Spaces:
Running
Running
File size: 5,482 Bytes
01664b3 5ceacf4 01664b3 20c01c5 01664b3 5ceacf4 01664b3 6d737eb 01664b3 3c7feee 01664b3 6d737eb 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 3c7feee 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 6d737eb 5ceacf4 6d737eb 01664b3 6d737eb 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 6d737eb 01664b3 6d737eb 01664b3 6d737eb 20c01c5 01664b3 6d737eb 01664b3 20c01c5 5ceacf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import re
import shutil
import time
from types import SimpleNamespace
from typing import Any
import gradio as gr
import numpy as np
from detectron2 import engine
from PIL import Image
from inference import main, setup_cfg
# internal settings
NUM_PROCESSES = 1
CROP = False
SCORE_THRESHOLD = 0.8
MAX_PARTS = 5
ARGS = SimpleNamespace(
config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
model=".data/models/motion_state_pred_opdformerp_rgb.pth",
input_format="RGB",
output=".output",
cpu=True,
)
NUM_SAMPLES = 10
outputs = []
def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_samples: int) -> list[Any]:
global outputs
def find_gifs(path: str) -> list[str]:
"""Scrape folders for all generated gif files."""
for file in os.listdir(path):
sub_path = os.path.join(path, file)
if os.path.isdir(sub_path):
for image_file in os.listdir(sub_path):
if re.match(r".*\.gif$", image_file):
yield os.path.join(sub_path, image_file)
def find_images(path: str) -> list[str]:
"""Scrape folders for all generated gif files."""
images = {}
for file in os.listdir(path):
sub_path = os.path.join(path, file)
if os.path.isdir(sub_path):
images[file] = []
for image_file in sorted(os.listdir(sub_path)):
if re.match(r".*\.png$", image_file):
images[file].append(os.path.join(sub_path, image_file))
return images
# clear old predictions
os.makedirs(ARGS.output, exist_ok=True)
for path in os.listdir(ARGS.output):
full_path = os.path.join(ARGS.output, path)
if os.path.isdir(full_path):
shutil.rmtree(full_path)
else:
os.remove(full_path)
cfg = setup_cfg(ARGS)
engine.launch(
main,
NUM_PROCESSES,
args=(
cfg,
rgb_image,
depth_image,
intrinsics,
num_samples,
CROP,
SCORE_THRESHOLD,
),
)
# process output
# TODO: may want to select these in decreasing order of score
image_files = find_images(ARGS.output)
outputs = []
for count, part in enumerate(image_files):
if count < MAX_PARTS:
outputs.append([Image.open(im) for im in image_files[part]])
return [
*[gr.update(value=out[0], visible=True) for out in outputs],
*[gr.update(visible=False) for _ in range(MAX_PARTS - len(outputs))],
]
def get_trigger(idx: int, fps: int = 40, oscillate: bool = True):
def iter_images(*args, **kwargs):
if idx < len(outputs):
for im in outputs[idx]:
time.sleep(1.0 / fps)
yield im
if oscillate:
for im in reversed(outputs[idx]):
time.sleep(1.0 / fps)
yield im
else:
raise ValueError("Could not find any images to load into this module.")
return iter_images
with gr.Blocks() as demo:
gr.Markdown(
"""
# OPDMulti Demo
Upload an image to see its range of motion.
"""
)
# TODO: add gr.Examples
with gr.Row():
rgb_image = gr.Image(
image_mode="RGB", source="upload", type="filepath", label="RGB Image", show_label=True, interactive=True
)
depth_image = gr.Image(
image_mode="I;16", source="upload", type="filepath", label="Depth Image", show_label=True, interactive=True
)
intrinsics = gr.Dataframe(
value=[
[
214.85935872395834,
0.0,
125.90160319010417,
],
[
0.0,
214.85935872395834,
95.13726399739583,
],
[
0.0,
0.0,
1.0,
],
],
row_count=(3, "fixed"),
col_count=(3, "fixed"),
datatype="number",
type="numpy",
label="Intrinsics matrix",
show_label=True,
interactive=True,
)
num_samples = gr.Number(
value=NUM_SAMPLES,
label="Number of samples",
show_label=True,
interactive=True,
precision=0,
minimum=3,
maximum=20,
)
examples = gr.Examples(
examples=[
["examples/59-4860.png", "examples/59-4860_d.png"],
["examples/174-8460.png", "examples/174-8460_d.png"],
["examples/187-0.png", "examples/187-0_d.png"],
["examples/187-23040.png", "examples/187-23040_d.png"],
],
inputs=[rgb_image, depth_image],
api_name=False,
examples_per_page=2,
)
submit_btn = gr.Button("Run model")
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
# identified.
images = [gr.Image(type="pil", label=f"Part {idx + 1}", visible=False) for idx in range(MAX_PARTS)]
for idx, image_comp in enumerate(images):
image_comp.select(get_trigger(idx), inputs=[], outputs=image_comp, api_name=False)
submit_btn.click(
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=images, api_name=False
)
demo.queue(api_open=False)
demo.launch()
|