File size: 5,000 Bytes
f14551e
2d6ede2
 
 
e83cf6a
ea21fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6ede2
 
ea21fc1
2d6ede2
 
ea21fc1
 
 
 
 
f14551e
ea21fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14551e
ea21fc1
 
 
 
 
 
 
 
 
 
 
f14551e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea21fc1
 
 
 
 
 
 
 
 
 
f14551e
ea21fc1
 
 
 
 
 
 
 
 
 
 
2d6ede2
 
ea21fc1
2d6ede2
 
ea21fc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from transformers import AutoTokenizer
import json
import os
import shutil

def safe_read_json(filepath):
    try:
        with open(filepath, 'r', encoding='utf-8') as f:
            return json.load(f)
    except FileNotFoundError:
        print(f"File not found: {filepath}")
        return None
    except Exception as e:
        print(f"Error reading {filepath}: {str(e)}")
        return None

def safe_copy_file(src, dst):
    try:
        shutil.copy2(src, dst)
        print(f"Successfully copied {os.path.basename(src)}")
        return True
    except Exception as e:
        print(f"Error copying {src}: {str(e)}")
        return False

def convert_phi_tokenizer(input_dir, output_dir):
    print(f"Converting tokenizer from {input_dir} to {output_dir}")

    # Ensure output directory exists
    os.makedirs(output_dir, exist_ok=True)

    # JSON files to process
    json_files = [
        'tokenizer.json',
        'tokenizer_config.json',
        'special_tokens_map.json',
        'added_tokens.json'  # Moved added_tokens.json here
    ]

    # Files to copy directly (no JSON parsing)
    copy_files = [
        'merges.txt'
    ]

    # List what files we actually find
    print("\nFound files:")
    for f in os.listdir(input_dir):
        print(f"- {f}")

    # Process JSON files
    for filename in json_files:
        input_path = os.path.join(input_dir, filename)
        if os.path.exists(input_path):
            print(f"\nProcessing {filename}")
            content = safe_read_json(input_path)
            if content is not None:
                output_path = os.path.join(output_dir, filename)
                with open(output_path, 'w', encoding='utf-8') as f:
                    json.dump(content, f, indent=2)
                print(f"Successfully copied {filename}")

    # Copy non-JSON files directly
    for filename in copy_files:
        input_path = os.path.join(input_dir, filename)
        if os.path.exists(input_path):
            print(f"\nCopying {filename}")
            safe_copy_file(input_path, os.path.join(output_dir, filename))

    # Load and modify the tokenizer config
    config_path = os.path.join(input_dir, 'tokenizer_config.json')
    if os.path.exists(config_path):
        print("\nProcessing tokenizer config")
        config = safe_read_json(config_path)
        if config is not None:
            config.update({
                'add_prefix_space': False,
                'clean_up_tokenization_spaces': False,
                'model_max_length': 16384,
                'tokenizer_class': 'GPT2Tokenizer',  # Changed to GPT2Tokenizer
                'bos_token': '<|endoftext|>',
                'eos_token': '<|endoftext|>',
                'pad_token': '<|endoftext|>'
            })

            # Save the modified config
            output_config_path = os.path.join(output_dir, 'tokenizer_config.json')
            with open(output_config_path, 'w') as f:
                json.dump(config, f, indent=2)
            print("Successfully updated config")

    # Construct the vocabulary with added tokens
    print("\nConstructing vocabulary...")
    tokenizer_path = os.path.join(output_dir, "tokenizer.json")
    tokenizer_data = safe_read_json(tokenizer_path)
    if tokenizer_data is None:
        print("Error: Unable to read tokenizer.json")
        return

    vocab = tokenizer_data["model"]["vocab"]
    added_tokens = tokenizer_data.get("added_tokens", [])

    for token_data in added_tokens:
        content = token_data["content"]
        if content not in vocab:
            vocab[content] = token_data["id"]

    vocab_size = len(vocab)
    print(f"Vocabulary size: {vocab_size}")

    # Save the vocabulary as vocab.json
    vocab_output_path = os.path.join(output_dir, "vocab.json")
    with open(vocab_output_path, 'w', encoding='utf-8') as f:
        json.dump(vocab, f, indent=2)
    print(f"Successfully saved vocabulary to {vocab_output_path}")

    print("\nAttempting to test tokenizer...")
    try:
        tokenizer = AutoTokenizer.from_pretrained(output_dir)
        test_text = "Hello, world!"
        tokens = tokenizer.encode(test_text)
        decoded = tokenizer.decode(tokens)
        print("Tokenizer test successful!")
        print(f"Test text: {test_text}")
        print(f"Encoded: {tokens}")
        print(f"Decoded: {decoded}")

        # check if they're the same
        if test_text != decoded:
            print("Decoded text does not match original text!")
        else:
            print("Decoded text matches original text!")
            # save the tokenizer
            tokenizer.save_pretrained(output_dir)
            print(f"Tokenizer saved to {output_dir}")

    except Exception as e:
        print(f"Error testing tokenizer: {e}")

if __name__ == "__main__":
    input_dir = "/mnt/llm/models/phi-4/model"  # or "model" depending on which directory you want to use
    output_dir = "/mnt/llm/models/phi-4/converted_tokenizer"

    convert_phi_tokenizer(input_dir, output_dir)