Suparious commited on
Commit
30aee48
1 Parent(s): b9c1697

Add usage example

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -51,4 +51,74 @@ Draws upon the Prodigy lineage with some no robots tossed in for good measure. D
51
 
52
  Seems to do markdown well. It's an overall balanced model with a focus on RP.
53
 
 
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  Seems to do markdown well. It's an overall balanced model with a focus on RP.
53
 
54
+ ## How to use
55
 
56
+ ### Install the necessary packages
57
+
58
+ ```bash
59
+ pip install --upgrade autoawq autoawq-kernels
60
+ ```
61
+
62
+ ### Example Python code
63
+
64
+ ```python
65
+ from awq import AutoAWQForCausalLM
66
+ from transformers import AutoTokenizer, TextStreamer
67
+
68
+ model_path = "solidrust/Mewthree-7B-AWQ"
69
+ system_message = "You are Dolphin, a helpful AI assistant."
70
+
71
+ # Load model
72
+ model = AutoAWQForCausalLM.from_quantized(model_path,
73
+ fuse_layers=True)
74
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
75
+ trust_remote_code=True)
76
+ streamer = TextStreamer(tokenizer,
77
+ skip_prompt=True,
78
+ skip_special_tokens=True)
79
+
80
+ # Convert prompt to tokens
81
+ prompt_template = """\
82
+ <|im_start|>system
83
+ {system_message}<|im_end|>
84
+ <|im_start|>user
85
+ {prompt}<|im_end|>
86
+ <|im_start|>assistant"""
87
+
88
+ prompt = "You're standing on the surface of the Earth. "\
89
+ "You walk one mile south, one mile west and one mile north. "\
90
+ "You end up exactly where you started. Where are you?"
91
+
92
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
93
+ return_tensors='pt').input_ids.cuda()
94
+
95
+ # Generate output
96
+ generation_output = model.generate(tokens,
97
+ streamer=streamer,
98
+ max_new_tokens=512)
99
+
100
+ ```
101
+
102
+ ### About AWQ
103
+
104
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
105
+
106
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
107
+
108
+ It is supported by:
109
+
110
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
111
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
112
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
113
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
114
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
115
+
116
+ ## Prompt template: ChatML
117
+
118
+ ```plaintext
119
+ <|im_start|>system
120
+ {system_message}<|im_end|>
121
+ <|im_start|>user
122
+ {prompt}<|im_end|>
123
+ <|im_start|>assistant
124
+ ```