boxes if prediction.has("pred_boxes") else None
|
610 |
+
labels = _create_text_labels_motion(
|
611 |
+
classes,
|
612 |
+
scores,
|
613 |
+
self.metadata.get("thing_classes", None),
|
614 |
+
MOTION_TYPE[types[0]],
|
615 |
+
)
|
616 |
+
keypoints = (
|
617 |
+
prediction.pred_keypoints if prediction.has("pred_keypoints") else None
|
618 |
+
)
|
619 |
+
|
620 |
+
if prediction.has("pred_masks"):
|
621 |
+
masks = np.asarray(prediction.pred_masks)
|
622 |
+
masks = [
|
623 |
+
GenericMask(x, self.output.height, self.output.width) for x in masks
|
624 |
+
]
|
625 |
+
else:
|
626 |
+
masks = None
|
627 |
+
|
628 |
+
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
|
629 |
+
"thing_colors"
|
630 |
+
):
|
631 |
+
colors = [
|
632 |
+
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
|
633 |
+
for c in classes
|
634 |
+
]
|
635 |
+
alpha = 0.8
|
636 |
+
else:
|
637 |
+
colors = [color_cat]
|
638 |
+
alpha = 0.5
|
639 |
+
|
640 |
+
if self._instance_mode == ColorMode.IMAGE_BW:
|
641 |
+
self.output.img = self._create_grayscale_image(
|
642 |
+
(prediction.pred_masks.any(dim=0) > 0).numpy()
|
643 |
+
)
|
644 |
+
alpha = 0.3
|
645 |
+
|
646 |
+
self.overlay_instances(
|
647 |
+
masks=masks,
|
648 |
+
boxes=boxes,
|
649 |
+
labels=labels,
|
650 |
+
keypoints=keypoints,
|
651 |
+
assigned_colors=colors,
|
652 |
+
alpha=alpha,
|
653 |
+
)
|
654 |
+
return self.output
|
655 |
+
|
656 |
+
|
657 |
+
def _create_text_labels_motion(classes, scores, class_names, motion_type):
|
658 |
+
"""
|
659 |
+
Args:
|
660 |
+
classes (list[int] or None):
|
661 |
+
scores (list[float] or None):
|
662 |
+
class_names (list[str] or None):
|
663 |
+
|
664 |
+
Returns:
|
665 |
+
list[str] or None
|
666 |
+
"""
|
667 |
+
labels = None
|
668 |
+
if classes is not None and class_names is not None and len(class_names) > 1:
|
669 |
+
labels = [class_names[i] for i in classes]
|
670 |
+
labels = [label + "_" + motion_type for label in labels]
|
671 |
+
if scores is not None:
|
672 |
+
if labels is None:
|
673 |
+
labels = ["{:.0f}%".format(s * 100) for s in scores]
|
674 |
+
else:
|
675 |
+
labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
|
676 |
+
return labels
|
mask2former/utils/tranform.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from scipy.spatial.distance import cdist, euclidean
|
6 |
+
|
7 |
+
def geometric_median(X, eps=1e-5):
|
8 |
+
y = np.mean(X, 0)
|
9 |
+
|
10 |
+
while True:
|
11 |
+
D = cdist(X, [y])
|
12 |
+
nonzeros = (D != 0)[:, 0]
|
13 |
+
|
14 |
+
Dinv = 1 / D[nonzeros]
|
15 |
+
Dinvs = np.sum(Dinv)
|
16 |
+
W = Dinv / Dinvs
|
17 |
+
T = np.sum(W * X[nonzeros], 0)
|
18 |
+
|
19 |
+
num_zeros = len(X) - np.sum(nonzeros)
|
20 |
+
if num_zeros == 0:
|
21 |
+
y1 = T
|
22 |
+
elif num_zeros == len(X):
|
23 |
+
return y
|
24 |
+
else:
|
25 |
+
R = (T - y) * Dinvs
|
26 |
+
r = np.linalg.norm(R)
|
27 |
+
rinv = 0 if r == 0 else num_zeros/r
|
28 |
+
y1 = max(0, 1-rinv)*T + min(1, rinv)*y
|
29 |
+
|
30 |
+
if euclidean(y, y1) < eps:
|
31 |
+
return y1
|
32 |
+
|
33 |
+
y = y1
|
34 |
+
|
35 |
+
# Transformation code fomr pytorch3d https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion
|
36 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
37 |
+
"""
|
38 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
39 |
+
using Gram--Schmidt orthogonalization per Section B of [1].
|
40 |
+
Args:
|
41 |
+
d6: 6D rotation representation, of size (*, 6)
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
batch of rotation matrices of size (*, 3, 3)
|
45 |
+
|
46 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
47 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
48 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
49 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
50 |
+
"""
|
51 |
+
|
52 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
53 |
+
b1 = F.normalize(a1, dim=-1)
|
54 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
55 |
+
b2 = F.normalize(b2, dim=-1)
|
56 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
57 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
58 |
+
|
59 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
60 |
+
"""
|
61 |
+
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
|
62 |
+
by dropping the last row. Note that 6D representation is not unique.
|
63 |
+
Args:
|
64 |
+
matrix: batch of rotation matrices of size (*, 3, 3)
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
6D rotation representation, of size (*, 6)
|
68 |
+
|
69 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
70 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
71 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
72 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
73 |
+
"""
|
74 |
+
batch_dim = matrix.size()[:-2]
|
75 |
+
return matrix[..., :2, :].clone().reshape(batch_dim + (6,))
|
76 |
+
|
77 |
+
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
78 |
+
"""
|
79 |
+
Returns torch.sqrt(torch.max(0, x))
|
80 |
+
but with a zero subgradient where x is 0.
|
81 |
+
"""
|
82 |
+
ret = torch.zeros_like(x)
|
83 |
+
positive_mask = x > 0
|
84 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
85 |
+
return ret
|
86 |
+
|
87 |
+
|
88 |
+
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
89 |
+
"""
|
90 |
+
Convert rotations given as rotation matrices to quaternions.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
97 |
+
"""
|
98 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
99 |
+
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
|
100 |
+
|
101 |
+
batch_dim = matrix.shape[:-2]
|
102 |
+
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
|
103 |
+
matrix.reshape(batch_dim + (9,)), dim=-1
|
104 |
+
)
|
105 |
+
|
106 |
+
q_abs = _sqrt_positive_part(
|
107 |
+
torch.stack(
|
108 |
+
[
|
109 |
+
1.0 + m00 + m11 + m22,
|
110 |
+
1.0 + m00 - m11 - m22,
|
111 |
+
1.0 - m00 + m11 - m22,
|
112 |
+
1.0 - m00 - m11 + m22,
|
113 |
+
],
|
114 |
+
dim=-1,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
|
118 |
+
# we produce the desired quaternion multiplied by each of r, i, j, k
|
119 |
+
quat_by_rijk = torch.stack(
|
120 |
+
[
|
121 |
+
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
122 |
+
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
123 |
+
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
124 |
+
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
125 |
+
],
|
126 |
+
dim=-2,
|
127 |
+
)
|
128 |
+
|
129 |
+
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
|
130 |
+
# the candidate won't be picked.
|
131 |
+
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
|
132 |
+
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
|
133 |
+
|
134 |
+
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
|
135 |
+
# forall i; we pick the best-conditioned one (with the largest denominator)
|
136 |
+
|
137 |
+
return quat_candidates[
|
138 |
+
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : # pyre-ignore[16]
|
139 |
+
].reshape(batch_dim + (4,))
|
140 |
+
|
141 |
+
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
|
142 |
+
"""
|
143 |
+
Convert rotations given as quaternions to rotation matrices.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
quaternions: quaternions with real part first,
|
147 |
+
as tensor of shape (..., 4).
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
151 |
+
"""
|
152 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
153 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
154 |
+
|
155 |
+
o = torch.stack(
|
156 |
+
(
|
157 |
+
1 - two_s * (j * j + k * k),
|
158 |
+
two_s * (i * j - k * r),
|
159 |
+
two_s * (i * k + j * r),
|
160 |
+
two_s * (i * j + k * r),
|
161 |
+
1 - two_s * (i * i + k * k),
|
162 |
+
two_s * (j * k - i * r),
|
163 |
+
two_s * (i * k - j * r),
|
164 |
+
two_s * (j * k + i * r),
|
165 |
+
1 - two_s * (i * i + j * j),
|
166 |
+
),
|
167 |
+
-1,
|
168 |
+
)
|
169 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
pre-requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.25.2
|
2 |
+
Pillow==10.0.1
|
3 |
+
torch==2.0.1
|
4 |
+
torchaudio==2.0.2
|
5 |
+
torchvision==0.15.2
|
6 |
+
urllib3==1.26.16
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h5py==3.9.0
|
2 |
+
imageio==2.31.3
|
3 |
+
open3d==0.17.0
|
4 |
+
opencv-python==4.8.0.76
|
5 |
+
pandas==2.1.0
|
6 |
+
pycocotools==2.0.7
|
7 |
+
scikit-image==0.21.0
|
8 |
+
scikit-learn==1.3.0
|
9 |
+
scipy==1.11.2
|
10 |
+
timm==0.9.7
|
11 |
+
detectron2 @ git+https://github.com/facebookresearch/detectron2.git@fc9c33b1f6e5d4c37bbb46dde19af41afc1ddb2a
|