Spaces:
Sleeping
Sleeping
File size: 24,767 Bytes
01664b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
MaskFormer criterion.
"""
import logging
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.utils.comm import get_world_size
from detectron2.projects.point_rend.point_features import (
get_uncertain_point_coords_with_randomness,
point_sample,
)
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, _max_by_axis
from ..utils.tranform import matrix_to_quaternion, quaternion_to_matrix
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
dice_loss_jit = torch.jit.script(
dice_loss
) # type: torch.jit.ScriptModule
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
return loss.mean(1).sum() / num_masks
sigmoid_ce_loss_jit = torch.jit.script(
sigmoid_ce_loss
) # type: torch.jit.ScriptModule
def calculate_uncertainty(logits):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
assert logits.shape[1] == 1
gt_class_logits = logits.clone()
return -(torch.abs(gt_class_logits))
def convert_to_filled_tensor(tensor_list):
max_size = _max_by_axis([list(tensor.shape) for tensor in tensor_list])
batch_shape = [len(tensor_list)] + max_size
dtype = tensor_list[0].dtype
device = tensor_list[0].device
filled_tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
for old, new in zip(tensor_list, filled_tensor):
new[:old.shape[0]] = old
return filled_tensor
def smooth_l1_loss(
input: torch.Tensor, target: torch.Tensor, beta: float, reduction: str = "none"
) -> torch.Tensor:
"""
Smooth L1 loss defined in the Fast R-CNN paper as:
::
| 0.5 * x ** 2 / beta if abs(x) < beta
smoothl1(x) = |
| abs(x) - 0.5 * beta otherwise,
where x = input - target.
Smooth L1 loss is related to Huber loss, which is defined as:
::
| 0.5 * x ** 2 if abs(x) < beta
huber(x) = |
| beta * (abs(x) - 0.5 * beta) otherwise
Smooth L1 loss is equal to huber(x) / beta. This leads to the following
differences:
- As beta -> 0, Smooth L1 loss converges to L1 loss, while Huber loss
converges to a constant 0 loss.
- As beta -> +inf, Smooth L1 converges to a constant 0 loss, while Huber loss
converges to L2 loss.
- For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant
slope of 1. For Huber loss, the slope of the L1 segment is beta.
Smooth L1 loss can be seen as exactly L1 loss, but with the abs(x) < beta
portion replaced with a quadratic function such that at abs(x) = beta, its
slope is 1. The quadratic segment smooths the L1 loss near x = 0.
Args:
input (Tensor): input tensor of any shape
target (Tensor): target value tensor with the same shape as input
beta (float): L1 to L2 change point.
For beta values < 1e-5, L1 loss is computed.
reduction: 'none' | 'mean' | 'sum'
'none': No reduction will be applied to the output.
'mean': The output will be averaged.
'sum': The output will be summed.
Returns:
The loss with the reduction option applied.
Note:
PyTorch's builtin "Smooth L1 loss" implementation does not actually
implement Smooth L1 loss, nor does it implement Huber loss. It implements
the special case of both in which they are equal (beta=1).
See: https://pytorch.org/docs/stable/nn.html#torch.nn.SmoothL1Loss.
"""
if beta < 1e-5:
# if beta == 0, then torch.where will result in nan gradients when
# the chain rule is applied due to pytorch implementation details
# (the False branch "0.5 * n ** 2 / 0" has an incoming gradient of
# zeros, rather than "no gradient"). To avoid this issue, we define
# small values of beta to be exactly l1 loss.
loss = torch.abs(input - target)
else:
n = torch.abs(input - target)
cond = n < beta
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if reduction == "mean":
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
elif reduction == "sum":
loss = loss.sum()
return loss
class SetCriterion(nn.Module):
"""This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
num_points, oversample_ratio, importance_sample_ratio, motionnet_type, only_DET):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
# OPD
self.motionnet_type = motionnet_type
self.only_DET = only_DET
def loss_labels(self, outputs, targets, indices, num_masks):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert "pred_logits" in outputs
src_logits = outputs["pred_logits"].float()
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
# OPD
def loss_mtypes(self, outputs, targets, indices, num_masks):
assert "pred_mtypes" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_mtypes = outputs["pred_mtypes"][src_idx][target_motion_valid]
target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
if src_mtypes.shape[0] == 0:
return {"loss_mtype": 0.0 * src_mtypes.sum()}
loss_mtype = F.cross_entropy(src_mtypes, target_mtypes.long(), reduction="sum") / num_masks
losses = {"loss_mtype": loss_mtype}
return losses
def loss_morigins(self, outputs, targets, indices, num_masks):
assert "pred_morigins" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
# Only calculate origin loss for the rotation axis
target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
rot_inds = (
(target_mtypes == 0).nonzero().unbind(1)[0]
)
src_morigins = outputs["pred_morigins"][src_idx][target_motion_valid][rot_inds]
target_morigins = convert_to_filled_tensor([t["gt_origins"] for t in targets])[tgt_idx][target_motion_valid][rot_inds]
if src_morigins.shape[0] == 0:
return {"loss_morigin": 0.0 * src_morigins.sum()}
loss_morigin = smooth_l1_loss(src_morigins, target_morigins, 1.0, reduction="sum") / num_masks
losses = {"loss_morigin": loss_morigin}
return losses
def loss_maxises(self, outputs, targets, indices, num_masks):
assert "pred_maxises" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_maxises = outputs["pred_maxises"][src_idx][target_motion_valid]
target_maxises = convert_to_filled_tensor([t["gt_axises"] for t in targets])[tgt_idx][target_motion_valid]
if src_maxises.shape[0] == 0:
return {"loss_maxis": 0.0 * src_maxises.sum()}
loss_maxis = smooth_l1_loss(src_maxises, target_maxises, 1.0, reduction="sum") / num_masks
losses = {"loss_maxis": loss_maxis}
return losses
#TODO: add loss for motion state
def loss_mstates(self, outputs, targets, indices, num_masks):
assert "pred_mstates" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_mstate = outputs["pred_mstates"][src_idx][target_motion_valid]
target_mstate = convert_to_filled_tensor([t["gt_states"] for t in targets])[tgt_idx][target_motion_valid]
if src_mstate.shape[0] == 0:
return {"loss_mstate": 0.0 * src_mstate.sum()}
loss_mstate = smooth_l1_loss(src_mstate, target_mstate, 1.0, reduction="sum") / num_masks
losses = {"loss_mstate": loss_mstate}
return losses
def loss_mstatemaxs(self, outputs, targets, indices, num_masks):
assert "pred_mstatemaxs" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_mstatemax = outputs["pred_mstatemaxs"][src_idx][target_motion_valid]
target_mstatemax = convert_to_filled_tensor([t["gt_statemaxs"] for t in targets])[tgt_idx][target_motion_valid]
if src_mstatemax.shape[0] == 0:
return {"loss_mstatemax": 0.0 * src_mstatemax.sum()}
loss_mstatemax = smooth_l1_loss(src_mstatemax, target_mstatemax, 1.0, reduction="sum") / num_masks
losses = {"loss_mstatemax": loss_mstatemax}
return losses
def loss_extrinsics(self, outputs, targets, indices, num_masks):
assert "pred_extrinsics" in outputs
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6":
target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
target_extrinsics_full = [t["gt_extrinsic"][0] for t in targets]
target_extrinsics = convert_to_filled_tensor([torch.cat(
[
extrinsic[0:3],
extrinsic[4:7],
extrinsic[8:11],
extrinsic[12:15],
],
0,
) for extrinsic in target_extrinsics_full])[target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
elif self.motionnet_type == "BMOC_V1":
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
target_extrinsics_full = []
for t in targets:
extrinsics = t["gt_extrinsic"]
target_extrinsics_full.append(torch.cat(
[
extrinsics[:, 0:3],
extrinsics[:, 4:7],
extrinsics[:, 8:11],
extrinsics[:, 12:15],
],
1,
))
target_extrinsics = convert_to_filled_tensor(target_extrinsics_full)[tgt_idx][target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
elif self.motionnet_type == "BMOC_V2":
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"] for t in targets])[tgt_idx][target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
elif self.motionnet_type == "BMOC_V3":
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_6d"] for t in targets])[tgt_idx][target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5":
target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"][0] for t in targets])[target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
return {"loss_extrinsic": loss_extrinsic}
def loss_masks(self, outputs, targets, indices, num_masks):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
assert "pred_masks" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_masks = outputs["pred_masks"]
src_masks = src_masks[src_idx]
masks = [t["masks"] for t in targets]
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(src_masks)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates :)
# N x 1 x H x W
src_masks = src_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
src_masks,
lambda logits: calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
# get gt labels
point_labels = point_sample(
target_masks,
point_coords,
align_corners=False,
).squeeze(1)
point_logits = point_sample(
src_masks,
point_coords,
align_corners=False,
).squeeze(1)
losses = {
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
}
del src_masks
del target_masks
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_masks):
tmp_device = outputs["pred_logits"].device
tmp_list = ["mtypes", "morigins", "maxises"]
loss_map = {
'labels': self.loss_labels,
'masks': self.loss_masks,
# OPD
"mtypes": self.loss_mtypes,
"morigins": self.loss_morigins,
"maxises": self.loss_maxises,
"extrinsics": self.loss_extrinsics,
"mstates": self.loss_mstates,
"mstatemaxs": self.loss_mstatemaxs,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
tmp_loss = loss_map[loss](outputs, targets, indices, num_masks)
if self.only_DET and loss in tmp_list:
tmp_key = list(tmp_loss.keys())[0]
tmp_loss[tmp_key] = torch.tensor(0.0, device=tmp_device)
return tmp_loss
else:
return tmp_loss
# return loss_map[loss](outputs, targets, indices, num_masks)
def forward(self, outputs, targets):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
tmp_device = outputs["pred_logits"].device
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t["labels"]) for t in targets)
num_masks = torch.as_tensor(
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_masks)
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
if loss == "extrinsics" and self.motionnet_type == "BMCC":
continue
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
if loss == "extrinsics" and (self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC"):
continue
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def __repr__(self):
head = "Criterion " + self.__class__.__name__
body = [
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
"losses: {}".format(self.losses),
"weight_dict: {}".format(self.weight_dict),
"num_classes: {}".format(self.num_classes),
"eos_coef: {}".format(self.eos_coef),
"num_points: {}".format(self.num_points),
"oversample_ratio: {}".format(self.oversample_ratio),
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
]
_repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)
|