File size: 12,437 Bytes
10e9b7d
 
eccf8e4
3c4371f
cc6bd3b
 
d26c7f3
10e9b7d
e80aab9
3db6293
d26c7f3
fae0e51
d26c7f3
 
 
31243f4
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
d26c7f3
 
 
 
 
 
 
 
 
 
 
cc6bd3b
 
 
31243f4
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
d26c7f3
e514fd7
d26c7f3
 
 
 
 
 
 
 
 
e514fd7
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e514fd7
d26c7f3
 
 
 
e514fd7
d26c7f3
 
 
 
 
 
cc6bd3b
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
 
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
d26c7f3
 
 
 
 
e80aab9
d26c7f3
 
 
7d65c66
d26c7f3
7d65c66
d26c7f3
 
7d65c66
3c4371f
d26c7f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import gradio as gr
import requests
import pandas as pd

from alfred import Alfred


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MOCK_SUBMISSION = True
QUESTIONS_LIMIT = 3  # Use 0 for no limit !


class Application:
    def __init__(self):
        self.space_id = os.getenv("SPACE_ID")
        self.username = None
        self.questions_url, self.submit_url = self._get_runtime_and_repo_urls()

    @staticmethod
    def _get_username(profile: gr.OAuthProfile | None):
        """Get profile username"""
        if profile:
            username= f"{profile.username}"
            print(f"User logged in: {username}")
            return username
        else:
            print("User not logged in.")
            return None

    @staticmethod
    def _get_runtime_and_repo_urls():
        """Determine HF Space Runtime URL and Repo URL"""
        api_url = DEFAULT_API_URL
        questions_url = f"{api_url}/questions"
        submit_url = f"{api_url}/submit"
        return questions_url, submit_url

    def _fetch_questions(self):
        """
        Fetches questions from `questions_url`.

        Sends a GET request to retrieve and parse questions as JSON. Handles network,
        JSON decoding, and unexpected errors.

        Returns:
            tuple: (error_message: str or None, questions: list or None)

        Logs:
            - Progress, success, empty data, or errors.
        """

        print(f"Fetching questions from: {self.questions_url}")
        try:
            response = requests.get(self.questions_url, timeout=15)
            response.raise_for_status()
            questions_data = response.json()
            if not questions_data:
                print("Fetched questions list is empty.")
                return "Fetched questions list is empty or invalid format.", None
            print(f"Fetched {len(questions_data)} questions.")
        except requests.exceptions.JSONDecodeError as e:
            print(f"Error decoding JSON response from questions endpoint: {e}")
            print(f"Response text: {response.text[:500]}")
            return f"Error decoding server response for questions: {e}", None
        except requests.exceptions.RequestException as e:
            print(f"Error fetching questions: {e}")
            return f"Error fetching questions: {e}", None
        except Exception as e:
            print(f"An unexpected error occurred fetching questions: {e}")
            return f"An unexpected error occurred fetching questions: {e}", None
        return questions_data

    @staticmethod
    async def _run_agent(questions_data, agent):
        """
        Runs the agent on a list of questions and collects results.

        Args:
            questions_data (list): List of question dictionaries with "task_id" and "question".
            agent (callable): Callable that processes a question and returns an answer.

        Returns:
            tuple: 
            - results_log (list): Logs with "Task ID", "Question", and "Submitted Answer".
            - answers_payload (list): Payload with "task_id" and "submitted_answer".
        """
        if QUESTIONS_LIMIT > 0:
            questions_data = questions_data[:QUESTIONS_LIMIT]

        results_log = []
        answers_payload = []
        print(f"Running agent on {len(questions_data)} questions...")
        for item in questions_data:
            task_id = item.get("task_id")
            question_text = item.get("question")
            if not task_id or question_text is None:
                print(f"Skipping item with missing task_id or question: {item}")
                continue
            try:
                submitted_answer = await agent(question_text)
                print(f"SUBMITED_ANSWER: {submitted_answer}")
                answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            except Exception as e:
                print(f"Error running agent on task {task_id}: {e}")
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
        return results_log, answers_payload

    def _submit(self, answers_payload, submission_data, results_log):
        """
        Submits answers to the specified URL and processes the response.

        Args:
            answers_payload (list): List of answers to submit.
            submission_data (dict): Payload for the POST request.
            results_log (list): Log of results to convert into a DataFrame.

        Returns:
            tuple: (status_message (str), results_df (pd.DataFrame)).

        Notes:
            - Sends a POST request to `self.submit_url` with `submission_data`.
            - Handles exceptions and provides error messages.
        """
        print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
        try:
            if MOCK_SUBMISSION:
                mock_response = type('MockResponse', (), {
                    'status_code': 200,
                    'json': lambda *args: {
                        "username": self.username,
                        "score": 100,
                        "correct_count": len(answers_payload),
                        "total_attempted": len(answers_payload),
                        "message": "Mock submission successful."
                    }
                })
                response = mock_response()
            else:
                response = requests.post(self.submit_url, json=submission_data, timeout=60)
                response.raise_for_status()
            result_data = response.json()
            final_status = (
                f"Submission Successful!\n"
                f"User: {result_data.get('username')}\n"
                f"Overall Score: {result_data.get('score', 'N/A')}% "
                f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
                f"Message: {result_data.get('message', 'No message received.')}"
            )
            print("Submission successful.")
            results_df = pd.DataFrame(results_log)
            return final_status, results_df
        except requests.exceptions.HTTPError as e:
            error_detail = f"Server responded with status {e.response.status_code}."
            try:
                error_json = e.response.json()
                error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
            except requests.exceptions.JSONDecodeError:
                error_detail += f" Response: {e.response.text[:500]}"
            status_message = f"Submission Failed: {error_detail}"
            print(status_message)
            results_df = pd.DataFrame(results_log)
            return status_message, results_df
        except requests.exceptions.Timeout:
            status_message = "Submission Failed: The request timed out."
            print(status_message)
            results_df = pd.DataFrame(results_log)
            return status_message, results_df
        except requests.exceptions.RequestException as e:
            status_message = f"Submission Failed: Network error - {e}"
            print(status_message)
            results_df = pd.DataFrame(results_log)
            return status_message, results_df
        except Exception as e:
            status_message = f"An unexpected error occurred during submission: {e}"
            print(status_message)
            results_df = pd.DataFrame(results_log)
            return status_message, results_df

    async def eval_and_submit_all(self, profile: gr.OAuthProfile | None):
        """
        Fetches all questions, runs the agent on them, submits all answers,
        and displays the results.
        """
        self.username = self._get_username(profile)
        if self.username is None:
            return "Please Login to Hugging Face with the button.", None

        # 1. Instantiate the Main Agent
        try:
            agent = Alfred()
        except Exception as e:
            print(f"Error instantiating agent: {e}")
            return f"Error initializing agent: {e}", None
        # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
        agent_code = f"https://huggingface.co/spaces/{self.space_id}/tree/main"
        print(agent_code)

        # 2. Fetch Questions
        questions_data = self._fetch_questions()

        # 3. Run your Agent
        results_log, answers_payload = await self._run_agent(questions_data, agent)

        if not answers_payload:
            print("Agent did not produce any answers to submit.")
            return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

        # 4. Prepare Submission 
        submission_data = {"username": self.username.strip(), "agent_code": agent_code, "answers": answers_payload}
        status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{self.username}'..."
        print(status_update)

        # 5. Submit
        status_message, results_df = self._submit(answers_payload, submission_data, results_log)
        return status_message, results_df


class UI:
    app = Application()

    @classmethod
    def _check_space_host_and_id(cls):
        """Check for SPACE_HOST and SPACE_ID at startup for information"""
        space_host_startup = os.getenv("SPACE_HOST")
        space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

        if space_host_startup:
            print(f"✅ SPACE_HOST found: {space_host_startup}")
            print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
        else:
            print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

        # Print repo URLs if SPACE_ID is found
        if space_id_startup:
            print(f"✅ SPACE_ID found: {space_id_startup}")
            print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
            print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
        else:
            print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    @classmethod
    def _build(cls):
        gr.Markdown("# Main Agent Evaluation Runner")
        gr.Markdown(
            """
            **Instructions:**

            1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
            2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
            3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

            ---
            **Disclaimers:**
            Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
            This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
            """
        )

        gr.LoginButton()

        run_button = gr.Button("Run Evaluation & Submit All Answers")

        status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
        # Removed max_rows=10 from DataFrame constructor
        results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

        run_button.click(
            fn=cls.app.eval_and_submit_all,
            outputs=[status_output, results_table]
        )

    @classmethod
    def launch(cls):
        """Build Gradio Interface using Blocks"""
        with gr.Blocks() as demo:
            cls._build()

        if __name__ == "__main__":
            print("\n" + "-"*30 + " App Starting " + "-"*30)
            cls._check_space_host_and_id()

            print("-"*(60 + len(" App Starting ")) + "\n")

            print("Launching Gradio Interface for Main Agent Evaluation...")
            demo.launch(debug=True, share=False)


UI.launch()