Spaces:
Runtime error
Runtime error
File size: 20,198 Bytes
0a3530a 6b87e28 9346f1c 4596a70 2a5f9fb 60ff46b 2a5f9fb 8c49cb6 0a3530a 8c49cb6 976f398 df66f6e 0a3530a 9d22eee 0a3530a df66f6e 9b2e755 0a3530a df66f6e 0a3530a 8c49cb6 6b87e28 60ff46b 8ff5577 0a3530a 2a73469 10f9b3c 2a5f9fb d084b26 0c7ef71 6b87e28 dbb8b5d 6b87e28 dbb8b5d 6b87e28 0a3530a dbb8b5d 6b87e28 0c7ef71 0a3530a d084b26 6b87e28 0c7ef71 6b87e28 26286b2 6b87e28 551debe 0a3530a 6b87e28 614ee1f 1f60a20 8c49cb6 72a0f0f f04f90e 72a0f0f 0a3530a ef5b51c 512b095 a2790cb 72a0f0f 8b63c4c 0a3530a 8b63c4c 0a3530a aa7c3f4 adb0416 8c49cb6 9b2e755 0a3530a 8c49cb6 0a3530a ecef2dc 7644705 72a0f0f 0a3530a ef5b51c 0a3530a ef5b51c adb0416 8c49cb6 f04f90e 8c49cb6 f04f90e 2a5f9fb f04f90e 8c49cb6 193f184 b762711 f04f90e 9b2e755 f04f90e 460ecf2 3ae1b8c ab6f548 3ae1b8c dc0413f 3ae1b8c dc0413f d2179b0 8c49cb6 d2179b0 0a3530a 9b2e755 0a3530a 9b2e755 0a3530a 9b2e755 7644705 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 613696b ecef2dc 8c49cb6 e3a8804 0a3530a e3a8804 8c49cb6 df66f6e 8c49cb6 f04f90e 0a3530a 193f184 0a3530a 460ecf2 601f2e9 0a3530a fc1e99b 9d22eee fc1e99b 8c49cb6 6e8f400 8c49cb6 2a5f9fb 8c49cb6 2a5f9fb 6e8f400 ecef2dc 0a3530a 6e8f400 460d762 6e8f400 2a5f9fb 6e8f400 a2790cb 8c49cb6 a2790cb e3a8804 a2790cb f04f90e 8c49cb6 8b63c4c de891db 8b63c4c f04f90e 8b63c4c 0a3530a ab6f548 f04f90e ab6f548 f2bc0a5 9d6aecc b1a1395 6b87e28 b1a1395 0a3530a b1a1395 6b87e28 b1a1395 0a3530a 6b87e28 9d6aecc 6e8f400 9d6aecc 2246286 0227006 4ccfada 8dfa543 0227006 8dfa543 6e8f400 00358b1 0227006 6e8f400 a163e5c 8c49cb6 b323764 9d22eee 8c49cb6 b323764 2762eff b323764 0227006 6e8f400 12cea14 9d22eee 8c49cb6 12cea14 217b585 12cea14 9d22eee 8c49cb6 12cea14 6e8f400 8c49cb6 8cb7546 9d6aecc 6e8f400 12cea14 6e8f400 12cea14 8c49cb6 6e8f400 8cb7546 d16cee2 67109fc d16cee2 adb0416 d16cee2 10f9b3c 0a3530a 10f9b3c 7bb3bb8 0a3530a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import os
import logging
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio_space_ci import enable_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
FAQ_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import (
API,
DYNAMIC_INFO_FILE_PATH,
DYNAMIC_INFO_PATH,
DYNAMIC_INFO_REPO,
EVAL_REQUESTS_PATH,
EVAL_RESULTS_PATH,
H4_TOKEN,
IS_PUBLIC,
QUEUE_REPO,
REPO_ID,
RESULTS_REPO,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.scripts.update_all_request_files import update_dynamic_files
from src.submission.submit import add_new_eval
from src.tools.collections import update_collections
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3):
"""Attempt to download dataset with retries."""
attempt = 0
while attempt < max_attempts:
try:
print(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
return
except Exception as e:
logging.error(f"Error downloading {repo_id}: {e}")
attempt += 1
if attempt == max_attempts:
restart_space()
def init_space(full_init: bool = True):
"""Initializes the application space, loading only necessary data."""
if full_init:
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
raw_data, original_df = get_leaderboard_df(
results_path=EVAL_RESULTS_PATH,
requests_path=EVAL_REQUESTS_PATH,
dynamic_path=DYNAMIC_INFO_FILE_PATH,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
update_collections(original_df)
leaderboard_df = original_df.copy()
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return leaderboard_df, raw_data, original_df, eval_queue_dfs
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
leaderboard_df, raw_data, original_df, eval_queue_dfs = init_space(full_init=do_full_init)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
# Data processing for plots now only on demand in the respective Gradio tab
def load_and_create_plots():
plot_df = create_plot_df(create_scores_df(raw_data))
return plot_df
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
hide_models: list,
query: str,
):
filtered_df = filter_models(
df=hidden_df,
type_query=type_query,
size_query=size_query,
precision_query=precision_query,
hide_models=hide_models,
)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
query = request.query_params.get("query") or ""
return (
query,
query,
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False, na=False))]
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[df[AutoEvalColumn.license.name].str.contains(query, case=False, na=False)]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
# AutoEvalColumn.model_type_symbol.name,
# AutoEvalColumn.model.name,
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
return filtered_df
def filter_queries(query: str, df: pd.DataFrame):
tmp_result_df = []
# Empty query return the same df
if query == "":
return df
# all_queries = [q.strip() for q in query.split(";")]
# license_queries = []
all_queries = [q.strip() for q in query.split(";") if q.strip() != ""]
model_queries = [q for q in all_queries if not q.startswith("licence")]
license_queries_raw = [q for q in all_queries if q.startswith("license")]
license_queries = [
q.replace("license:", "").strip() for q in license_queries_raw if q.replace("license:", "").strip() != ""
]
# Handling model name search
for query in model_queries:
tmp_df = search_model(df, query)
if len(tmp_df) > 0:
tmp_result_df.append(tmp_df)
if not tmp_result_df and not license_queries:
# Nothing is found, no license_queries -> return empty df
return pd.DataFrame(columns=df.columns)
if tmp_result_df:
df = pd.concat(tmp_result_df)
df = df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
if not license_queries:
return df
# Handling license search
tmp_result_df = []
for query in license_queries:
tmp_df = search_license(df, query)
if len(tmp_df) > 0:
tmp_result_df.append(tmp_df)
if not tmp_result_df:
# Nothing is found, return empty df
return pd.DataFrame(columns=df.columns)
df = pd.concat(tmp_result_df)
df = df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
) -> pd.DataFrame:
# Show all models
if "Private or deleted" in hide_models:
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
else:
filtered_df = df
if "Contains a merge/moerge" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
if "MoE" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
if "Flagged" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
leaderboard_df = filter_models(
df=leaderboard_df,
type_query=[t.to_str(" : ") for t in ModelType],
size_query=list(NUMERIC_INTERVALS.keys()),
precision_query=[i.value.name for i in Precision],
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder="π Search models or licenses (e.g., 'model_name; license: MIT') and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
hide_models = gr.CheckboxGroup(
label="Hide models",
choices=["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
interactive=True,
)
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
hide_models,
search_bar,
],
leaderboard_table,
)
# Define a hidden component that will trigger a reload only if a query parameter has been set
hidden_search_bar = gr.Textbox(value="", visible=False)
hidden_search_bar.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
hide_models,
search_bar,
],
leaderboard_table,
)
# Check query parameter once at startup and update search bar + hidden component
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
for selector in [
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
hide_models,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
hide_models,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
with gr.Column():
plot_df = load_and_create_plots()
chart = create_metric_plot_obj(
plot_df,
[AutoEvalColumn.average.name],
title="Average of Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.Column():
plot_df = load_and_create_plots()
chart = create_metric_plot_obj(
plot_df,
BENCHMARK_COLS,
title="Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("βFAQ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|