Suparious commited on
Commit
20e076c
1 Parent(s): d74b5f9

unfuck the model card

Browse files
Files changed (1) hide show
  1. README.md +119 -3
README.md CHANGED
@@ -1,13 +1,119 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  inference: false
3
- ---
4
- # cognitivecomputations/dolphin-2.8-mistral-7b-v02 AWQ
 
 
 
 
 
5
 
6
- ** PROCESSING .... ETA 30mins **
 
 
 
 
7
 
8
  - Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations)
9
  - Original model: [dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ### About AWQ
12
 
13
  AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
@@ -21,3 +127,13 @@ It is supported by:
21
  - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
22
  - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
23
  - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
3
+ library_name: transformers
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ tags:
8
+ - generated_from_trainer
9
+ - quantized
10
+ - 4-bit
11
+ - AWQ
12
+ - autotrain_compatible
13
+ - endpoints_compatible
14
+ - text-generation-inference
15
+ - chatml
16
+ datasets:
17
+ - cognitivecomputations/dolphin
18
+ - cognitivecomputations/dolphin-coder
19
+ - cognitivecomputations/samantha-data
20
+ - jondurbin/airoboros-2.2.1
21
+ - teknium/openhermes-2.5
22
+ - m-a-p/Code-Feedback
23
+ - m-a-p/CodeFeedback-Filtered-Instruction
24
+ model-index:
25
+ - name: workspace/dolphin-2.8-mistral-7b
26
+ results: []
27
+ quantized_by: Suparious
28
+ pipeline_tag: text-generation
29
+ model_creator: cognitivecomputations
30
+ model_name: dolphin-2.8-mistral-7b-v02
31
+ model_type: mistral
32
  inference: false
33
+ prompt_template: '<|im_start|>system
34
+
35
+ {system_message}<|im_end|>
36
+
37
+ <|im_start|>user
38
+
39
+ {prompt}<|im_end|>
40
 
41
+ <|im_start|>assistant
42
+
43
+ '
44
+ ---
45
+ # cognitivecomputations/dolphin-2.8-mistral-7b-v02 🐬 AWQ
46
 
47
  - Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations)
48
  - Original model: [dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
49
 
50
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />
51
+
52
+ ## Model Summary
53
+
54
+ My appreciation for the sponsors of Dolphin 2.8:
55
+ - [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 10xL40S node
56
+ - [Winston Sou](https://twitter.com/WinsonDabbles) - Along with a generous anonymous sponsor, donated a massive personally owned compute resource!
57
+ - [Abacus AI](https://abacus.ai/) - my employer and partner in many things.
58
+
59
+ This model is based on [Mistral-7b-v0.2](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) a new base model released by MistralAI on March 23, 2024 but they have not yet published on HuggingFace. Thanks to @alpindale for converting / publishing.
60
+
61
+ The base model has 32k context, and the full-weights fine-tune was with 16k sequence lengths.
62
+
63
+ It took 3 days on 10x L40S provided by [Crusoe Cloud](https://crusoe.ai/)
64
+
65
+ Dolphin-2.8 has a variety of instruction, conversational, and coding skills.
66
+
67
+ This model is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant to any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
68
+
69
+ ## How to use
70
+
71
+ ### Install the necessary packages
72
+
73
+ ```bash
74
+ pip install --upgrade autoawq autoawq-kernels
75
+ ```
76
+
77
+ ### Example Python code
78
+
79
+ ```python
80
+ from awq import AutoAWQForCausalLM
81
+ from transformers import AutoTokenizer, TextStreamer
82
+
83
+ model_path = "solidrust/dolphin-2.8-mistral-7b-v02-AWQ"
84
+ system_message = "You are Dolphin, incarnated as a powerful AI."
85
+
86
+ # Load model
87
+ model = AutoAWQForCausalLM.from_quantized(model_path,
88
+ fuse_layers=True)
89
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
90
+ trust_remote_code=True)
91
+ streamer = TextStreamer(tokenizer,
92
+ skip_prompt=True,
93
+ skip_special_tokens=True)
94
+
95
+ # Convert prompt to tokens
96
+ prompt_template = """\
97
+ <|im_start|>system
98
+ {system_message}<|im_end|>
99
+ <|im_start|>user
100
+ {prompt}<|im_end|>
101
+ <|im_start|>assistant"""
102
+
103
+ prompt = "You're standing on the surface of the Earth. "\
104
+ "You walk one mile south, one mile west and one mile north. "\
105
+ "You end up exactly where you started. Where are you?"
106
+
107
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
108
+ return_tensors='pt').input_ids.cuda()
109
+
110
+ # Generate output
111
+ generation_output = model.generate(tokens,
112
+ streamer=streamer,
113
+ max_new_tokens=512)
114
+
115
+ ```
116
+
117
  ### About AWQ
118
 
119
  AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
 
127
  - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
128
  - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
129
  - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
130
+
131
+ ## Prompt template: ChatML
132
+
133
+ ```plaintext
134
+ <|im_start|>system
135
+ {system_message}<|im_end|>
136
+ <|im_start|>user
137
+ {prompt}<|im_end|>
138
+ <|im_start|>assistant
139
+ ```