This repository contains the LoRA weights for fine-tuning pre-trained Llama 2 7B for document expansion for use with DeeperImpact.

We use the same dataset as DocT5Query for fine-tuning the pre-trained Llama 2 model i.e. 532k document-query pairs from MSMARCO Passage Qrels Train Dataset.

Please refer to the following GitHub repository to learn how to use it for document expansion: inference_deeper_impact.ipynb

You can also clone the DeeperImpact repo and run expansions on a collection of documents using the following command:

python -m src.llama2.generate \
    --llama_path <path | HuggingFaceHub link> \
    --collection_path <path> \
    --collection_type [msmarco | beir] \
    --output_path <path> \
    --batch_size <batch_size> \
    --max_tokens 512 \
    --num_return_sequences 80 \
    --max_new_tokens 50 \
    --top_k 50 \
    --top_p 0.95 \
    --peft_path soyuj/llama2-doc2query

This will generate a jsonl file with expansions for each document in the collection. To append the unique expansion terms to the original collection, use the following command:

python -m src.llama2.merge \
  --collection_path <path> \
  --collection_type [msmarco | beir] \
  --queries_path <jsonl file generated above> \
  --output_path <path>
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.