Spaces:
Sleeping
Sleeping
File size: 16,813 Bytes
d9eb428 5dac7b5 f9fe93a d9eb428 1248eed d9eb428 f9fe93a d9eb428 1248eed d9eb428 1248eed d9eb428 f9fe93a d9eb428 1248eed d9eb428 1248eed d9eb428 1248eed d9eb428 f9fe93a d9eb428 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 ca4f534 e760927 d9eb428 e760927 d9eb428 e760927 1248eed e760927 d9eb428 e760927 d9eb428 e760927 d9eb428 e760927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import json
import warnings
import re
import os
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
from langchain.prompts import PromptTemplate
import gradio as gr
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
class ZarmaLanguageAnalyzer:
def __init__(self, grammar_path: str, glossary_path: str):
"""
Initialize the Zarma Language Analyzer with grammar rules and glossary.
Optimized for CPU usage on Hugging Face Spaces.
"""
print("Running on CPU for Hugging Face Spaces.")
self.grammar_rules = self._load_json(grammar_path).get("grammar_rules", [])
self.glossary_data = self._load_json(glossary_path)
self._setup_models()
self._setup_vectorstore()
def _load_json(self, file_path: str) -> dict:
"""Load and parse a JSON file."""
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
def _setup_models(self):
"""Set up the Gemini-2.0-flash model via Google Generative AI API."""
# Get API key from environment variable
api_key = os.getenv("GOOGLE_API_KEY")
if not api_key:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel("gemini-2.0-flash")
self.analysis_template = PromptTemplate(
input_variables=["sentence", "grammar_check", "glossary_info", "language"],
template="""
You are a Zarma language expert. Analyze this Zarma sentence: "{sentence}"
Rely primarily on your expertise in Zarma grammar and meaning. Recognize proper nouns (e.g., names or places) as such unless the glossary explicitly contradicts this with a common Zarma meaning. Use the grammar check and glossary below as supplementary aids only—do not override your knowledge unless they provide clear, contextually relevant insight.
Grammar check results (optional guide):
{grammar_check}
Glossary information (use it but prioritize your expertise to confirm):
{glossary_info}
Provide a detailed linguistic analysis in {language} in this exact format, with no extra text outside the sections:
1. WORD BREAKDOWN:
- [List each word with its grammatical role and meaning, e.g., "Ay: 1st person singular pronoun, meaning 'I'."]
2. LINGUISTIC INSIGHT:
- Word Order: [Describe typical Zarma word order (e.g., SOV, SVO) and how this sentence aligns or deviates]
- Tense/Aspect Markers: [Explain tense/aspect markers like 'ga', 'goono ga', or none for past, with examples like "Ay ga koy" (I will go)]
- Contextual Insight: [Discuss what the sentence might intend to convey and any external influences or errors]
3. CORRECTNESS ASSESSMENT:
- Is the sentence correct? [Yes/No, with explanation]
- Reason for Incorrectness (if applicable): [Detailed reason why it’s wrong, e.g., misplaced particle]
- Corrections (depending on intended meaning):
- [Option 1: Corrected sentence with explanation]
- [Option 2: Corrected sentence with explanation]
- [Option 3: Corrected sentence with explanation]
"""
)
def _setup_vectorstore(self):
"""Set up FAISS vector store with the glossary for retrieval."""
embed_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"} # Force CPU usage
)
documents = []
for entry in self.glossary_data:
fr_word = entry.get("fr", "")
dje_word = entry.get("dje", "")
notes = entry.get("notes", "No additional context available")
content = f"French: {fr_word}\nDjerma: {dje_word}\nNotes: {notes}"
metadata = {"fr": fr_word, "dje": dje_word, "notes": notes}
documents.append(Document(page_content=content, metadata=metadata))
self.vectorstore = FAISS.from_documents(documents, embed_model)
def check_grammar(self, sentence: str) -> list:
"""Check if the sentence violates any grammar rules."""
issues = []
for rule in self.grammar_rules:
rule_id = rule.get("rule_id", "")
category = rule.get("category", "")
subcategory = rule.get("subcategory", "")
description = rule.get("description", "")
examples = rule.get("examples", [])
for example in examples:
wrong_phrase = example.get("zarma", "")
corrected_phrase = example.get("corrected_zarma", "")
english_example = example.get("english", "")
if wrong_phrase and wrong_phrase in sentence:
explanation = (
f"This rule applies because '{wrong_phrase}' doesn't follow {category} norms in Zarma. "
f"Specifically, it violates rules related to {subcategory}. "
f"The correct form would be '{corrected_phrase or 'unknown'}'. "
f"In English, this is similar to: '{english_example}'"
)
issues.append({
"rule_id": rule_id,
"category": category,
"subcategory": subcategory,
"description": description,
"wrong_phrase": wrong_phrase,
"corrected_phrase": corrected_phrase,
"english_example": english_example,
"explanation": explanation
})
return issues
def translate_and_explain_words(self, sentence: str) -> dict:
"""Break the sentence into words and find glossary entries."""
words = sentence.split()
word_info = {}
retrieved_context = []
for word in words:
clean_word = word.strip(".,!?;:()\"'")
if not clean_word:
continue
exact_match = None
for entry in self.glossary_data:
if entry.get("dje", "").lower() == clean_word.lower() or entry.get("fr", "").lower() == clean_word.lower():
exact_match = entry
break
if exact_match:
fr_word = exact_match.get("fr", "")
dje_word = exact_match.get("dje", "")
notes = exact_match.get("notes", "No additional context available")
word_info[clean_word] = {
"french": fr_word,
"djerma": dje_word,
"notes": notes,
"match_type": "exact"
}
context_entry = f"Word: {clean_word}\nFrench: {fr_word}\nDjerma: {dje_word}\nNotes: {notes}"
if context_entry not in retrieved_context:
retrieved_context.append(context_entry)
else:
search_results = self.vectorstore.similarity_search(clean_word, k=1)
if search_results:
result = search_results[0]
metadata = result.metadata
word_info[clean_word] = {
"french": metadata.get("fr", ""),
"djerma": metadata.get("dje", ""),
"notes": metadata.get("notes", "No additional context available"),
"match_type": "semantic"
}
context_entry = f"Word: {clean_word}\nFrench: {metadata.get('fr', '')}\nDjerma: {metadata.get('dje', '')}\nNotes: {metadata.get('notes', 'No additional context available')}"
if context_entry not in retrieved_context:
retrieved_context.append(context_entry)
sentence_results = self.vectorstore.similarity_search(sentence, k=5)
for result in sentence_results:
context_entry = result.page_content
if context_entry not in retrieved_context:
retrieved_context.append(context_entry)
top_contexts = retrieved_context[:3]
return {"word_info": word_info, "retrieved_context": top_contexts}
def format_grammar_issues(self, issues: list) -> str:
"""Format grammar issues for display."""
if not issues:
return "No grammar issues detected."
result = "Grammar Issues Detected:\n\n"
for i, issue in enumerate(issues, 1):
result += f"Issue {i}:\n"
result += f"Rule ID: {issue.get('rule_id', '')}\n"
result += f"Category: {issue.get('category', '')}\n"
result += f"Subcategory: {issue.get('subcategory', '')}\n"
result += f"Description: {issue.get('description', '')}\n"
result += f"Wrong phrase: '{issue.get('wrong_phrase', '')}'\n"
result += f"Corrected phrase: '{issue.get('corrected_phrase', '')}'\n"
result += f"English example: {issue.get('english_example', '')}\n"
result += f"Explanation: {issue.get('explanation', '')}\n\n"
return result
def format_glossary_info(self, glossary_results: dict) -> str:
"""Format glossary information for model input."""
word_info = glossary_results.get("word_info", {})
if not word_info:
return "No glossary matches found for words in the sentence."
result = "Glossary information:\n\n"
for word, info in word_info.items():
result += f"Word: {word}\n"
result += f"French: {info.get('french', '')}\n"
result += f"Djerma: {info.get('djerma', '')}\n"
result += f"Notes: {info.get('notes', '')}\n\n"
return result
def filter_reliable_context(self, glossary_results: dict, analysis_result: str) -> list:
"""Filter glossary context to only show entries reliable in the context of Gemini's analysis."""
retrieved_context = glossary_results.get("retrieved_context", [])
analysis_lower = analysis_result.lower()
reliable_context = []
for context in retrieved_context:
lines = context.split("\n")
word_line = lines[0]
word = word_line.split(": ")[1].lower()
if word in analysis_lower:
reliable_context.append(context)
return reliable_context[:3]
def extract_analysis(self, raw_output: str) -> str:
"""Extract the detailed analysis sections."""
pattern = (
r"(1\. WORD BREAKDOWN:\s*-\s*.+?)" +
r"(2\. LINGUISTIC INSIGHT:\s*-\s*Word Order:\s*.+?)" +
r"(3\. CORRECTNESS ASSESSMENT:\s*-\s*Is the sentence correct\?.+?)(?=\n\n|$)"
)
match = re.search(pattern, raw_output, re.DOTALL)
if match:
return match.group(1) + "\n" + match.group(2) + "\n" + match.group(3)
return (
"1. WORD BREAKDOWN:\n"
" - Analysis incomplete due to model limitations.\n\n"
"2. LINGUISTIC INSIGHT:\n"
" - Word Order: Analysis incomplete.\n"
" - Tense/Aspect Markers: Analysis incomplete.\n"
" - Contextual Insight: Analysis incomplete.\n\n"
"3. CORRECTNESS ASSESSMENT:\n"
" - Is the sentence correct? Unknown due to model limitations.\n"
" - Reason for Incorrectness (if applicable): Unknown.\n"
" - Corrections: None provided."
)
def analyze_sentence(self, sentence: str, lang: str = "en") -> dict:
"""Full analysis pipeline for a Zarma sentence using Gemini-2.0-flash."""
grammar_issues = self.check_grammar(sentence)
formatted_grammar = self.format_grammar_issues(grammar_issues)
glossary_results = self.translate_and_explain_words(sentence)
formatted_glossary = self.format_glossary_info(glossary_results)
language = "English" if lang == "en" else "French"
prompt = self.analysis_template.format(
sentence=sentence,
grammar_check=formatted_grammar,
glossary_info=formatted_glossary,
language=language
)
raw_analysis = ""
try:
response = self.model.generate_content(prompt)
raw_analysis = response.text
except Exception as e:
raw_analysis = f"Error in analysis generation: {str(e)}"
analysis_result = self.extract_analysis(raw_analysis)
reliable_context = self.filter_reliable_context(glossary_results, analysis_result)
return {
"sentence": sentence,
"grammar_issues": grammar_issues,
"formatted_grammar": formatted_grammar,
"analysis_result": analysis_result,
"retrieved_context": reliable_context
}
def format_output(self, results: dict, lang: str = "en") -> str:
"""Format the analysis results for Gradio output in the selected language."""
if lang == "fr":
output = "=" * 80 + "\n"
output += "ANALYSEUR DE LANGUE ZARMA\n"
output += "=" * 80 + "\n\n"
output += f"Phrase Analysée: \"{results['sentence']}\"\n"
output += f"État de la Grammaire: {'Problèmes détectés' if results['grammar_issues'] else 'Correct'}\n\n"
output += "Analyse Détaillée:\n"
output += "-" * 80 + "\n"
output += results['analysis_result'] + "\n\n"
output += "Sources de Contexte Fiables:\n"
output += "-" * 80 + "\n"
if results["retrieved_context"]:
for i, context in enumerate(results["retrieved_context"], 1):
output += f"Source {i}:\n{context}\n\n"
else:
output += "Aucune source de contexte fiable récupérée basée sur l'analyse.\n"
output += "=" * 80
else: # Default to English
output = "=" * 80 + "\n"
output += "ZARMA LANGUAGE ANALYZER\n"
output += "=" * 80 + "\n\n"
output += f"Sentence Analyzed: \"{results['sentence']}\"\n"
output += f"Grammar Status: {'Issues detected' if results['grammar_issues'] else 'Correct'}\n\n"
output += "Detailed Analysis:\n"
output += "-" * 80 + "\n"
output += results['analysis_result'] + "\n\n"
output += "Reliable Context Sources:\n"
output += "-" * 80 + "\n"
if results["retrieved_context"]:
for i, context in enumerate(results["retrieved_context"], 1):
output += f"Source {i}:\n{context}\n\n"
else:
output += "No reliable context sources retrieved based on the analysis.\n"
output += "=" * 80
return output
# Initialize the analyzer (adjust paths to match your Hugging Face Space structure)
analyzer = ZarmaLanguageAnalyzer("grammar_rules.json", "glossary.json")
# Gradio interface
def analyze_zarma_sentence(sentence, output_in_english):
if not sentence.strip():
return "Please enter a valid Zarma sentence." if output_in_english else "Veuillez entrer une phrase Zarma valide."
lang = "en" if output_in_english else "fr"
results = analyzer.analyze_sentence(sentence, lang=lang)
return analyzer.format_output(results, lang=lang)
# Define the Gradio UI
with gr.Blocks(title="Zarma Language Analyzer") as demo:
gr.Markdown("# Zarma Language Analyzer")
gr.Markdown("Enter a Zarma sentence below to analyze its grammar and meaning.")
sentence_input = gr.Textbox(label="Zarma Sentence", placeholder="e.g., Ay ga koy.")
language_checkbox = gr.Checkbox(label="Output in English (uncheck for French)", value=True)
analyze_button = gr.Button("Analyze")
output_text = gr.Textbox(label="Analysis Result", lines=20)
analyze_button.click(
fn=analyze_zarma_sentence,
inputs=[sentence_input, language_checkbox],
outputs=output_text
)
# Launch the app
demo.launch(share=True)
|